1
|
Mir DA, Ma Z, Horrocks J, Rogers A. Stress-Induced Eukaryotic Translational Regulatory Mechanisms. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:1000277. [PMID: 39364184 PMCID: PMC11448810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins is important for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
2
|
Mir DA, Ma Z, Horrocks J, Rogers AN. Stress-induced Eukaryotic Translational Regulatory Mechanisms. ARXIV 2024:arXiv:2405.01664v1. [PMID: 38745702 PMCID: PMC11092689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins crucial for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Aric N Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| |
Collapse
|
3
|
Zhou KI, Pecot CV, Holley CL. 2'- O-methylation (Nm) in RNA: progress, challenges, and future directions. RNA (NEW YORK, N.Y.) 2024; 30:570-582. [PMID: 38531653 PMCID: PMC11019748 DOI: 10.1261/rna.079970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
RNA 2'-O-methylation (Nm) is highly abundant in noncoding RNAs including ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA), and occurs in the 5' cap of virtually all messenger RNAs (mRNAs) in higher eukaryotes. More recently, Nm has also been reported to occur at internal sites in mRNA. High-throughput methods have been developed for the transcriptome-wide detection of Nm. However, these methods have mostly been applied to abundant RNAs such as rRNA, and the validity of the internal mRNA Nm sites detected with these approaches remains controversial. Nonetheless, Nm in both coding and noncoding RNAs has been demonstrated to impact cellular processes, including translation and splicing. In addition, Nm modifications at the 5' cap and possibly at internal sites in mRNA serve to prevent the binding of nucleic acid sensors, thus preventing the activation of the innate immune response by self-mRNAs. Finally, Nm has been implicated in a variety of diseases including cancer, cardiovascular diseases, and neurologic syndromes. In this review, we discuss current challenges in determining the distribution, regulation, function, and disease relevance of Nm, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Chad V Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- University of North Carolina RNA Discovery Center, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher L Holley
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
4
|
Liu L, Wang Y, Zou M, Chen S, Wu F, Li X. TRMT13 inhibits the growth of papillary thyroid cancer by targeting ANAPC4. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1267-1277. [PMID: 38425244 DOI: 10.3724/abbs.2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
The recently discovered gene TRMT13 encodes a type of RNA methylase and is a member of the CCDC family (also called CCDC76). Here, we delineate its role in papillary thyroid cancer (PTC). Bioinformatics analysis shows significant TRMT13 and ANAPC4 downregulation in PTC and reveals that the expression levels of both genes are linearly correlated. Subsequent analyses confirm that both TRMT13 and ANAPC4 expressions are downregulated in PTC tissues and that this change in expression has a significant impact on cancer diagnosis. We conduct assays on PTC cells subjected to TRMT13 and ANAPC4 silencing or overexpression to assess the biological effects of these genes. We also perform rescue experiments to validate the regulatory effects of TRMT13 on ANAPC4. A nude mouse tumor model is used to evaluate the effects of TRMT13 and ANAPC4 on PTC tumorigenesis. TRMT13 expression is decreased in PTC tissues and cell lines and is positively correlated with that of ANAPC4. Cell assays reveal that TRMT13/ANAPC4 attenuates the malignancy of PTC cells by restraining cell proliferation, migration and invasion, while rescue experiments corroborate that ANAPC4 is a downstream target of TRMT13. In the nude mouse xenograft model, both TRMT13 and ANAPC4 inhibit tumor growth, and TRMT13 and ANAPC4 expression levels are significantly associated with survival. Taken together, these findings lead to the conclusion that TRMT13 inhibits PTC growth via ANAPC4, indicating a new role of TRMT13 and providing insights into the tRNA methyltransferase and coiled-coil domain-containing protein families.
