1
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Primary Aldosteronism, Aldosterone, and Extracellular Vesicles. Endocrinology 2022; 163:6433012. [PMID: 34918071 DOI: 10.1210/endocr/bqab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Primary aldosteronism (PA) is an endocrine related condition leading to arterial hypertension due to inappropriately high and unregulated aldosterone concentration. Recently, a broad spectrum of PA has been recognized, which brings new challenges associated with early identification of this condition that affect renal epithelial and extrarenal tissues. Reports have shown the potential role of extracellular vesicles (EVs) and EV cargo as novel and complementary biomarkers in diagnosis and prognosis of PA. In vivo and in vitro studies have identified specific EV surface antigens, EV-proteins, and EV microRNAs that can be useful to develop novel diagnostic algorithms to detect, confirm, or follow up the PA. Moreover, the study of EVs in the field of PA provides further insight in the pathophysiological mechanism of the PA disease.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Serum Alpha-1-Acid Glycoprotein-1 and Urinary Extracellular Vesicle miR-21-5p as Potential Biomarkers of Primary Aldosteronism. Front Immunol 2021; 12:768734. [PMID: 34804057 PMCID: PMC8603108 DOI: 10.3389/fimmu.2021.768734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and reaches a prevalence of 6-10%. PA is an endocrine disorder, currently identified as a broad-spectrum phenotype, spanning from normotension to hypertension. In this regard, several studies have made advances in the identification of mediators and novel biomarkers of PA as specific proteins, miRNAs, and lately, extracellular vesicles (EVs) and their cargo. Aim To evaluate lipocalins LCN2 and AGP1, and specific urinary EV miR-21-5p and Let-7i-5p as novel biomarkers for PA. Subjects and Methods A cross-sectional study was performed in 41 adult subjects classified as normotensive controls (CTL), essential hypertensives (EH), and primary aldosteronism (PA) subjects, who were similar in gender, age, and BMI. Systolic (SBP) and diastolic (DBP) blood pressure, aldosterone, plasma renin activity (PRA), and aldosterone to renin ratio (ARR) were determined. Inflammatory parameters were defined as hs-C-reactive protein (hs-CRP), PAI-1, MMP9, IL6, LCN2, LCN2-MMP9, and AGP1. We isolated urinary EVs (uEVs) and measured two miRNA cargo miR-21-5p and Let-7i-5p by Taqman-qPCR. Statistical analyses as group comparisons were performed by Kruskall-Wallis, and discriminatory analyses by ROC curves were performed with SPSS v21 and Graphpad-Prism v9. Results PA and EH subjects have significantly higher SBP and DBP (p <0.05) than the control group. PA subjects have similar hs-CRP, PAI-1, IL-6, MMP9, LCN2, and LCN2-MMP9 but have higher levels of AGP1 (p <0.05) than the CTL&EH group. The concentration and size of uEVs and miRNA Let-7i-5p did not show any difference between groups. In PA, we found significantly lower levels of miR-21-5p than controls (p <0.05). AGP1 was associated with aldosterone, PRA, and ARR. ROC curves detected AUC for AGP1 of 0.90 (IC 95 [0.79 - 1.00], p <0.001), and combination of AGP1 and EV-miR-21-5p showed an AUC of 0.94 (IC 95 [0.85 - 1.00], p<0.001) to discriminate the PA condition from EH and controls. Conclusion Serum AGP1 protein was found to be increased, and miR-21-5p in uEVs was decreased in subjects classified as PA. Association of AGP1 with aldosterone, renin activity, and ARR, besides the high discriminatory capacity of AGP1 and uEV-miR-21-5p to identify the PA condition, place both as potential biomarkers of PA.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Li ZY, Li QZ, Chen L, Chen BD, Zhang C, Wang X, Li WP. HPOB, an HDAC6 inhibitor, attenuates corticosterone-induced injury in rat adrenal pheochromocytoma PC12 cells by inhibiting mitochondrial GR translocation and the intrinsic apoptosis pathway. Neurochem Int 2016; 99:239-251. [PMID: 27522966 DOI: 10.1016/j.neuint.2016.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 02/05/2023]
Abstract
