1
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
2
|
Li B, Liang J, Baniasadi HR, Kurihara S, Phillips MA, Michael AJ. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N 1-aminopropylagmatine synthases. J Biol Chem 2024; 300:107281. [PMID: 38588807 PMCID: PMC11107197 DOI: 10.1016/j.jbc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
A polyamine-independent role for S-adenosylmethionine decarboxylase. Biochem J 2019; 476:2579-2594. [DOI: 10.1042/bcj20190561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
AbstractThe only known function of S-adenosylmethionine decarboxylase (AdoMetDC) is to supply, with its partner aminopropyltransferase enzymes such as spermidine synthase (SpdSyn), the aminopropyl donor for polyamine biosynthesis. Polyamine spermidine is probably essential for the growth of all eukaryotes, most archaea and many bacteria. Two classes of AdoMetDC exist, the prokaryotic class 1a and 1b forms, and the eukaryotic class 2 enzyme, which is derived from an ancient fusion of two prokaryotic class 1b genes. Herein, we show that ‘eukaryotic' class 2 AdoMetDCs are found in bacteria and are enzymatically functional. However, the bacterial AdoMetDC class 2 genes are phylogenetically limited and were likely acquired from a eukaryotic source via transdomain horizontal gene transfer, consistent with the class 2 form of AdoMetDC being a eukaryotic invention. We found that some class 2 and thousands of class 1b AdoMetDC homologues are present in bacterial genomes that also encode a gene fusion of an N-terminal membrane protein of the Major Facilitator Superfamily (MFS) class of transporters and a C-terminal SpdSyn-like domain. Although these AdoMetDCs are enzymatically functional, spermidine is absent, and an entire fusion protein or its SpdSyn-like domain only, does not biochemically complement a SpdSyn deletion strain of E. coli. This suggests that the fusion protein aminopropylates a substrate other than putrescine, and has a role outside of polyamine biosynthesis. Another integral membrane protein found clustered with these genes is DUF350, which is also found in other gene clusters containing a homologue of the glutathionylspermidine synthetase family and occasionally other polyamine biosynthetic enzymes.
Collapse
|
4
|
Structure–activity relationship of polyamine conjugates for uptake via polyamine transport system. Struct Chem 2018. [DOI: 10.1007/s11224-018-1175-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Kang B, Xu Q, Chen Z, Wu Y, Yang S, Yang X, Zhang Z, Jiang D. Characterization of goose SPMS: Molecular characterization and expression profiling of SPMS in the goose ovary. Reprod Biol 2018; 18:60-65. [PMID: 29336947 DOI: 10.1016/j.repbio.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/13/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
Spermine synthase (SPMS), which converts spermidine into spermine, is essential for normal cell growth and development processes in humans and other mammals, but the molecular characterization and expression profiling of the SPMS gene remain undetermined in goose tissues and ovarian follicles. In this study, the SPMS cDNA sequence of the Sichuan white goose was cloned and analysed, and SPMS mRNA expression was profiled in various tissues and ovarian follicles. The results showed that the open reading frame of the SPMS cDNA sequence was 1092 bp in length, encoding 363 amino acids with a molecular weight of 41 kDa. Among all the examined tissues, SPMS expression was highest in the spleen and cerebrum and lowest in the breast and thigh muscles. SPMS expression in the F1 follicle was significantly higher than that in the POF (except for POF2) (P < 0.05). Our results indicate that SPMS might play an important role in follicular development and ovulation.