Collapse
Affiliation(s)
- Lianyong Liu
- Department of Endocrinology and Metabolism, Punan Hospital, Shanghai 200125, China
| | - Yan Wang
- Department of Endocrinology and Metabolism, Punan Hospital, Shanghai 200125, China
| | - Mei Zou
- PharmaLegacy Laboratories, Shanghai 201201, China
| | - Shiwei Chen
- Department of Intervention, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| | - Fengying Wu
- Nursing Department, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201599, China
| | - Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai 200135, China
| |
Collapse
|
5
|
Wang Z, Xu X, Li X, Fang J, Huang Z, Zhang M, Liu J, Qiu X. Investigations of Single-Subunit tRNA Methyltransferases from Yeast. J Fungi (Basel) 2023; 9:1030. [PMID: 37888286 PMCID: PMC10608323 DOI: 10.3390/jof9101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
tRNA methylations, including base modification and 2'-O-methylation of ribose moiety, play critical roles in the structural stabilization of tRNAs and the fidelity and efficiency of protein translation. These modifications are catalyzed by tRNA methyltransferases (TRMs). Some of the TRMs from yeast can fully function only by a single subunit. In this study, after performing the primary bioinformatic analyses, the progress of the studies of yeast single-subunit TRMs, as well as the studies of their homologues from yeast and other types of eukaryotes and the corresponding TRMs from other types of organisms was systematically reviewed, which will facilitate the understanding of the evolutionary origin of functional diversity of eukaryotic single-subunit TRM.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiangbin Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Mengli Zhang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiameng Liu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| |
Collapse
|
6
|
Hogan CA, Gratz SJ, Dumouchel JL, Thakur RS, Delgado A, Lentini JM, Madhwani KR, Fu D, O'Connor‐Giles KM. Expanded tRNA methyltransferase family member TRMT9B regulates synaptic growth and function. EMBO Rep 2023; 24:e56808. [PMID: 37642556 PMCID: PMC10561368 DOI: 10.15252/embr.202356808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Nervous system function rests on the formation of functional synapses between neurons. We have identified TRMT9B as a new regulator of synapse formation and function in Drosophila. TRMT9B has been studied for its role as a tumor suppressor and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Whereas Trm9 homolog ALKBH8 is ubiquitously expressed, TRMT9B is enriched in the nervous system. However, in the absence of animal models, TRMT9B's role in the nervous system has remained unstudied. Here, we generate null alleles of TRMT9B and find it acts postsynaptically to regulate synaptogenesis and promote neurotransmission. Through liquid chromatography-mass spectrometry, we find that ALKBH8 catalyzes canonical tRNA wobble uridine methylation, raising the question of whether TRMT9B is a methyltransferase. Structural modeling studies suggest TRMT9B retains methyltransferase function and, in vivo, disruption of key methyltransferase residues blocks TRMT9B's ability to rescue synaptic overgrowth, but not neurotransmitter release. These findings reveal distinct roles for TRMT9B in the nervous system and highlight the significance of tRNA methyltransferase family diversification in metazoans.
Collapse
Affiliation(s)
- Caley A Hogan
- Genetics Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Scott J Gratz
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | | | - Rajan S Thakur
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Ambar Delgado
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Jenna M Lentini
- Department of Biology, Center for RNA BiologyUniversity of RochesterRochesterNYUSA
| | | | - Dragony Fu
- Department of Biology, Center for RNA BiologyUniversity of RochesterRochesterNYUSA
| | - Kate M O'Connor‐Giles
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
- Carney Institute for Brain ScienceProvidenceRIUSA
| |
Collapse
|
7
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
9
|
Dysfunctional tRNA reprogramming and codon-biased translation in cancer. Trends Mol Med 2022; 28:964-978. [PMID: 36241532 PMCID: PMC10071289 DOI: 10.1016/j.molmed.2022.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 12/17/2022]
Abstract
Many cancers hijack translation to increase the synthesis of tumor-driving proteins, the messenger mRNAs of which have specific codon usage patterns. Termed 'codon-biased translation' and originally identified in stress response regulation, this mechanism is supported by diverse studies demonstrating how the 50 RNA modifications of the epitranscriptome, specific tRNAs, and codon-biased mRNAs are used by oncogenic programs to promote proliferation and chemoresistance. The epitranscriptome writers METTL1-WDR4, Elongator complex protein (ELP)1-6, CTU1-2, and ALKBH8-TRM112 illustrate the principal mechanism of codon-biased translation, with gene amplifications, increased RNA modifications, and enhanced tRNA stability promoting cancer proliferation. Furthermore, systems-level analyses of 34 tRNA writers and 493 tRNA genes highlight the theme of tRNA epitranscriptome dysregulation in many cancers and identify candidate tRNA writers, tRNA modifications, and tRNA molecules as drivers of pathological codon-biased translation.
Collapse
|
10
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
11
|
Schwickert M, Fischer TR, Zimmermann RA, Hoba SN, Meidner JL, Weber M, Weber M, Stark MM, Koch J, Jung N, Kersten C, Windbergs M, Lyko F, Helm M, Schirmeister T. Discovery of Inhibitors of DNA Methyltransferase 2, an Epitranscriptomic Modulator and Potential Target for Cancer Treatment. J Med Chem 2022; 65:9750-9788. [PMID: 35849534 DOI: 10.1021/acs.jmedchem.2c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.