High levels of glucocorticoids (GCs) have been reported to damage normal hippocampal neurons, and such damage has been positively correlated with major depression (MD) and chronic stress. Our previous study showed that HDAC6 might be a potential target to regulate GC-induced glucocorticoid receptor (GR) translocation to the mitochondria and subsequent apoptosis. In the present study, we investigated the effect of HPOB, a selective HDAC6 inhibitor, on corticosterone (Cort)-induced apoptosis and explored the possible mechanism of action of HPOB in rat adrenal pheochromocytoma (PC12) cells, which possesses typical neuron features and expresses high levels of glucocorticoid receptors. We demonstrated that pre-treatment with HPOB remarkably reduced Cort-induced cytotoxicity and confirmed the anti-apoptotic effect of HPOB via the caspase-3 activity assay and H33342/PI and TUNEL double staining. Mechanistically, we demonstrated that HPOB reversed the Cort-induced elevation of GR levels in the mitochondria and blocked concomitant mitochondrial dysfunction and the intrinsic apoptosis pathway. Furthermore, HPOB was shown to attenuate expression of the multi-chaperone machinery (Hsp90-Hop-Hsp70) and cooperate with mitochondrial translocase of the outer/inner membrane (TOM/TIM) complex recruitment by triggering hyperacetylation of Hsps through HDAC6 inhibition. Considering all of these findings, the neuroprotective effect of HPOB demonstrated the crucial role of HDAC6 inhibition in reducing Cort-induced apoptosis in PC12 cells. The data further suggested that the anti-apoptotic activity of HDAC6 inhibition against the mitochondria-mediated impairment pathway might be mechanistically linked to the hyperacetylation of Hsps and consequent suppression of GR translocation to the mitochondria.
Collapse
Affiliation(s)
- Zong-Yang Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Qing-Zhong Li
- Shantou University Medical College, Shantou, 515041, China
| | - Lei Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Bao-Dong Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Ce Zhang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Xiang Wang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Wei-Ping Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China.
| |
Collapse
|
4
|
Fatigue-induced Orosomucoid 1 Acts on C-C Chemokine Receptor Type 5 to Enhance Muscle Endurance. Sci Rep 2016; 6:18839. [PMID: 26740279 PMCID: PMC4703980 DOI: 10.1038/srep18839] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023] Open
Abstract
Understanding and managing fatigue is a significant challenge in clinic and society. In attempting to explore how the body responds to and regulates fatigue, we found in rodent fatigue models that orosomucoid 1 (ORM1) was significantly increased in multiple tissues, including blood and muscle. Interestingly, administration of exogenous ORM1 increased muscle glycogen and enhanced muscle endurance, whereas ORM1 deficiency resulted in a significant decrease of muscle endurance both in vivo and in vitro, which could largely be restored by exogenous ORM1. Further studies demonstrated that ORM1 can bind to C-C chemokine receptor type 5 (CCR5) on muscle cells and deletion of the receptor abolished the effect of ORM1. Thus, fatigue upregulates the level of ORM1, which in turn functions as an anti-fatigue protein to enhance muscle endurance via the CCR5 pathway. Modulation of the level of ORM1 and CCR5 signaling could be a novel strategy for the management of fatigue.
Collapse
|
5
|
Verhoog N, Allie-Reid F, Vanden Berghe W, Smith C, Haegeman G, Hapgood J, Louw A. Inhibition of corticosteroid-binding globulin gene expression by glucocorticoids involves C/EBPβ. PLoS One 2014; 9:e110702. [PMID: 25335188 PMCID: PMC4205011 DOI: 10.1371/journal.pone.0110702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Corticosteroid-binding globulin (CBG), a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs). It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR), which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE) are present in the Cbg promoter, putative binding sites for C/EBPβ, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPβ, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPβ protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPβ’s involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP) after DEX treatment indicated increased co-recruitment of C/EBPβ and GR to the Cbg promoter, while C/EBPβ knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPβ.
