1
|
Acharya B, Dey S, Sahu PK, Behera A, Chowdhury B, Behera S. Perspectives on chick embryo models in developmental and reproductive toxicity screening. Reprod Toxicol 2024; 126:108583. [PMID: 38561097 DOI: 10.1016/j.reprotox.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Teratology, the study of congenital anomalies and their causative factors intersects with developmental and reproductive toxicology, employing innovative methodologies. Evaluating the potential impacts of teratogens on fetal development and assessing human risk is an essential prerequisite in preclinical research. The chicken embryo model has emerged as a powerful tool for understanding human embryonic development due to its remarkable resemblance to humans. This model offers a unique platform for investigating the effects of substances on developing embryos, employing techniques such as ex ovo and in ovo assays, chorioallantoic membrane assays, and embryonic culture techniques. The advantages of chicken embryonic models include their accessibility, cost-effectiveness, and biological relevance to vertebrate development, enabling efficient screening of developmental toxicity. However, these models have limitations, such as the absence of a placenta and maternal metabolism, impacting the study of nutrient exchange and hormone regulation. Despite these limitations, understanding and mitigating the challenges posed by the absence of a placenta and maternal metabolism are critical for maximizing the utility of the chick embryo model in developmental toxicity testing. Indeed, the insights gained from utilizing these assays and their constraints can significantly contribute to our understanding of the developmental impacts of various agents. This review underscores the utilization of chicken embryonic models in developmental toxicity testing, highlighting their advantages and disadvantages by addressing the challenges posed by their physiological differences from mammalian systems.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Sandip Dey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Amulyaratna Behera
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Bimalendu Chowdhury
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Suchismeeta Behera
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Chen A, Zhao X, Wen J, Zhao X, Wang G, Zhang X, Ren X, Zhang Y, Cheng X, Yu X, Mei X, Wang H, Guo M, Jiang X, Wei G, Wang X, Jiang R, Guo X, Ning Z, Qu L. Genetic parameter estimation and molecular foundation of chicken beak shape. Poult Sci 2024; 103:103666. [PMID: 38703454 PMCID: PMC11087718 DOI: 10.1016/j.psj.2024.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 05/06/2024] Open
Abstract
The bird beak is mainly functioned as feeding and attacking, and its shape has extremely important significance for survival and reproduction. In chickens, since beak shape could lead to some disadvantages including pecking and waste of feed, it is important to understand the inheritance of chicken beak shape. In the present study, we firstly established 4 indicators to describe the chicken beak shapes, including upper beak length (UL), lower beak length (LL), distance between upper and lower beak tips (DB) and upper beak curvature (BC). And then, we measured the 4 beak shape indicators as well as some production traits including body weight (BW), shank length (SL), egg weight (EW), eggshell strength (ES) of a layer breed, Rhode Island Red (RIR), in order to estimate genetic parameters of chicken beak shape. The heritabilities of UL and LL were 0.41 and 0.37, and the heritabilities of DB and BC were 0.22 and 0.21, indicating that beak shape was a highly or mediumly heritable. There were significant positive genetic and phenotypic correlations among UL, LL, and DB. And UL was positively correlated with body weight (BW18) and shank length (SL18) at 18 weeks of age in genetics, and DB was positively correlated with BC in terms of genetics and phenotype. We also found that layers of chicken cages played a role on beak shape, which could be attributed to the difference of lightness in different cage layers. By a genome-wide association study (GWAS) for the chicken UL, we identified 9 significant candidate genes associated with UL in RIR. For the variants with low minor allele frequencies (MAF <0.01) and outside of high linkage disequilibrium (LD) regions, we also conducted rare variant association studies (RVA) and GWAS to find the association between genotype and phenotype. We also analyzed transcriptomic data from multiple tissues of chicken embryos and revealed that all of the 9 genes were highly expressed in beak of chicken embryos, indicating their potential function for beak development. Our results provided the genetic foundation of chicken beak shape, which could help chicken breeding on beak related traits.