Collapse
Affiliation(s)
- Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Qilin Xu
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, PR China
| | - Ziyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Yongsheng Wu
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, PR China
| | - Su Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xicheng Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Zhao Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
6
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
7
|
Biosynthesis of polyamines and polyamine-containing molecules. Biochem J 2016; 473:2315-29. [DOI: 10.1042/bcj20160185] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Polyamines are evolutionarily ancient polycations derived from amino acids and are pervasive in all domains of life. They are essential for cell growth and proliferation in eukaryotes and are essential, important or dispensable for growth in bacteria. Polyamines present a useful scaffold to attach other moieties to, and are often incorporated into specialized metabolism. Life has evolved multiple pathways to synthesize polyamines, and structural variants of polyamines have evolved in bacteria, archaea and eukaryotes. Among the complex biosynthetic diversity, patterns of evolutionary reiteration can be distinguished, revealing evolutionary recycling of particular protein folds and enzyme chassis. The same enzyme activities have evolved from multiple protein folds, suggesting an inevitability of evolution of polyamine biosynthesis. This review discusses the different biosynthetic strategies used in life to produce diamines, triamines, tetra-amines and branched and long-chain polyamines. It also discusses the enzymes that incorporate polyamines into specialized metabolites and attempts to place polyamine biosynthesis in an evolutionary context.
Collapse
|
8
|
Gamat M, Malinowski RL, Parkhurst LJ, Steinke LM, Marker PC. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate. PLoS One 2015; 10:e0139522. [PMID: 26426536 PMCID: PMC4591331 DOI: 10.1371/journal.pone.0139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022] Open
Abstract
The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating prostatic bud induction, and are required for the expression of a subset of prostatic developmental regulatory genes including Notch1 and Nkx3.1.
Collapse
Affiliation(s)
- Melissa Gamat
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Rita L. Malinowski
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Linnea J. Parkhurst
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Laura M. Steinke
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Paul C. Marker
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
9
|
Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 2013; 15:e3. [PMID: 23432971 DOI: 10.1017/erm.2013.3] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines are small organic cations that are essential for normal cell growth and development in eukaryotes. Under normal physiological conditions, intracellular polyamine concentrations are tightly regulated through a dynamic network of biosynthetic and catabolic enzymes, and a poorly characterised transport system. This precise regulation ensures that the intracellular concentration of polyamines is maintained within strictly controlled limits. It has frequently been observed that the metabolism of, and the requirement for, polyamines in tumours is frequently dysregulated. Elevated levels of polyamines have been associated with breast, colon, lung, prostate and skin cancers, and altered levels of rate-limiting enzymes in both biosynthesis and catabolism have been observed. Based on these observations and the absolute requirement for polyamines in tumour growth, the polyamine pathway is a rational target for chemoprevention and chemotherapeutics. Here we describe the recent advances made in the polyamine field and focus on the roles of polyamines and polyamine metabolism in neoplasia through a discussion of the current animal models for the polyamine pathway, chemotherapeutic strategies that target the polyamine pathway, chemotherapeutic clinical trials for polyamine pathway-specific drugs and ongoing clinical trials targeting polyamine biosynthesis.
Collapse
|
10
|
Casero RA, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 2007; 6:373-90. [PMID: 17464296 DOI: 10.1038/nrd2243] [Citation(s) in RCA: 570] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polyamines spermidine and spermine and their diamine precursor putrescine are naturally occurring, polycationic alkylamines that are essential for eukaryotic cell growth. The requirement for and the metabolism of polyamines are frequently dysregulated in cancer and other hyperproliferative diseases, thus making polyamine function and metabolism attractive targets for therapeutic intervention. Recent advances in our understanding of polyamine function, metabolic regulation, and differences between normal cells and tumour cells with respect to polyamine biology, have reinforced the interest in this target-rich pathway for drug development.
Collapse
Affiliation(s)
- Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
11
|
Knott JM, Römer P, Sumper M. Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Lett 2007; 581:3081-6. [PMID: 17560575 DOI: 10.1016/j.febslet.2007.05.074] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/23/2007] [Accepted: 05/27/2007] [Indexed: 11/16/2022]
Abstract
Polyamines are involved in many fundamental cellular processes. Common polyamines are putrescine, spermidine and spermine. Spermine is synthesized by transfer of an aminopropyl residue derived from decarboxylated S-adenosylmethionine to spermidine. Thermospermine is an isomer of spermine and assumed to be synthesized by an analogous mechanism. However, none of the recently described spermine synthases was investigated for their possible activity as thermospermine synthases. In this work, putative spermine synthases from the diatom Thalassiosira pseudonana and from Arabidopsis thaliana could be identified as thermospermine synthases. These findings may explain the previous result that two putative spermine synthase genes in Arabidopsis produce completely different phenotypes in knock-out experiments. Likely, part of putative spermine synthases identifiable by sequence comparisons represents in fact thermospermine synthases.