Collapse
Affiliation(s)
- Nicolette Verhoog
- Department of Biochemistry, Stellenbosch University, Matieland, Western Cape, South Africa
| | - Fatima Allie-Reid
- Department of Biochemistry, Stellenbosch University, Matieland, Western Cape, South Africa
| | - Wim Vanden Berghe
- PPES, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- LEGEST, University of Ghent, Ghent, Belgium
| | - Carine Smith
- Dept of Physiological Sciences, Stellenbosch University, Matieland, Western Cape, South Africa
| | | | - Janet Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Matieland, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
6
|
Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal 2012; 24:1287-96. [DOI: 10.1016/j.cellsig.2012.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 01/10/2023]
|
7
|
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335:2-13. [PMID: 20398732 PMCID: PMC3047790 DOI: 10.1016/j.mce.2010.04.005] [Citation(s) in RCA: 1101] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 02/08/2023]
Abstract
Since the discovery of glucocorticoids in the 1940s and the recognition of their anti-inflammatory effects, they have been amongst the most widely used and effective treatments to control inflammatory and autoimmune diseases. However, their clinical efficacy is compromised by the metabolic effects of long-term treatment, which include osteoporosis, hypertension, dyslipidaemia and insulin resistance/type 2 diabetes mellitus. In recent years, a great deal of effort has been invested in identifying compounds that separate the beneficial anti-inflammatory effects from the adverse metabolic effects of glucocorticoids, with limited effect. It is clear that for these efforts to be effective, a greater understanding is required of the mechanisms by which glucocorticoids exert their anti-inflammatory and immunosuppressive actions. Recent research is shedding new light on some of these mechanisms and has produced some surprising new findings. Some of these recent developments are reviewed here.
Collapse
Affiliation(s)
| | - Karen E. Chapman
- Corresponding author. Tel.: +44 131 242 6736; fax: +44 131 242 6779.
| |
Collapse
|
8
|
Spencer RL, Kalman BA, Dhabhar FS. Role of Endogenous Glucocorticoids in Immune System Function: Regulation and Counterregulation. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Arambašić J, Poznanović G, Ivanović-Matić S, Bogojević D, Mihailović M, Uskoković A, Grigorov I. Association of the glucocorticoid receptor with STAT3, C/EBPβ, and the hormone-responsive element within the rat haptoglobin gene promoter during the acute phase response. IUBMB Life 2010; 62:227-36. [DOI: 10.1002/iub.313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Aubry EM, Odermatt A. Retinoic acid reduces glucocorticoid sensitivity in C2C12 myotubes by decreasing 11beta-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor activities. Endocrinology 2009; 150:2700-8. [PMID: 19179438 DOI: 10.1210/en.2008-1618] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vitamin A is a nutrient with remarkable effects on adipose tissue and skeletal muscles, and plays a role in controlling energy balance. Retinoic acid (RA), the carboxylic form of vitamin A, has been associated with improved glucose tolerance and insulin sensitivity. In contrast, elevated glucocorticoids have been implicated in the development of insulin resistance and impaired glucose tolerance. Here, we investigated whether RA might counteract glucocorticoid effects in skeletal muscle cells by lowering 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local glucocorticoid activation and/or activation of glucocorticoid receptor (GR). We found a dose-dependent down-regulation of 11beta-HSD1 mRNA expression and activity upon incubation of fully differentiated mouse C2C12 myotubes with RA. In addition, RA inhibited GR transactivation by an 11beta-HSD1-independent mechanism. The presence of RA during myogenesis did not prevent myotube formation but resulted in relatively glucocorticoid-resistant myotubes, exhibiting very low 11beta-HSD1 expression and GR activity. The use of selective retinoic acid receptor (RAR) and retinoid X receptor ligands provided evidence that these effects were mediated through RARgamma. Importantly, short hairpin RNA against RARgamma abolished the effect of RA on 11beta-HSD1 and GR. In conclusion, we provide evidence for an important role of RA in the control of glucocorticoid activity during myogenesis and in myotubes. Disturbances of the nutrient and hormonal regulation of glucocorticoid action in skeletal muscles might be relevant for metabolic diseases.
