1
|
Watanabe K, Oka T, Takagi H, Anisimov S, Yamashita SI, Katsuragi Y, Takahashi M, Higuchi M, Kanki T, Saitoh A, Fujii M. Myeloid-associated differentiation marker is an essential host factor for human parechovirus PeV-A3 entry. Nat Commun 2023; 14:1817. [PMID: 37002207 PMCID: PMC10066301 DOI: 10.1038/s41467-023-37399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Human parechovirus (PeV-A) is an RNA virus that belongs to the family Picornaviridae and it is currently classified into 19 genotypes. PeV-As usually cause mild illness in children and adults. Among the genotypes, PeV-A3 can cause severe diseases in neonates and young infants, resulting in neurological sequelae and death. In this study, we identify the human myeloid-associated differentiation marker (MYADM) as an essential host factor for the entry of six PeV-As (PeV-A1 to PeV-A6), including PeV-A3. The infection of six PeV-As (PeV-A1 to PeV-A6) to human cells is abolished by knocking out the expression of MYADM. Hamster BHK-21 cells are resistant to PeV-A infection, but the expression of human MYADM in BHK-21 confers PeV-A infection and viral production. Furthermore, VP0 capsid protein of PeV-A3 interacts with one extracellular domain of human MYADM on the cell membrane of BHK-21. The identification of MYADM as an essential entry factor for PeV-As infection is expected to advance our understanding of the pathogenesis of PeV-As.
Collapse
Affiliation(s)
- Kanako Watanabe
- Division of Laboratory Science, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirotaka Takagi
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sergei Anisimov
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Higuchi
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
2
|
Lu G, Zheng F, Ou J, Yin X, Li S. Investigating Influenza Virus Polymerase Activity in Feline Cells Based on the Influenza Virus Minigenome Replication System Driven by the Feline RNA Polymerase I Promoter. Front Immunol 2022; 13:827681. [PMID: 35693765 PMCID: PMC9185166 DOI: 10.3389/fimmu.2022.827681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Emerging influenza virus poses a health threat to humans and animals. Domestic cats have recently been identified as a potential source of zoonotic influenza virus. The influenza virus minigenome replication system based on the ribonucleic acid (RNA) polymerase I (PolI) promoter is the most widely used tool for investigating polymerase activity. It could help determine host factors or viral proteins influencing influenza virus polymerase activity in vitro. However, influenza virus polymerase activity has never been studied in feline cells thus far. In the present study, the feline RNA PolI promoter was identified in the intergenic spacer regions between adjacent upstream 28S and downstream 18S rRNA genes in the cat (Felis catus) genome using bioinformatics strategies. The transcription initiation site of the feline RNA PolI promoter was predicted. The feline RNA PolI promoter was cloned from CRFK cells, and a promoter size of 250 bp contained a sequence with sufficient PolI promoter activity by a dual-luciferase reporter assay. The influenza virus minigenome replication system based on the feline RNA PolI promoter was then established. Using this system, the feline RNA PolI promoter was determined to have significantly higher transcriptional activity than the human and chicken RNA PolI promoters in feline cells, and equine (H3N8) influenza virus presented higher polymerase activity than human (H1N1) and canine (H3N2) influenza viruses. In addition, feline myxovirus resistance protein 1 (Mx1) and baloxavir were observed to inhibit influenza virus polymerase activity in vitro in a dose-dependent manner. Our study will help further investigations on the molecular mechanism of host adaptation and cross-species transmission of influenza virus in cats.