Collapse
Affiliation(s)
- Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - J Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Moritz Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Martin M Stark
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Jonas Koch
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| |
Collapse
|
12
|
Notter DR, Heidaritabar M, Burke JM, Shirali M, Murdoch BM, Morgan JLM, Morota G, Sonstegard TS, Becker GM, Spangler GL, MacNeil MD, Miller JE. Single Nucleotide Polymorphism Effects on Lamb Fecal Egg Count Estimated Breeding Values in Progeny-Tested Katahdin Sires. Front Genet 2022; 13:866176. [PMID: 35591856 PMCID: PMC9110833 DOI: 10.3389/fgene.2022.866176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/14/2022] [Indexed: 01/31/2023] Open
Abstract
Estimated breeding values (EBV) for fecal egg counts (FEC) at 42–90 days of age (WFEC) and 91–150 days of age (PFEC) for 84 progeny-tested Katahdin sires were used to identify associations of deregressed EBV with single-nucleotide polymorphisms (SNP) using 388,000 SNP with minor-allele frequencies ≥0.10 on an Illumina high-density ovine array. Associations between markers and FEC EBV were initially quantified by single-SNP linear regression. Effects of linkage disequilibrium (LD) were minimized by assigning SNP to 2,535 consecutive 1-Mb bins and focusing on the effect of the most significant SNP in each bin. Bonferroni correction was used to define bin-based (BB) genome- and chromosome-wide significance. Six bins on chromosome 5 achieved BB genome-wide significance for PFEC EBV, and three of those SNP achieved chromosome-wide significance after Bonferroni correction based on the 14,530 total SNP on chromosome 5. These bins were nested within 12 consecutive bins between 59 and 71 Mb on chromosome 5 that reached BB chromosome-wide significance. The largest SNP effects were at 63, 67, and 70 Mb, with LD among these SNP of r2 ≤ 0.2. Regional heritability mapping (RHM) was then used to evaluate the ability of different genomic regions to account for additive variance in FEC EBV. Chromosome-level RHM indicated that one 500-SNP window between 65.9 and 69.9 Mb accounted for significant variation in PFEC EBV. Five additional 500-SNP windows between 59.3 and 71.6 Mb reached suggestive (p < 0.10) significance for PFEC EBV. Although previous studies rarely identified markers for parasite resistance on chromosome 5, the IL12B gene at 68.5 Mb codes for the p40 subunit of both interleukins 12 and 23. Other immunoregulatory genes are also located in this region of chromosome 5, providing opportunity for additive or associative effects.
Collapse
Affiliation(s)
- David R. Notter
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: David R. Notter,
| | - Marzieh Heidaritabar
- Livestock Gentec, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Joan M. Burke
- United States Department of Agriculture, Agricultural Research Service, Dale Bumpers Small Farms Research Center, Booneville, AR, United States
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | | | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Gabrielle M. Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Gordon L. Spangler
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Michael D. MacNeil
- Delta G, Miles City, MT, United States
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | - James E. Miller
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Margreiter MA, Witzenberger M, Wasser Y, Davydova E, Janowski R, Metz J, Habib P, Sahnoun SEM, Sobisch C, Poma B, Palomino-Hernandez O, Wagner M, Carell T, Jon Shah N, Schulz JB, Niessing D, Voigt A, Rossetti G. Small-molecule modulators of TRMT2A decrease PolyQ aggregation and PolyQ-induced cell death. Comput Struct Biotechnol J 2022; 20:443-458. [PMID: 35070167 PMCID: PMC8759985 DOI: 10.1016/j.csbj.2021.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Polyglutamine (polyQ) diseases are characterized by an expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats encoding for an uninterrupted prolonged polyQ tract. We previously identified TRMT2A as a strong modifier of polyQ-induced toxicity in an unbiased large-scale screen in Drosophila melanogaster. This work aimed at identifying and validating pharmacological TRMT2A inhibitors as treatment opportunities for polyQ diseases in humans. Computer-aided drug discovery was implemented to identify human TRMT2A inhibitors. Additionally, the crystal structure of one protein domain, the RNA recognition motif (RRM), was determined, and Biacore experiments with the RRM were performed. The identified molecules were validated for their potency to reduce polyQ aggregation and polyQ-induced cell death in human HEK293T cells and patient derived fibroblasts. Our work provides a first step towards pharmacological inhibition of this enzyme and indicates TRMT2A as a viable drug target for polyQ diseases.