Collapse
Affiliation(s)
- Evelyne M Aubry
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
11
|
Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007; 275:79-97. [PMID: 17561338 DOI: 10.1016/j.mce.2007.04.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/25/2007] [Indexed: 01/12/2023]
Abstract
There is a broad consensus that glucocorticoids (GCs) exert anti-inflammatory effects largely by inhibiting the function of nuclear factor kappaB (NFkappaB) and consequently the transcription of pro-inflammatory genes. In contrast, side effects are thought to be largely dependent on GC-induced gene expression. Biochemical and genetic evidence suggests that the positive and negative effects of GCs on transcription can be uncoupled from one another. Hence, novel GC-related drugs that mediate inhibition of NFkappaB but do not activate gene expression are predicted to retain therapeutic effects but cause fewer or less severe side effects. Here, we critically re-examine the evidence in favor of the consensus, binary model of GC action and discuss conflicting evidence, which suggests that anti-inflammatory actions of GCs depend on the induction of anti-inflammatory mediators. We propose an alternative model, in which GCs exert anti-inflammatory effects at both transcriptional and post-transcriptional levels, both by activating and inhibiting expression of target genes. The implications of such a model in the search for safer anti-inflammatory drugs are discussed.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| |
Collapse
|
12
|
Theilgaard-Mönch K, Jacobsen LC, Rasmussen T, Niemann CU, Udby L, Borup R, Gharib M, Arkwright PD, Gombart AF, Calafat J, Porse BT, Borregaard N. Highly glycosylated alpha1-acid glycoprotein is synthesized in myelocytes, stored in secondary granules, and released by activated neutrophils. J Leukoc Biol 2005; 78:462-70. [PMID: 15941779 DOI: 10.1189/jlb.0105042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alpha-1-acid glycoprotein (AGP) is an acute-phase protein produced by hepatocytes and secreted into plasma in response to infection/injury. We recently assessed the transcriptional program of terminal granulocytic differentiation by microarray analysis of bone marrow (BM) populations highly enriched in promyelocytes, myelocytes/metamyelocytes (MYs), and BM neutrophils. These analyses demonstrated a transient, high mRNA expression of genuine secondary/tertiary granule proteins and AGP in MYs. In agreement with this, immunocytochemistry revealed the presence of AGP protein and the secondary granule protein lactoferrin in cells from the MY stage and throughout granulocytic differentiation. Immunoelectron microscopy demonstrated the colocalization of AGP and lactoferrin in secondary granules of neutrophils. This finding was substantiated by the failure to detect AGP and lactoferrin in blood cells from a patient with secondary/tertiary (specific) granule deficiency. In addition, Western blot analysis of subcellular fractions isolated from neutrophils revealed that neutrophil-derived AGP, localized in secondary granules, was abundant and highly glycosylated compared with endocytosed, plasma-derived AGP localized in secretory vesicles. Exocytosis studies further demonstrated a marked release of AGP and lactoferrin by activated neutrophils. Finally, induction of CCAAT/enhancer-binding protein (C/EBP)-epsilon in a myeloid cell line was shown to increase AGP transcript levels, indicating that AGP expression in myeloid cells, like in hepatocytes, is partially regulated by members of the C/EBP family. Overall, these findings define AGP as a genuine secondary granule protein of neutrophils. Hence, neutrophils, which constitute the first line of defense, are likely to serve as the primary local source of AGP at sites of infection or injury.