Collapse
Affiliation(s)
- Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feiyan Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Xin Yin, ; Shoujun Li,
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
- *Correspondence: Xin Yin, ; Shoujun Li,
| |
Collapse
|
3
|
Seibert B, Cardenas-Garcia S, Rajao D, Perez DR. Reverse Genetics for Influenza A and B Viruses Driven by Swine Polymerase I Promoter. Methods Mol Biol 2022; 2465:257-281. [PMID: 35118626 DOI: 10.1007/978-1-0716-2168-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Influenza viruses are considered prominent pathogens of humans and animals that are extensively investigated because of public health importance. Plasmid-based reverse genetics is a fundamental tool that facilitates the generation of genetically modified viruses from a cDNA copy. The ability to rescue viruses enables researchers to understand different biological characteristics including IV replication, pathogenesis, and transmission. Furthermore, understanding the biology and ability to manipulate different aspects of the virus can aid in providing a better understanding of the mechanisms of antiviral resistance and development of alternative vaccination strategies. This chapter describes the process of cloning cDNA copies of IAV and IBV RNA segments into a swine polymerase-driven reverse genetics plasmid vector, successful generation of recombinant IVs in swine cells, and propagation of virus in cells or eggs. The swine polymerase reverse genetics system was previously shown to be efficient for de novo rescue of human-, swine-, and avian-origin IAVs and IBV in swine and human origin cell lines utilizing the same protocols discussed in this chapter.
Collapse
Affiliation(s)
- Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniela Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Seibert B, Angel M, Caceres CJ, Sutton T, Kumar A, Ferreri L, Cardenas-Garcia S, Geiger G, Rajao D, Perez DR. Development of a swine RNA polymerase I driven Influenza reverse genetics system for the rescue of type A and B Influenza viruses. J Virol Methods 2021; 288:114011. [PMID: 33152409 PMCID: PMC8103788 DOI: 10.1016/j.jviromet.2020.114011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Influenza viruses are among the most significant pathogens of humans and animals. Reverse genetics allows for the study of molecular attributes that modulate virus host range, virulence and transmission. The most common reverse genetics methods use bi-directional vectors containing a host RNA polymerase (pol) I promoter to produce virus-like RNAs and a host RNA pol II promoter to direct the synthesis of viral proteins. Given the species-dependency of the pol I promoter and virus-host interactions that influence replication of animal-origin influenza viruses in human-derived cells, we explored the potential of using the swine RNA pol I promoter (spol1) in a bi-directional vector for rescuing type A and B influenza viruses (IAV and IBV, respectively) in swine and human cells. The spol1-based bi-directional plasmid vector led to efficient rescue of IAVs of different origins (human, swine, and avian) as well as IBV in both swine- and human-origin tissue culture cells. In addition, virus rescue was successful using a recombinant bacmid containing all eight segments of a swine origin IAV. In conclusion, the spol1-based reverse genetics system is a new platform to study influenza viruses and produce swine influenza vaccines with increased transfection efficiency.
Collapse
Affiliation(s)
- Brittany Seibert
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Matthew Angel
- Cellular Biology Section, Laboratory of Viral Diseases NIAID, NIH, Bethesda, MD, United States
| | - C Joaquin Caceres
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Troy Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ayush Kumar
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Lucas Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Stivalis Cardenas-Garcia
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Ginger Geiger
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Daniela Rajao
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States.
| |
Collapse
|
5
|
Jackobel AJ, Zeberl BJ, Glover DM, Fakhouri AM, Knutson BA. DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194408. [PMID: 31382053 DOI: 10.1016/j.bbagrm.2019.194408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023]
Abstract
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.
Collapse
Affiliation(s)
- Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian J Zeberl
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Danea M Glover
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
6
|
Leung C, Jia Z. Mouse Genetic Models of Human Brain Disorders. Front Genet 2016; 7:40. [PMID: 27047540 PMCID: PMC4803727 DOI: 10.3389/fgene.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.