Collapse
Affiliation(s)
- Anqi Chen
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhao
- Xingrui Agricultural Stock Breeding, Baoding 072550, Hebei Province, China
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaofan Yu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaohan Mei
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huie Wang
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China
| | - Menghan Guo
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jiang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guozhen Wei
- Qingliu Animal Husbandry, Veterinary and Aquatic Products Center, Sanming, China
| | - Xue Wang
- VVBK Animal Medical Diagnostic Technology (Beijing) Co., Ltd, Beijing, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China.
| |
Collapse
|
3
|
Yoo E, Choi HJ, Kim JK, Kim YM, Park JS, Han JY. Sustainable production of multimeric and functional recombinant human adiponectin using genome-edited chickens. J Biol Eng 2024; 18:32. [PMID: 38715027 PMCID: PMC11077872 DOI: 10.1186/s13036-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Adiponectin (ADPN) plays a critical role in endocrine and cardiovascular functions, but traditional production methods, such as Escherichia coli and mammalian systems, have faced challenges in generating sufficiently active middle molecular weight (MMW) and high molecular weight (HMW) forms of recombinant human ADPN (hADPN). In our previous study, we proposed genome-edited chickens as an efficient platform for producing multimeric hADPN. However, the consistency of multimeric hADPN expression in this system across generations had not been further investigated. RESULTS In this study, subsequent generations of ovalbumin (OVA) ADPN knock-in chickens showed stable multimeric hADPN production, yielding ~ 26% HMW ADPN (0.59 mg/mL) per hen. Comparative analysis revealed that egg white (EW)-derived hADPN predominantly consisted of hexameric and HMW forms, similar to serum-derived hADPN. In contrast, hADPN obtained from human embryonic kidney (HEK) 293 and High-Five (Hi-5) cells also exhibited the presence of trimers, indicating variability across different production systems. Furthermore, transcriptional expression analysis of ADPN multimerization-associated endoplasmic reticulum chaperone genes (Ero1-Lα, DsbA-L, ERP44, and PDI) indicated upregulation in the oviduct magnum of ADPN KI hens, suggesting the chicken oviduct magnum as the optimal site for HMW ADPN production. Lastly, the functional analysis demonstrated that EW-derived hADPN significantly reduced lipid droplets and downregulated lipid accumulation-related genes (LOX-1, AT1R, FAS, and FABP4) in human umbilical vein endothelial cells (HUVECs). CONCLUSION In summary, stable and functional multimeric hADPN can be produced in genome-edited chickens even after generations. This highlights the potential of using chicken bioreactor for producing various high-value proteins.
Collapse
Affiliation(s)
- Eunhui Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Kyoo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Avinnogen Co., Ltd, Seoul, Republic of Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Avinnogen Co., Ltd, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Han J, Li X, Liang B, Ma S, Pu Y, Yu F, Lu J, Ma Y, MacHugh DE, Jiang L. Transcriptome profiling of differentiating adipose-derived stem cells across species reveals new genes regulating adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159378. [PMID: 37572997 DOI: 10.1016/j.bbalip.2023.159378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Adipose-derived stem cells (ADSCs) that are enriched in adipose tissue with multilineage differentiation potential have become an important tool in therapeutic research and tissue engineering. Certain breeds of sheep exhibit a unique fat tail trait such that tail tissue accounts for approximately 10 % of body weight and can provide an excellent source of ADSCs. Here, we describe isolation of primary ADSCs from ovine embryonic fat tail tissues that displayed high self-renewal capacity, multilineage differentiation and excellent adipogenic ability. Through transcriptome analysis covering ADSCs differentiating into adipocytes, 37 transcription factors were involved in early transcriptional events that initiate a regulatory cascade of adipogenesis; the entire adipogenic activity consists of a reduction in proliferation ability and upregulation of genes related to lipid generation and energy metabolism, as well as several genes associated with myogenesis. Furthermore, Comparative transcriptome analysis across species (sheep, human, and mouse) revealed enhanced basal metabolic ability in differentiating ovine ADSCs, which may relate to the excellent adipogenic capability of these cells. We also identified a small evolutionarily conserved gene set, consisting of 21 and 22 genes exhibiting increased and decreased expression, respectively. Almost half (20) of these genes have not previously been reported to regulate adipogenesis in mammals. In this study, we identified important regulators that trigger ovine adipocyte differentiation, main biological pathways involved in adipogenesis as well as the evolutionarily conserved genes governing adipogenic process across species. Our study provides a novel excellent biomaterial and novel genes regulating adipogenesis for cellular transplantation therapy and investigations of fat metabolism.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Xiaojie Li
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Benmeng Liang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sijia Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Agricultural College, Ningxia University, Yinchuan, Ningxia, China
| | - Yabin Pu
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fuqing Yu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing 100193, China
| | - Yuehui Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland.