Collapse
Affiliation(s)
- Jürgen M Knott
- Lehrstuhl Biochemie I, Universität Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
12
|
Willert EK, Fitzpatrick R, Phillips MA. Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci U S A 2007; 104:8275-80. [PMID: 17485680 PMCID: PMC1895940 DOI: 10.1073/pnas.0701111104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African sleeping sickness is a fatal disease that is caused by the protozoan parasite Trypanosoma brucei. Polyamine biosynthesis is an essential pathway in the parasite and is a validated drug target for treatment of the disease. S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in polyamine biosynthesis. Here, we show that trypanosomatids uniquely contain both a functional AdoMetDC and a paralog designated prozyme that has lost catalytic activity. The T. brucei prozyme forms a high-affinity heterodimer with AdoMetDC that stimulates its activity by 1,200-fold. Both genes are expressed in T. brucei, and analysis of AdoMetDC activity in T. brucei extracts supports the finding that the heterodimer is the functional enzyme in vivo. Thus, prozyme has evolved to be a catalytically dead but allosterically active subunit of AdoMetDC, providing an example of how regulators of multimeric enzymes can evolve through gene duplication and mutational drift. These data identify a distinct mechanism for regulating AdoMetDC in the parasite that suggests new strategies for the development of parasite-specific inhibitors of the polyamine biosynthetic pathway.
Collapse
Affiliation(s)
- Erin K. Willert
- *Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041; and
| | - Richard Fitzpatrick
- Chemistry Research Department, Genzyme Drug and Biomaterial R & D, 153 Second Avenue, Waltham, MA 02134
| | - Margaret A. Phillips
- *Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Ikeguchi Y, Mackintosh CA, McCloskey DE, Pegg AE. Effect of spermine synthase on the sensitivity of cells to anti-tumour agents. Biochem J 2003; 373:885-92. [PMID: 12737625 PMCID: PMC1223546 DOI: 10.1042/bj20030246] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 04/09/2003] [Accepted: 05/09/2003] [Indexed: 12/17/2022]
Abstract
The role of spermine in the sensitivity of cells to various established and experimental anti-tumour agents was examined, using paired cell lines that possess or lack spermine synthase. All spermine-synthase-deficient cells had no detectable spermine, and elevated spermidine, content. Spermine content did not alter the cell growth rate. There was little or no difference in sensitivity of immortalized mouse embryonic fibroblasts to doxorubicin, etoposide, cisplatin, methylglyoxal bis(guanylhydrazone) or H(2)O(2) and only a slight increase in sensitivity to vinblastine and nocodazole. However, the absence of spermine clearly increased the sensitivity to 1,3-bis(2-chloroethyl)- N -nitrosourea, suggesting that depletion of spermine may be a useful way to increase the anti-neoplastic effects of anti-tumour agents that form chloroethyl-mediated interstrand DNA cross-links. The effects of spermine on the response to polyamine analogues (which have been proposed to be useful anti-neoplastic agents) were complex, and depended on the compound examined and on the cells tested. Sensitivity to CHENSpm ( N (1)-ethyl- N (11)-[(cycloheptyl)methyl]-4,8-diazaundecane) was substantially greater in immortalized fibroblasts that lack spermine. In contrast, BE-3-4-3 [ N (1), N (12)-bis(ethyl)spermine] and BE-3-3-3 [ N (1), N (11)-bis(ethyl)norspermine] were more active against cells that contained spermine. The presence of spermine correlated with a greater induction of spermidine/spermine- N (1)-acetyltransferase by BE-3-3-3, which is consistent with suggestions that this induction is important for the response to this drug. These findings support the concepts that different polyamine analogues have different sites of action and that CHENSpm has a different site of action from BE-3-3-3.