Collapse
Affiliation(s)
- Celeste Leung
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| |
Collapse
|
7
|
The plant-specific TFIIB-related protein, pBrp, is a general transcription factor for RNA polymerase I. EMBO J 2009; 27:2317-27. [PMID: 18668124 DOI: 10.1038/emboj.2008.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 01/19/2023] Open
Abstract
TFIIB and BRF are general transcription factors (GTFs) for eukaryotic RNA polymerases II and III, respectively, and have important functions in transcriptional initiation. In this study, the third type of TFIIB-related protein, pBrp, found in plant lineages was characterized in the red alga Cyanidioschyzon merolae. Chromatin immunoprecipitation analysis revealed that CmpBrp specifically occupied the rDNA promoter region in vivo, and the occupancy was proportional to de novo 18S rRNA synthesis. Consistently, CmpBrp and CmTBP cooperatively bound the rDNA promoter region in vitro, and the binding site was identified at a proximal downstream region of the transcription start point. alpha-Amanitin-resistant transcription from the rDNA promoter in crude cell lysate was severely inhibited by the CmpBrp antibody and was also inhibited when DNA template with a mutated CmpBrp-CmTBP binding site was used. CmpBrp was shown to co-immunoprecipitate and co-localize with the RNA polymerase I subunit, CmRPA190, in the cell. Thus, together with comparative studies of Arabidopsis pBrp, we concluded that pBrp is a GTF for RNA polymerase I in plant cells.
Collapse
|
8
|
Gogain JC, Paule MR. The association of TIF-IA and polymerase I mediates promoter recruitment and regulation of ribosomal RNA transcription in Acanthamoeba castellanii. Gene Expr 2005; 12:259-71. [PMID: 16358415 PMCID: PMC6009122 DOI: 10.3727/000000005783991972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Large amounts of energy are expended for the construction of the ribosome during both transcription and processing, so it is of utmost importance for the cell to efficiently regulate ribosome production. Understanding how this regulation occurs will provide important insights into cellular growth control and into the coordination of gene expression mediated by all three transcription systems. Ribosomal RNA (rRNA) transcription rates closely parallel the need for protein synthesis; as a cell approaches stationary phase or encounters conditions that negatively affect either growth rate or protein synthesis, rRNA transcription is decreased. In eukaryotes, the interaction of RNA polymerase I (pol I) with the essential transcription initiation factor IA (TIF-IA) has been implicated in this downregulation of transcription. In agreement with the first observation that rRNA transcription is regulated by altering recruitment of pol I to the promoter in Acanthamoeba castellanii, we show here that pol I and an 80-kDa homologue of TIF-IA are found tightly associated in pol I fractions competent for specific transcription. Disruption of the pol I-TIF-IA complex is mediated by a specific dephosphorylation of either pol I or TIF-IA. Phosphatase treatment of TIF-IA-containing A. castellanii pol I fractions results in a downregulation of both transcriptional activity and promoter binding, reminiscent of the inactive pol I fractions purified from encysted cells. The fraction of pol I competent for promoter recruitment is enriched in TIF-IA relative to that not bound by immobilized promoter DNA. This downregulation coincides with an altered electrophoretic mobility of TIF-IA, suggesting at least it is phosphorylated.
Collapse
Affiliation(s)
- Joseph C. Gogain
- *Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Marvin R. Paule
- †Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
9
|
Yamamoto K, Yamamoto M, Nogi Y, Muramatsu M. Species-specific interaction of transcription factor p70 with the rDNA core promoter. Biochem Biophys Res Commun 2001; 281:1001-5. [PMID: 11237762 DOI: 10.1006/bbrc.2001.4457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p70 is a transcription factor that is involved in the initiation of transcription by RNA polymerase I and has been shown to cooperate with the selectivity factor SL1 for binding to the core promoter region of mammalian ribosomal RNA gene (rDNA). To examine a role of the p70-SL1 interaction in promoter recognition, mouse and human proteins were partially purified and analyzed by UV-cross linking. Mouse rDNA core promoter was recognized by any combination of p70 and SL1 prepared from either species. In contrast, human p70 no longer bound to the human core promoter when mouse SL1 was used. Thus, a species-specific interaction between p70 and SL1 may be involved in the promoter selection for rDNA transcription.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Saitama, Moroyama, Iruma-gun, 350-0495, Japan
| | | | | | | |
Collapse
|