| | - Lin Jiang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
5
|
Effect of 20(S)-Hydroxycholesterol on Multilineage Differentiation of Mesenchymal Stem Cells Isolated from Compact Bones in Chicken. Genes (Basel) 2020; 11:genes11111360. [PMID: 33213081 PMCID: PMC7698591 DOI: 10.3390/genes11111360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
Bone health and body weight gain have significant economic and welfare importance in the poultry industry. Mesenchymal stem cells (MSCs) are common progenitors of different cell lineages such as osteoblasts, adipocytes, and myocytes. Specific oxysterols have shown to be pro-osteogenic and anti-adipogenic in mouse and human MSCs. To determine the effect of 20(S)-hydroxycholesterol (20S) on osteogenic, adipogenic, and myogenic differentiation in chicken, mesenchymal stem cells isolated from compact bones of broiler chickens (cBMSCs) were subjected to various doses of 20S, and markers of lineage-specific mRNA were analyzed using real-time PCR and cell cytochemistry. Further studies were conducted to evaluate the molecular mechanisms involved in lineage-specific differentiation pathways. Like human and mouse MSCs, 20S oxysterol expressed pro-osteogenic, pro-myogenic, and anti-adipogenic differentiation potential in cBMSCs. Moreover, 20(S)-Hydroxycholesterol induced markers of osteogenic genes and myogenic regulatory factors when exposed to cBMSCs treated with their specific medium. In contrast, 20S oxysterol suppressed expression of adipogenic marker genes when exposed to cBMSCs treated with OA, an adipogenic precursor of cBMSCs. To elucidate the molecular mechanism by which 20S exerts its differentiation potential in all three lineages, we focused on the hedgehog signaling pathway. The hedgehog inhibitor, cyclopamine, completely reversed the effect of 20S induced expression of osteogenic and anti-adipogenic mRNA. However, there was no change in the mRNA expression of myogenic genes. The results showed that 20S oxysterol promotes osteogenic and myogenic differentiation and decreases adipocyte differentiation of cBMSCs. This study also showed that the induction of osteogenesis and adipogenesis inhibition in cBMSCs by 20S is mediated through the hedgehog signaling mechanism. The results indicated that 20(S) could play an important role in the differentiation of chicken-derived MSCs and provided the theory basis on developing an intervention strategy to regulate skeletal, myogenic, and adipogenic differentiation in chicken, which will contribute to improving chicken bone health and meat quality. The current results provide the rationale for the further study of regulatory mechanisms of bioactive molecules on the differentiation of MSCs in chicken, which can help to address skeletal health problems in poultry.
Collapse
|
6
|
Lu T, Pei W, Wang K, Zhang S, Chen F, Wu Y, Guan W. In vitro culture and biological properties of broiler adipose-derived stem cells. Exp Ther Med 2018; 16:2399-2407. [PMID: 30210592 PMCID: PMC6122567 DOI: 10.3892/etm.2018.6445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
In the past 10 years, adipose-derived stem cells (ADSCs) have been applied due to their pluripotency. Experimental tissues have been frequently obtained from mammals, including rabbits, mice and humans, but rarely from broilers, Gallus gallus domesticus. In the present study, ADSCs were obtained from 20-day-old broiler embryos. Primary ADSCs were sub-cultured to passage 37 in vitro. The surface markers of ADSCs, namely CD29, CD31, CD44, CD71 and CD73, were detected by reverse transcription polymerase chain reaction and immunofluorescence assays. The result indicated that CD29, CD44, CD71 and CD73 were expressed on the surface of cells at various passages, but not CD31. The growth curve of cells at the different passages had a typical sigmoidal shape. Furthermore, ADSCs were successfully induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. The results denote that the ADSCs isolated from broilers have similar biological properties to those of ADSCs obtained from other animals. The present study provided a theoretical and experimental foundation for the use of poultry as a source of stem cells, and laid a foundation for adipose tissue engineering and strategies in regenerative medicine.