Collapse
Affiliation(s)
- Yoshihiko Ikeguchi
- Department of Cellular and Molecular Physiology (H166), Room C4737, Pennsylvania State University College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
14
|
Christiansen JH, Coles EG, Robinson V, Pasini A, Wilkinson DG. Screening from a subtracted embryonic chick hindbrain cDNA library: identification of genes expressed during hindbrain, midbrain and cranial neural crest development. Mech Dev 2001; 102:119-33. [PMID: 11287186 DOI: 10.1016/s0925-4773(01)00294-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is segmented into a series of transient structures called rhombomeres. Despite knowing several factors that are responsible for the segmentation and maintenance of the rhombomeres, there are still large gaps in understanding the genetic pathways that govern their development. To find previously unknown genes that are expressed within the embryonic hindbrain, a subtracted chick hindbrain cDNA library has been made and 445 randomly picked clones from this library have been analysed using whole mount in situ hybridisation. Thirty-six of these clones (8%) display restricted expression patterns within the hindbrain, midbrain or cranial neural crest and of these, twenty-two are novel and eleven encode peptides that correspond to or are highly related to proteins with previously uncharacterised roles during early neural development. The large proportion of genes with restricted expression patterns and previously unknown functions in the embryonic brain identified during this screen provides insights into the different types of molecules that have spatially regulated expression patterns in cranial neural tissue.
Collapse
Affiliation(s)
- J H Christiansen
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK
| | | | | | | | | |
Collapse
|
15
|
Korhonen VP, Niiranen K, Halmekytö M, Pietilä M, Diegelman P, Parkkinen JJ, Eloranta T, Porter CW, Alhonen L, Jänne J. Spermine deficiency resulting from targeted disruption of the spermine synthase gene in embryonic stem cells leads to enhanced sensitivity to antiproliferative drugs. Mol Pharmacol 2001; 59:231-8. [PMID: 11160858 DOI: 10.1124/mol.59.2.231] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyamines are known to be essential for normal cell growth and differentiation. However, despite numerous studies, specific cellular functions of polyamines in general and individual polyamines in particular have remained only tentative, because of a lack of appropriate cell lines in which genes of polyamine-synthesizing enzymes have been disrupted by gene targeting. With the use of homologous recombination technique, we disrupted the gene encoding spermine synthase in mouse embryonic stem cells. The spermine synthase gene is located on X chromosome in mouse and, because the cells used in this study were of XY karyotype, a single targeting event was sufficient to result in null genotype. The targeted cells did not have any measurable spermine synthase activity and were totally devoid of the polyamine spermine. Spermine deficiency led to a substantial increase in spermidine content, but the total polyamine content was nearly unchanged. Despite the lack of spermine, these cells displayed a growth rate that was nearly similar to that of the parental cells and showed no overt morphological changes. However, the spermine-deficient cells were significantly more sensitive to the growth inhibition exerted by 2-difluoromethylornithine, an inhibitor of ornithine decarboxylase. Similarly, methylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, and diethylnorspermine, a polyamine analog, although exerting cytostatic growth inhibition on wild-type cells, were clearly cytotoxic to the spermine-deficient cells. The spermine-deficient cells were also much more sensitive to etoposide-induced DNA damage than their wild-type counterparts.