Collapse
Affiliation(s)
- Kim Theilgaard-Mönch
- Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen-Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schoneveld OJLM, Gaemers IC, Lamers WH. Mechanisms of glucocorticoid signalling. ACTA ACUST UNITED AC 2004; 1680:114-28. [PMID: 15488991 DOI: 10.1016/j.bbaexp.2004.09.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
It has become increasingly clear that glucocorticoid signalling not only comprises the binding of the glucocorticoid receptor (GR) to its response element (GRE), but also involves indirect regulation glucocorticoid-responsive genes by regulating or interacting with other transcription factors. In addition, they can directly regulate gene expression by binding to negative glucocorticoid response elements (nGREs), to simple GREs, to GREs, or to GREs and GRE half sites (GRE1/2s) that are part of a regulatory unit. A response unit allows a higher level of glucocorticoid induction than simple GREs and, in addition, allows the integration of tissue-specific information with the glucocorticoid response. Presumably, the complexity of such a glucocorticoid response unit (GRU) depends on the number of pathways that integrate at this unit. Because GRUs are often located at distant sites relative to the transcription-start site, the GRU has to find a way to communicate with the basal-transcription machinery. We propose that the activating signal of a distal enhancer can be relayed onto the transcription-initiation complex by coupling elements located proximal to the promoter.
Collapse
Affiliation(s)
- Onard J L M Schoneveld
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Chiu CM, Tsay YG, Chang CJ, Lee SC. Nopp140 is a mediator of the protein kinase A signaling pathway that activates the acute phase response alpha1-acid glycoprotein gene. J Biol Chem 2002; 277:39102-11. [PMID: 12167624 DOI: 10.1074/jbc.m205915200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acute phase response (APR) in liver during inflammation is one of the well known examples for elucidating the signaling pathways that lead to the combinatorial regulation of gene expression. The APR is exemplified by alpha(1)-acid glycoprotein gene (agp) expression. A number of transcription factors, including CCAAT/enhancer-binding protein beta (C/EBPbeta), glucocorticoid receptor, cAMP-response element-binding protein (CREB), and Nopp140, are known to participate in its induction. The underlying mechanism of Nopp140 and other factors for regulating agp expression remains unclear. Here we demonstrate that protein kinase A (PKA)-dependent phosphorylation of Nopp140, together with C/EBPbeta, induces agp gene expression synergistically. The cooperative activation of the agp gene by Nopp140 and forskolin is sensitive to inhibition by PKI. Results from biochemical and functional characterizations of Nopp140 mutants defective in PKA phosphorylation sites suggest that PKA-dependent Nopp140 phosphorylation is important for its role in agp gene activation. Furthermore, maximal activation of the agp gene by PKA-phosphorylated Nopp140 depends on the presence of CREB and C/EBPbeta. The participation of CREB in the activation is, however, independent of its PKA-mediated phosphorylation. In summary, we demonstrate the existence of a novel Nopp140-mediated PKA signaling pathway that leads to the activation of agp, one of the major acute phase response genes.
Collapse
Affiliation(s)
- Chi-Ming Chiu
- Institute of Molecular Medicine and Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
15
|
Lethimonier C, Flouriot G, Kah O, Ducouret B. The glucocorticoid receptor represses the positive autoregulation of the trout estrogen receptor gene by preventing the enhancer effect of a C/EBPbeta-like protein. Endocrinology 2002; 143:2961-74. [PMID: 12130562 DOI: 10.1210/endo.143.8.8958] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stress and cortisol are known to have negative effects on vitellogenesis in oviparous species. This provides a physiological context in which to explore in more detail the molecular mechanisms involved in transcriptional interferences between two steroids receptors, the estradiol receptor (ER) and the glucocorticoid receptor (GR). We have previously shown that the cortisol inhibitory effect on rainbow trout (rt) vitellogenesis is the result of a repression of the estradiol-induced ER-positive autoregulation by activated GR. In the present study, we demonstrate that the GR repression involves a proximal region of the rtER promoter that is unable to bind GR. This inhibition is counteracted in part by the orphan receptor COUP-TF1 that has been previously shown to cooperate with ERs on the same promoter. A detailed analysis allowed us to identify a C/EBPbeta-like protein that is implicated in both the maximal stimulatory effect of estradiol and the GR repression. Indeed, GR, through its DNA-binding domain, suppresses the binding of C/EBPbeta on the rtER promoter by protein-protein interactions and thereby prevents the enhancer effect of this transcription factor.