Collapse
Affiliation(s)
- Tengfei Lu
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Wenhua Pei
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Kunfu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Shuang Zhang
- Scientific Experiment Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Fenghao Chen
- College of Human Movement Science, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Yangnan Wu
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| |
Collapse
|
7
|
Yang J, Zhao Q, Wang K, Ma C, Liu H, Liu Y, Guan W. Isolation, culture and biological characteristics of multipotent porcine tendon-derived stem cells. Int J Mol Med 2018; 41:3611-3619. [PMID: 29512747 DOI: 10.3892/ijmm.2018.3545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
Tendon-derived stem cells (TDSCs), a postulated multi-potential stem cell population, play significant role in the postnatal replenishment of tendon injuries. However, the majority of experimental materials were obtained from horse, rat, human and rabbit, but rarely from pig. In this research, 1‑day‑old pig was chosen as experimental sample source to isolate and culture TDSCs in vitro. Specific markers of TDSCs were then characterized by immunofluorescence and reverse transcription polymerase chain reaction (RT‑PCR) assays. The results showed that TDSCs could be expanded for 11 passages in vitro. The expression of specific markers, such as collagen Ⅰ, collagen Ⅲ, α‑smooth muscle actin (α‑SMA), CD105 and CD90 were observed by immunofluorescence and RT‑PCR. TDSCs were induced to differentiate into adipocytes, osteoblasts and chondrocytes, respectively. These results suggest that TDSCs isolated from porcine tendon exhibit the characteristics of multipotent stem cells. TDSCs, therefore, may be potential candidates for cellular transplantation therapy and tissue engineering in tendon injuries.
Collapse
Affiliation(s)
- Jinjuan Yang
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qianjun Zhao
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kunfu Wang
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Caiyun Ma
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hao Liu
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yingjie Liu
- Institute of Physical Education, University of Jimei, Xiamen, Fujian 361021, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
8
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
9
|
Isolation, Culture, and Characterization of Chicken Cartilage Stem/Progenitor Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:586290. [PMID: 26351636 PMCID: PMC4553168 DOI: 10.1155/2015/586290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023]
Abstract
A chondrocyte progenitor population isolated from the surface zone of articular cartilage has become a promising cell source for cell-based cartilage repair. The cartilage-derived stem/progenitor cells are multipotent stem cells, which can differentiate into three cell types in vitro including adipocytes, osteoblasts, and chondrocytes. Much work has been done on cartilage stem/progenitor cells (CSPCs) from people, horses, and cattle, but the relatively little literature has been published about these cells in chickens. In our work, CSPCs were isolated from chicken embryos in incubated eggs for 20 days. In order to inquire into the biological characteristics of chicken CSPCs, immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR), and flow cytometry were adopted to detect the characteristic surface markers of CSPCs. Primary CSPCs were subcultured to passage 22 and, for purpose of knowing the change of cell numbers, we drew the growth curves. Isolated CSPCs were induced to adipocytes, osteoblasts, and chondrocytes. Our results suggest that we have identified and characterised a novel cartilage progenitor population resident in chicken articular cartilage and CSPCs isolated from chickens possess similar biological characteristics to those from other species, which will greatly benefit future cell-based cartilage repair therapies.