Collapse
Affiliation(s)
- V P Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lopatin AN, Shantz LM, Mackintosh CA, Nichols CG, Pegg AE. Modulation of potassium channels in the hearts of transgenic and mutant mice with altered polyamine biosynthesis. J Mol Cell Cardiol 2000; 32:2007-24. [PMID: 11040105 DOI: 10.1006/jmcc.2000.1232] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inward rectification of cardiac I(K1)channels was modulated by genetic manipulation of the naturally occurring polyamines. Ornithine decarboxylase (ODC) was overexpressed in mouse heart under control of the cardiac alpha -myosin heavy chain promoter (alpha MHC). In ODC transgenic hearts, putrescine and cadaverine levels were highly elevated ( identical with 35-fold for putrescine), spermidine was increased 3.6-fold, but spermine was essentially unchanged. I(K1)density was reduced by identical with 38%, although the voltage-dependence of rectification was essentially unchanged. Interestingly, the fast component of transient outward (I(to,f)) current was increased, but the total outward current amplitude was unchanged. I(K1)and I(to)currents were also studied in myocytes from mutant Gyro (Gy) mice in which the spermine synthase gene is disrupted, leading to a complete loss of spermine. I(K1)current densities were not altered in Gy myocytes, but the steepness of rectification was reduced indicating a role for spermine in controlling rectification. Intracellular dialysis of myocytes with putrescine, spermidine and spermine caused reduction, no change and increase of the steepness of rectification, respectively. Taken together with kinetic analysis of I(K1)activation these results are consistent with spermine being a major rectifying factor at potentials positive to E(K), spermidine dominating at potentials around and negative to E(K), and putrescine playing no significant role in rectification in the mouse heart.
Collapse
Affiliation(s)
- A N Lopatin
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
17
|
Wallace AM, Dass B, Ravnik SE, Tonk V, Jenkins NA, Gilbert DJ, Copeland NG, MacDonald CC. Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proc Natl Acad Sci U S A 1999; 96:6763-8. [PMID: 10359786 PMCID: PMC21989 DOI: 10.1073/pnas.96.12.6763] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyadenylation in male germ cells differs from that in somatic cells. Many germ cell mRNAs do not contain the canonical AAUAAA in their 3' ends but are efficiently polyadenylated. To determine whether the 64,000 Mr protein of the cleavage stimulation factor (CstF-64) is altered in male germ cells, we examined its expression in mouse testis. In addition to the 64,000 Mr form, we found a related approximately 70,000 Mr protein that is abundant in testis, at low levels in brain, and undetectable in all other tissues examined. Expression of the approximately 70,000 Mr CstF-64 was limited to meiotic spermatocytes and postmeiotic spermatids in testis. In contrast, the 64,000 Mr form was absent from spermatocytes, suggesting that the testis-specific CstF-64 might control expression of meiosis-specific genes. To determine why the 64,000 Mr CstF-64 is not expressed in spermatocytes, we mapped its chromosomal location to the X chromosome in both mouse and human. CstF-64 may, therefore, be absent in spermatocytes because the X chromosome is inactivated during male meiosis. By extension, the testis-specific CstF-64 may be expressed from an autosomal homolog of the X chromosomal gene.
Collapse
Affiliation(s)
- A M Wallace
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Boeddrich A, Burgtorf C, Roest Crollius H, Hennig S, Bernot A, Clark M, Reinhardt R, Lehrach H, Francis F. Analysis of the spermine synthase gene region in Fugu rubripes, Tetraodon fluviatilis, and Danio rerio. Genomics 1999; 57:164-8. [PMID: 10191098 DOI: 10.1006/geno.1998.5732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A prerequisite to understanding the evolution of the human X chromosome is the analysis of synteny of X-linked genes in different species. We have focused on the spermine synthase gene in human Xp22. 1. We show that whereas the human gene spans a genomic region of 54 kb, the Fugu rubripes gene is encompassed in a 4.7-kb region. However, we could not find conserved synteny between this region of human Xp22 and the equivalent F. rubripes region. A cosmid clone containing the F. rubripes gene does not contain other X-linked genes. Instead we identified homologs of human genes that are autosomally localized: the ryanodine receptor type I (RYRI), which is implicated in malignant hyperthermia and central core disease, and the HE6 gene. Comparison of the F. rubripes, Tetraodon fluviatilis, mouse, human, and Danio rerio 5'UTRs of spermine synthase highlights conserved sequences potentially involved in regulation. Interestingly, pseudogenes of this gene that are present in the human and mouse genomes seem to be absent in the compact F. rubripes genome. Analysis of a D. rerio PAC clone containing spermine synthase shows an intermediate genomic size in this fish. Sequence analysis of this PAC clone did not reveal other known genes: neither the RYRI gene, nor the HE6 gene, nor other human Xp22 genes were identified.