Collapse
Affiliation(s)
- Christèle Lethimonier
- Equipe d'Endocrinologie Moléculaire de la Reproduction, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6026, Université de Rennes 1, 35042 Rennes Cedex, France
| | | | | | | |
Collapse
|
16
|
Christian M, Pohnke Y, Kempf R, Gellersen B, Brosens JJ. Functional association of PR and CCAAT/enhancer-binding protein beta isoforms: promoter-dependent cooperation between PR-B and liver-enriched inhibitory protein, or liver-enriched activatory protein and PR-A in human endometrial stromal cells. Mol Endocrinol 2002; 16:141-54. [PMID: 11773445 DOI: 10.1210/mend.16.1.0763] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activation of the decidual PRL (dPRL) promoter, a major differentiation marker in human endometrial stromal (ES) cells, by cAMP is effected through the induction and binding of CCAAT/enhancer-binding protein-beta (C/EBPbeta) to two overlapping cognate response elements in the promoter region dPRL-332/-270. Progesterone is essential for decidualization and potently enhances cAMP-dependent dPRL promoter activity. We now demonstrate that both liganded PR isoforms, PR-A and PR-B, are capable of trans-activating the dPRL-332/-270 region. The absence of a palindromic progesterone response element (PRE) within this promoter region suggested cross-coupling between C/EBPbeta and PR in human ES cells. Physical interaction between these distinct transcription factors was confirmed by glutathione-S-transferase pull-down assays, demonstrating that both C/EBPbeta isoforms, the full-length activator liver-enriched activatory protein (LAP) and the truncated inhibitor liver-enriched inhibitory protein (LIP), can bind PR-B as well as PR-A in vitro. Transient transfection studies in primary ES cells were used to examine the consequences of PR and C/EBPbeta interaction on activation of their respective response elements. Activation of mouse mammary tumor virus promoter or a reporter construct containing two isolated palindromic PREs by liganded PR-B was synergistically enhanced by coexpression of LIP, but not LAP. In contrast, PR-A failed to trans-activate these constructs significantly regardless of the presence of either C/EBPbeta isoform. Conversely, LAP-dependent activation of the dPRL-332/-270 region or a reporter construct driven by a single C/EBPbeta response element was greatly enhanced by PR-A, but not PR-B, in a ligand-dependent manner. These observations reveal that PR and C/EBPbeta isoform ratios are important determinants of the cellular response to ovarian progesterone in the reproductive tract; the predominance of PR-A and LAP favors expression of C/EBPbeta-dependent genes, whereas PR-B and LIP cooperate in activating PRE-driven promoters.
Collapse
Affiliation(s)
- Mark Christian
- Institute of Reproductive and Developmental Biology, Imperial College School of Medicine, Hammersmith Hospital, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Dilworth FJ, Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 2001; 20:3047-54. [PMID: 11420720 DOI: 10.1038/sj.onc.1204329] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in the field of in vitro chromatin assembly have led to in vitro transcription systems which reproduce in the test tube, in vivo characteristics of ligand-dependent transcriptional activation by nuclear receptors. Dissection of these systems has begun to provide us with information concerning the underlying molecular mechanisms. Through recruitment of coactivator proteins, nuclear receptors act first to remodel chromatin within the promoter region and then to recruit the transcriptional machinery to the promoter region in order to initiate transcription. Here we present a possible sequential mechanism for ligand-dependent transcriptional activation by nuclear receptors and discuss the in vitro and in vivo data that support this model.