Collapse
|
10
|
Hu P, Pu Y, Li X, Zhu Z, Zhao Y, Guan W, Ma Y. Isolation, in vitro culture and identification of a new type of mesenchymal stem cell derived from fetal bovine lung tissues. Mol Med Rep 2015; 12:3331-3338. [PMID: 26016556 PMCID: PMC4526039 DOI: 10.3892/mmr.2015.3854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/30/2015] [Indexed: 01/08/2023] Open
Abstract
Lung‑derived mesenchymal stem cells (LMSCs) are considered to be important in lung tissue repair and regenerative processes. However, the biological characteristics and differentiation potential of LMSCs remain to be elucidated. In the present study, fetal lung‑derived mesenchymal stem cells (FLMSCs) were isolated from fetal bovine lung tissues by collagenase digestion. The in vitro culture conditions were optimized and stabilized and the self‑renewal ability and differentiation potential were evaluated. The results demonstrated that the FLMSCs were morphologically consistent with fibroblasts, were able to be cultured and passaged for at least 33 passages and the cell morphology and proliferative ability were stable during the first 10 passages. In addition, FLMSCs were found to express CD29, CD44, CD73 and CD166, however, they did not express hematopoietic cell specific markers, including CD34, CD45 and BOLA‑DRα. The growth kinetics of FLMSCs consisted of a lag phase, a logarithmic phase and a plateau phase, and as the passages increased, the proliferative ability of cells gradually decreased. The majority of FLMSCs were in G0/G1 phase. Following osteogenic induction, FLMSCs were positive for the expression of osteopontin and collagen type I α2. Following neurogenic differentiation, the cells were morphologically consistent with neuronal cells and positive for microtubule‑associated protein 2 and nestin expression. It was concluded that the isolated FLMSCs exhibited typical characteristics of mesenchymal stem cells and that the culture conditions were suitable for their proliferation and the maintenance of stemness. The present study illustrated the potential application of lung tissue as an adult stem cell source for regenerative therapies.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yabin Pu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiayun Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Zhiqiang Zhu
- Harbin Institute of Physical Education, Harbin, Heilongjiang 150008, P.R. China
| | - Yuhua Zhao
- Harbin Institute of Physical Education, Harbin, Heilongjiang 150008, P.R. China
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yuehui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
11
|
Oh HJ, Park JE, Park EJ, Kim MJ, Kim GA, Rhee SH, Lim SH, Kang SK, Lee BC. Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev Growth Differ 2014; 56:595-604. [PMID: 25312433 DOI: 10.1111/dgd.12159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/16/2014] [Accepted: 08/17/2014] [Indexed: 11/28/2022]
Abstract
In several laboratory animals and humans, adipose tissue-derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming-related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4-year-old female miniature pig. The ASC expressed cell-surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation-inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P < 0.05), and SOX2 showed significantly higher expression in ASC than in the other two cell types (P < 0.05). After somatic cell nuclear transfer (SCNT), the development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Isolation and characterization of adipose-derived mesenchymal stem cells (ADSCs) from cattle. Appl Biochem Biotechnol 2014; 174:719-28. [PMID: 25086927 DOI: 10.1007/s12010-014-1128-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) were isolated from the adult adipose tissue of 2-year-old cattle, and then characterized by immunofluorescence and RT-PCR. We found that primary bADSCs could be expanded for 25 passages. Expression of β-integrin, CD44, and CD73 was observed by immunofluorescence and RT-PCR. Passage 3 bADSCs were successfully induced to differentiate into osteoblasts and adipocytes. The results indicate the potential for multi-lineage differentiation of bADSCs that may represent an ideal candidate for cellular transplantation therapy.
Collapse
|
13
|
Biological characterization and pluripotent identification of sheep dermis-derived mesenchymal stem/progenitor cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:786234. [PMID: 24949469 PMCID: PMC4052519 DOI: 10.1155/2014/786234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/23/2014] [Accepted: 04/15/2014] [Indexed: 11/19/2022]
Abstract
Dermis-derived mesenchymal stem/progenitor cells (DMS/PCs) were a multipotential stem cell population, which has potential applications in the tissue damage repair and skin transplant. Although a large number of studies deal with the human DMS/PCs self-renewal and regulation, however, the study of livestock-derived DMS/PCs has rarely been reported. Here, sheep DMS/PCs were isolated from one-month-old sheep embryos and studied at the cellular and molecular level. And then the DMS/PCs biological characteristics were analysed by RT-PCR and immunofluorescence. Experimental results showed that DMS/PCs could be expanded for 48 passages and the cells viability and hereditary character were steady. In addition, the DMS/PCs maker β-integrin, CD71, CD44, and CD73 were expressed positively through RT-PCR and immunofluorescence. Passage 3 DMS/PCs were successfully induced to differentiate into adipocytes, osteoblasts, chondrocytes, and neurocytes, respectively. The above results suggest that DMS/PCs not only have strong self-renewal capacity but also have the potential to differentiate into adipocytes, osteoblasts, chondrocytes, and neurocytes. The study provides theoretical basis and experimental evidence for potential clinical application.