Collapse
Affiliation(s)
- A Boeddrich
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin (Dahlem), D-14195, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bernstein HG, Müller M. The cellular localization of the L-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems. Prog Neurobiol 1999; 57:485-505. [PMID: 10215098 DOI: 10.1016/s0301-0082(98)00065-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural polyamines, spermidine and spermine, and their precursor putrescine, are of considerable importance for the developing and mature nervous system. They exhibit a number of neurophysiological and metabolic effects in the nervous system, including control of nucleic acid and protein synthesis, modulation of ionic channels and calcium-dependent transmitter release. The polyamine system is also known to be involved in various brain pathologic events (seizures, stroke, Alzheimer's disease and others). While cerebral polyamine concentrations and the activities of polyamine-metabolizing enzymes have been studied in great detail, much less is known about the cells that are responsible for cerebral polyamine synthesis and interconversion. With the present review the attempt is made to show how exact knowledge about the regional distribution and cellular localization of polyamines and the polyamine-synthesizing enzymatic machinery (and especially of L-ornithine decarboxylase) may help to better understand the functional interplay between polyamines and other endogenous agents (transmitters, receptors, growth factors neuroactive drugs etc.). Polyamines have been localized both in neurones and glial cells. However, the main cellular locus of the ODC is the neuron--both in the immature and adult central nervous system. Each period of normal brain development and ageing seems to have its own, characteristic temporo-spatial pattern of neuronal ODC expression. During strong functional activation (kindling, epileptic seizures, neural transplantation) astrocytes and other non-neuronal cells do also express ODC and other polyamine-metabolizing enzymes. Astroglial expression of ODC is accompanied by an increase in glial fibrillary acidic protein in these cells. This shift in the cellular mechanisms of polyamine metabolism is currently far from being understood. In human brain diseases (Alzheimer's disease, schizophrenia) certain neurones show an increased expression of ODC, the first and rate-limiting enzyme of polyamine metabolism. Since polyamines are structurally related to psychoactive drugs (neuroleptics, antidepressants) the polyamine system might be of importance as a putative target for drug intervention in psychiatry.
Collapse
Affiliation(s)
- H G Bernstein
- Department of Psychiatry, University of Magdeburg, Germany.
| | | |
Collapse
|
20
|
Hamasaki-Katagiri N, Katagiri Y, Tabor CW, Tabor H. Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. Gene 1998; 210:195-201. [PMID: 9573363 DOI: 10.1016/s0378-1119(98)00027-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spermine, ubiquitously present in most organisms, is the final product of the biosynthetic pathway for polyamines and is synthesized from spermidine. In order to investigate the physiological roles of spermine, we identified the SPE4 gene, which codes for spermine synthase, on the right arm of chromosome XII of Saccharomyces cerevisiae and prepared a deletion mutant in this gene. This mutant has neither spermine nor spermine synthase activity. Using the spe4 deletion mutant, we show that S. cerevisiae does not require spermine for growth, even though spermine is normally present in the wild-type organism. This is in striking contrast to the absolute requirement of S. cerevisiae for spermidine for growth, which we had previously reported using a mutant lacking the SPE3 gene (spermidine synthase) [Hamasaki-Katagiri, N., Tabor, C. W., Tabor, H., 1997. Spermidine biosynthesis in Saccharomyces cerevisiae: Polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187, 35-43].