Collapse
Affiliation(s)
- F J Dilworth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/Collège de France, BP163, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|
18
|
Abstract
Alpha-1-acid glycoprotein (AGP) or orosomucoid (ORM) is a 41-43-kDa glycoprotein with a pI of 2.8-3.8. The peptide moiety is a single chain of 183 amino acids (human) or 187 amino acids (rat) with two and one disulfide bridges in humans and rats,respectively. The carbohydrate content represents 45% of the molecular weight attached in the form of five to six highly sialylated complex-type-N-linked glycans. AGP is one of the major acute phase proteins in humans, rats, mice and other species. As most acute phase proteins, its serum concentration increases in response to systemic tissue injury, inflammation or infection, and these changes in serum protein concentrations have been correlated with increases in hepatic synthesis. Expression of the AGP gene is controlled by a combination of the major regulatory mediators, i.e. glucocorticoids and a cytokine network involving mainly interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF alpha), interleukin-6 and IL-6 related cytokines. It is now well established that the acute phase response may take place in extra-hepatic cell types, and may be regulated by inflammatory mediators as observed in hepatocytes. The biological function of AGP remains unknown; however,a number of activities of possible physiological significance, such as various immunomodulating effects, have been described. AGP also has the ability to bind and to carry numerous basic and neutral lipophilic drugs from endogenous (steroid hormones) and exogenous origin; one to seven binding sites have been described. AGP can also bind acidic drugs such as phenobarbital. The immunomodulatory as well as the binding activities of AGP have been shown to be mostly dependent on carbohydrate composition. Finally, the use of AGP transgenic animals enabled to address in vivo, functionality of responsive elements and tissue specificity, as well as the effects of drugs that bind to AGP and will be an useful tool to determine the physiological role of AGP.
Collapse
Affiliation(s)
- T Fournier
- INSERM U427, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris 5 René Descartes, France
| | | | | |
Collapse
|
19
|
Abstract
Lipocalins are mainly extracellular carriers of lipophilic molecules, though exceptions with properties like prostaglandin synthesis and protease inhibition are observed for specific lipocalins. The interest concerning lipocalins in cancer has so far been focussed to the variations in concentration and the modification of lipocalin expression in distinct cancer forms. In addition, lipocalins have been assigned a role in cell regulation. The influence of the extracellular lipocalins on intracellular cell regulation events is not fully understood, but several of the lipocalin ligands are also well-known agents in cell differentiation and proliferation. Lipophilic ligands can, after lipocalin-mediated transport to the cell surface, penetrate the cell membrane and interact with proteins in the cytosol and/or the nucleus. The signaling routes of the lipocalin ligands, retinoids and fatty acids are presented and discussed. Tumor growth in tissue is restricted by extracellular protease/protease inhibitor interactions. Several lipocalins also have protease inhibitory properties and possess the ability to interact with tumor specific proteases, revealing another pathway for lipocalins to interact with cancer cells.
Collapse
Affiliation(s)
- T Bratt
- M&E Biotech A/S, Kogle Alle 6, DK-2970 Horsholm, Denmark.