Collapse
|
14
|
Hausman GJ, Dodson MV. Stromal Vascular Cells and Adipogenesis: Cells within Adipose Depots Regulate Adipogenesis. J Genomics 2013; 1:56-66. [PMID: 25031656 PMCID: PMC4091429 DOI: 10.7150/jgen.3813] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A collection of investigations indicate the importance of adipose tissue stromal/stem cells to vasculogenesis and angiogenesis during adipogenesis. Early in development the stromal-vascular (S-V) elements control and dictate the extent of adipogenesis. For instance, the vasculature and connective tissue collagen matrix develops before overt adipocyte differentiation. Definitive studies of human adipose tissue stem cells (ADSC) provided an understanding of stem cell identity and function. In this regard, a novel vascular stem cell theory proposes that ADSC are a mixed population of vascular stem cells (VSC) with differential potential proportional to the angiogenic potential of the vasculature. The differential potential of VSC can range considerably in a continuous fashion and can include vascular smooth cells, endothelial cells (EC) and adipocytes. These observations are consistent with fetal adipose tissue studies that show location-dependent angiogenic potential ranging from more to less in regards to a predominant presence of EC and developing arterioles before overt adipogenesis.
Collapse
Affiliation(s)
- Gary J Hausman
- 1. Poultry Processing and Swine Physiology Research, Agricultural Research Service, Richard B. Russell Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Michael V Dodson
- 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
15
|
Li X, Gao Y, Hua J, Bian Y, Mu R, Guan W, Ma Y. Research potential of multi-lineage chicken amniotic mesenchymal stem cells. Biotech Histochem 2013; 89:172-80. [PMID: 24047150 DOI: 10.3109/10520295.2013.831485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amniotic mesenchymal stem cells (AMSCs) express octamer binding transcription factor 4 (Oct-4), which is necessary for maintaining the undifferentiated state of pluripotent stem cells. AMSCs also express CD29, CD44 and vimentin, which are specific markers of mesenchymal cells. We studied the biological characteristics and potential for cell therapy of AMSCs derived from 8-day-old chicken embryos. We induced the AMSCs to differentiate into adipocytes, osteoblasts and myocardial cells and used immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR) assays to detect the expressions of specific markers of AMSCs and differentiated cells. To assess the differentiation capacity of AMSCs, passage four cells were induced to differentiate into adipocytes, osteoblasts and myocardial cells. These results suggested that AMSCs isolated from chicken embryos exhibited the characteristics of multipotent stem cells. AMSCs, therefore, may be potential candidates for cellular transplantation therapy and tissue engineering.
Collapse
Affiliation(s)
- X Li
- Institute of Animal Science, Chinese Academy of Agricultural Science , Beijing 100193
| | | | | | | | | | | | | |
Collapse
|
16
|
Isolation and characterization of chicken dermis-derived mesenchymal stem/progenitor cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:626258. [PMID: 23984389 PMCID: PMC3747373 DOI: 10.1155/2013/626258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 01/22/2023]
Abstract
Dermis-derived mesenchymal stem/progenitor cells (DMS/PCs) were isolated from the skin tissue of 16-day-old chick embryos and then characterized by immunofluorescence and RT-PCR. We found that primary DMS/PCs could be expanded for 15 passages. Expression of β -integrin, CD44, CD71, and CD73 was observed by immunofluorescence and RT-PCR. Passage 3 DMS/PCs were successfully induced to differentiate into osteoblasts, adipocytes, and neurocytes. The results indicate the potential for multilineage differentiation of DMS/PCs that may represent an ideal candidate for cellular transplantation therapy.
Collapse
|
17
|
Bai C, Hou L, Zhang M, Wang L, Guan W, Ma Y. Identification and biological characterization of chicken embryonic cardiac progenitor cells. Cell Prolif 2013; 46:232-42. [PMID: 23510478 DOI: 10.1111/cpr.12024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/05/2012] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Many kinds of cardiac progenitor cell populations have been identified, including c-kit(+) , Nkx2.5(+) s and GATA4(+) cells. However, these progenitors have limited ability to differentiate into different cardiac cell types. Recently, a new kind of cardiac progenitor cell named the multipotent Isl1(+) cardiovascular progenitor (MICPs) has been identified, which also expresses Nkx2.5, GATA4, CD34 and Flk1. MATERIALS AND METHODS In this study, we have isolated and characterized MICPs from chicken embryonic heart tissues using immunofluorescence and PCR. RESULTS Results shown that they express markers of cardiac progenitor cells, with high clonality. They have the ability to self-renew and can give rise to three types of heart cell in vitro. CONCLUSIONS Myocytes, smooth muscle cells and endothelial cells. Our work provides evidence for a developmental paradigm of the heart, that endothelial and muscle lineage diversification arises from multipotent cardiac progenitor cells. Existence of these cells provides a new opportunity for myocardial injury repair.