Collapse
Affiliation(s)
- N Hamasaki-Katagiri
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | |
Collapse
|
21
|
Meyer RA, Henley CM, Meyer MH, Morgan PL, McDonald AG, Mills C, Price DK. Partial deletion of both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, gyro (Gy) mouse. Genomics 1998; 48:289-95. [PMID: 9545633 DOI: 10.1006/geno.1997.5169] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gy, along with Hyp, is a dominant mutation of the normal gene Pex causing X-linked hypophosphatemia in the mouse. Hemizygous Gy male mice, however, have greater defects in survival, bodily growth, skeletal mineralization, and neurological function than those found in heterozygous Gy females or in Hyp mice. Since the gene for spermine synthase is immediately upstream of the homologous human gene PEX, we compared the effects of the Gy and Hyp mutations on both the spermine synthase gene and the Pex gene. Barely detectable levels of spermine (< 5% of normal) with elevated levels of its precursor, spermidine, were found in organs of Gy male mice compared to normal male littermates. Neither Gy females nor Hyp male mice were significantly affected. Four missing introns of the spermine synthase gene were identified in Gy male mice, suggesting extensive gene disruption. A pseudogene for spermine synthase was also identified in the mouse genome. Pex mRNA was found in several but not all tissues studied in adult normal mice. Pex mRNA was altered in both Gy and Hyp mice. All male Hyp mice were lacking the 3' end of the Pex message, whereas all male Gy mice were deficient at the 5' end. In summary, the Gy mutation is associated with a recessively expressed mutation of the spermine synthase gene, leading to spermine deficiency, and a dominantly expressed mutation of the Pex gene, leading to hypophosphatemia. Alterations in two contiguous genes in Gy may explain the additional phenotypic abnormalities present in the Gy male mouse.
Collapse
Affiliation(s)
- R A Meyer
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232-2861, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Grieff M, Whyte MP, Thakker RV, Mazzarella R. Sequence analysis of 139 kb in Xp22.1 containing spermine synthase and the 5' region of PEX. Genomics 1997; 44:227-31. [PMID: 9299240 DOI: 10.1006/geno.1997.4876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human Xp22.1 contains genes involved in mineral balance that are implicated in X-linked hypophosphatemia (XLH) in humans, its murine homologue (Hyp), and another distinct murine hypophosphatemic disorder (Gy). In XLH, a gene, PEX, has been found to be mutated in up to 83% of patients but the sequences of the promoter and 5' end have not been characterized. To further the understanding of this genomic region, 139,454 bp in Xp22.1 have been sequenced. Our analysis confirms the three most 5' published exons of PEX and extends through a putative PEX promoter region. The 5' untranslated sequence of PEX and the mouse and rat equivalents are very highly homologous, implying a conserved functional significance. In addition, we mapped and analyzed another gene 5' of PEX, spermine synthase (SpS), which encodes a ubiquitous enzyme of polyamine metabolism that may contribute to the pathophysiology of Gy. SpS consists of 11 exons spread over 54 kb. The definition of the locations of SpS and the putative promoter region of PEX will facilitate functional analysis of these genes.
Collapse
Affiliation(s)
- M Grieff
- Departments of Molecular Microbiology and Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
23
|
Hamasaki-Katagiri N, Tabor CW, Tabor H. Spermidine biosynthesis in Saccharomyces cerevisae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 1997; 187:35-43. [PMID: 9073064 DOI: 10.1016/s0378-1119(96)00660-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Saccharomyces cerevisiae SPE3 gene, coding for spermidine synthase, was cloned, sequenced, and localized on the right arm of chromosome XVI. The deduced amino acid sequence has a high similarity to mammalian spermidine synthases, and has putative S-adenosylmethionine binding motifs. To investigate the effect of total loss of the SPE3 gene, we constructed a null mutant of this gene, spe3delta, which has no spermidine synthase activity and has an absolute requirement for spermidine or spermine for the growth. This requirement is satisfied by a very low concentration of spermidine (10(-8) M) or a higher concentration of spermine (10(-6) M).
Collapse
Affiliation(s)
- N Hamasaki-Katagiri
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|