| |
Collapse
|
20
|
Massaad C, Paradon M, Jacques C, Salvat C, Bereziat G, Berenbaum F, Olivier JL. Induction of secreted type IIA phospholipase A2 gene transcription by interleukin-1beta. Role of C/EBP factors. J Biol Chem 2000; 275:22686-94. [PMID: 10791956 DOI: 10.1074/jbc.m001250200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted type IIA phospholipase A(2), which is involved in arachidonic acid release, is abundantly produced by chondrocytes and secreted in the synovial fluids of patients affected by rheumatoid arthritis. Transfection experiments showed that interleukin-1beta stimulates the phospholipase A(2) [-1614; +20] promoter activity by 6-7-fold and that the [-210; -176] fragment is critical for this stimulation. CAAT enhancer-binding protein (C/EBP) beta and C/EBPdelta transcription factors bind to this element as shown by bandshift experiments. Interleukin-1beta increased the levels of C/EBPdelta mRNA as soon as 2 h and up to 24 h without affecting those of C/EBPbeta. Higher amounts of C/EBPdelta proteins correlate with the stimulation of C/EBPdelta mRNA. Mutations or 5' deletions in the upstream [-247; -210] region reduced by 2-fold the basal and interleukin-1beta-stimulated transcription activities. Two types of factors bind to overlapping sequences on this fragment: NF1-like proteins and the glucocorticoid receptor. The glucocorticoid receptor is responsible for a moderate stimulation of the promoter activity by dexamethasone and may interact with C/EBP factors to achieve a full transcription activity in basal conditions and in the presence of interleukin-1beta. A [-114; -85] proximal regulatory element forms three complexes in bandshift experiments, the slowest mobility one involving the Sp1 zinc finger factor. Mutation of this sequence reduced to 2-fold the stimulation of the promoter activity by interleukin-1beta or the C/EBP factors. Induction of the transcription of secreted type IIA phospholipase A(2) gene by interleukin-1beta in chondrocytes absolutely requires C/EBPbeta and C/EBPdelta factors but does not involve NF-kappaB.
Collapse
Affiliation(s)
- C Massaad
- UPRES-A CNRS 7079, UFR Saint Antoine, UPRES-A CNRS 7079, Université Pierre et Marie Curie, 7 quai Saint Bernard 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Yamada K, Duong DT, Scott DK, Wang JC, Granner DK. CCAAT/enhancer-binding protein beta is an accessory factor for the glucocorticoid response from the cAMP response element in the rat phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 1999; 274:5880-7. [PMID: 10026211 DOI: 10.1074/jbc.274.9.5880] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic AMP response element (CRE) of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene promoter is required for a complete glucocorticoid response. Proteins known to bind the PEPCK CRE include the CRE-binding protein (CREB) and members of the CCAAT/enhancer-binding protein (C/EBP) family. We took two different approaches to determine which of these proteins provides the accessory factor activity for the glucocorticoid response from the PEPCK CRE. The first strategy involved replacing the CRE of the PEPCK promoter/chloramphenicol acetyltransferase reporter plasmid (pPL32) with a consensus C/EBP-binding sequence. This construct, termed pDeltaCREC/EBP, binds C/EBPalpha and beta but not CREB, yet it confers a nearly complete glucocorticoid response when transiently transfected into H4IIE rat hepatoma cells. These results suggest that one of the C/EBP family members may be the accessory factor. The second strategy involved co-transfecting H4IIE cells with a pPL32 mutant, in which the CRE was replaced with a GAL4-binding sequence (pDeltaCREGAL4), and various GAL4 DNA-binding domain (DBD) fusion protein expression vectors. Although chimeric proteins consisting of the GAL4 DBD fused to either CREB or C/EBPalpha are able to confer an increase in basal transcription, they do not facilitate the glucocorticoid response. In contrast, a fusion protein consisting of the GAL4 DBD and amino acids 1-118 of C/EBPbeta provides a significant glucocorticoid response. Additional GAL4 fusion studies were done to map the minimal domain of C/EBPbeta needed for accessory factor activity to the glucocorticoid response. Chimeric proteins containing amino acid regions 1-84, 52-118, or 85-118 of C/EBPbeta fused to the GAL4 DBD do not mediate a glucocorticoid response. We conclude that the amino terminus of C/EBPbeta contains a multicomponent domain necessary to confer accessory factor activity to the glucocorticoid response from the CRE of the PEPCK gene promoter.
Collapse
Affiliation(s)
- K Yamada
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|