Collapse
Affiliation(s)
- C Bai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
18
|
Oh HJ, Park EJ, Lee SY, Soh JW, Kong IS, Choi SW, Ra JC, Kang SK, Lee BC. Comparison of cell proliferation and epigenetic modification of gene expression patterns in canine foetal fibroblasts and adipose tissue-derived mesenchymal stem cells. Cell Prolif 2012; 45:438-44. [PMID: 22925503 DOI: 10.1111/j.1365-2184.2012.00838.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study compared rate of cell proliferation, viability, cell size, expression patterns of genes related to pluripotency and epigenetic modification between canine foetal fibroblasts (cFF) and canine adipose tissue-derived mesenchymal stem cells (cAd-MSC). MATERIALS AND METHODS Proliferation pattern, cell viability as well as cell size at each passage of cFF and cAd-MSC were measured when cultures reached confluence. In addition, real-time PCR was performed to investigate expression of Dnmt1, HDAC1, OCT4, SOX2, BAX, BCL2 genes with reference to β-actin gene expression as an endogenous control in both cell lines. RESULTS cFF and cAd-MSC differed in number of generations, but not in doubling times, at all passages. Mean cell size of cAd-MSC was significantly smaller than that of cFF. Cell viability was significantly lower in cFFs and apoptotic level was significantly lower in cAd-MSC compared to passage-matched cFF. In the expression of genes related to pluripotency and epigenetic modification, level of HDAC1 in cAd-MSC was significantly higher than in cFF, but expression of Dnmt1 did not differ between the two groups. OCT4 and SOX2 were significantly more highly expressed in cAd-MSC compared to cFF. CONCLUSIONS cAd-MSC have higher stem-cell potential than cFF in terms of proliferation patterns, epigenetic modification and pluripotency, thus cAd-MSC could be more appropriate than cFF as donors of nuclei in somatic cell nuclear transfer for transgenesis.
Collapse
Affiliation(s)
- H J Oh
- Department of Theriogenology and Biotechnology, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao Y, Pu Y, Wang D, Hou L, Guan W, Ma Y. Isolation and biological characterization of chicken amnion epithelial cells. Eur J Histochem 2012; 56:e33. [PMID: 23027349 PMCID: PMC3493979 DOI: 10.4081/ejh.2012.e33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 07/11/2012] [Accepted: 04/26/2012] [Indexed: 11/22/2022] Open
Abstract
Amniotic epithelial cells (AECs) express Oct4, Nanog and Sox-2, which are necessary for maintaining the undifferentiated state of pluripotent stem cells. AECs additionally express CK19, which is a specific marker of epithelial cells, both in vivo and in vitro. In this research, we investigated the biological characteristics and potential for cell therapy of AECs from 6-day-old chicken embryos. We induced the AECs to differentiate into pancreatic islet-like cells (endoderm), adipocytes and osteoblasts (mesoderm) and neural-like cells (ectoderm), and used immunofluorescence and RT-PCR to detect the expression of AECs specific markers. To assess the differentiation capacity of AECs, passage 3 cells were induced to differentiate into adipocytes, osteoblasts, pancreatic islet-like cells and neural-like cells. The AEC markers, Oct-4, Nanog, Sox-2 and CK19, were all positively expressed. Cloning efficiency decreased with increasing passage number. Passage 3 AECs were successfully induced to differentiate into pancreatic islet-like cells, osteoblasts, adipocytes, and neural-like cells. These results suggested that AECs isolated from chicken embryos exhibited the characteristics of the multipotent stem cells. AECs may therefore be ideal candidates for cellular transplantation therapy and tissue engineering.
Collapse
Affiliation(s)
- Y Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|