Collapse
Affiliation(s)
- Michael A Margreiter
- Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Juelich GmbH, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany
| | - Monika Witzenberger
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Structural Biology, 85764 Neuherberg, Germany
| | - Yasmine Wasser
- Department of Neurology, RWTH University Aachen, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Elena Davydova
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Structural Biology, 85764 Neuherberg, Germany
| | - Robert Janowski
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Structural Biology, 85764 Neuherberg, Germany
| | - Jonas Metz
- Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Juelich GmbH, Germany
| | - Pardes Habib
- Department of Neurology, RWTH University Aachen, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Carina Sobisch
- Department of Neurology, RWTH University Aachen, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Benedetta Poma
- Department of Neurology, RWTH University Aachen, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Oscar Palomino-Hernandez
- Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Juelich GmbH, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany
| | - Mirko Wagner
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Thomas Carell
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - N Jon Shah
- JARA - BRAIN - Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Juelich GmbH, Germany.,Institute of Neuroscience and Medicine (INM-11), Forschungszentrum Juelich GmbH, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH University Aachen, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine (INM-11), Forschungszentrum Juelich GmbH, Germany
| | - Dierk Niessing
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Structural Biology, 85764 Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH University Aachen, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Juelich GmbH, Germany.,Department of Neurology, RWTH University Aachen, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,Juelich Supercomputing Center (JSC), Forschungszentrum Juelich GmbH, Germany.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
14
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
15
|
Qiu Z, Wang Q, Liu L, Li G, Hao Y, Ning S, Zhang L, Zhang X, Chen Y, Wu J, Wang X, Yang S, Lin Y, Xu S. Riddle of the Sphinx: Emerging Role of Transfer RNAs in Human Cancer. Front Pharmacol 2021; 12:794986. [PMID: 34975491 PMCID: PMC8714751 DOI: 10.3389/fphar.2021.794986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023] Open
Abstract
The dysregulation of transfer RNA (tRNA) expression contributes to the diversity of proteomics, heterogeneity of cell populations, and instability of the genome, which may be related to human cancer susceptibility. However, the relationship between tRNA dysregulation and cancer susceptibility remains elusive because the landscape of cancer-associated tRNAs has not been portrayed yet. Furthermore, the molecular mechanisms of tRNAs involved in tumorigenesis and cancer progression have not been systematically understood. In this review, we detail current knowledge of cancer-related tRNAs and comprehensively summarize the basic characteristics and functions of these tRNAs, with a special focus on their role and involvement in human cancer. This review bridges the gap between tRNAs and cancer and broadens our understanding of their relationship, thus providing new insights and strategies to improve the potential clinical applications of tRNAs for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiale Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinheng Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaoxin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- *Correspondence: Yaoxin Lin, ; Shouping Xu,
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Yaoxin Lin, ; Shouping Xu,
| |
Collapse
|
16
|
Li H, Dong H, Xu B, Xiong QP, Li CT, Yang WQ, Li J, Huang ZX, Zeng QY, Wang ED, Liu RJ. A dual role of human tRNA methyltransferase hTrmt13 in regulating translation and transcription. EMBO J 2021; 41:e108544. [PMID: 34850409 PMCID: PMC8922252 DOI: 10.15252/embj.2021108544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Since numerous RNAs and RBPs prevalently localize to active chromatin regions, many RNA-binding proteins (RBPs) may be potential transcriptional regulators. RBPs are generally thought to regulate transcription via noncoding RNAs. Here, we describe a distinct, dual mechanism of transcriptional regulation by the previously uncharacterized tRNA-modifying enzyme, hTrmt13. On one hand, hTrmt13 acts in the cytoplasm to catalyze 2'-O-methylation of tRNAs, thus regulating translation in a manner depending on its tRNA-modification activity. On the other hand, nucleus-localized hTrmt13 directly binds DNA as a transcriptional co-activator of key epithelial-mesenchymal transition factors, thereby promoting cell migration independent of tRNA-modification activity. These dual functions of hTrmt13 are mutually exclusive, as it can bind either DNA or tRNA through its CHHC zinc finger domain. Finally, we find that hTrmt13 expression is tightly associated with poor prognosis and survival in diverse cancer patients. Our discovery of the noncatalytic roles of an RNA-modifying enzyme provides a new perspective for understanding epitranscriptomic regulation.
Collapse
Affiliation(s)
- Hao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Han Dong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qing-Ping Xiong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Xuan Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - En-Duo Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
17
|
Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1700. [PMID: 34664402 DOI: 10.1002/wrna.1700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Naturally occurring post-transcriptional chemical modifications serve critical roles in impacting RNA structure and function. More directly, modifications may affect RNA stability, intracellular transport, translational efficiency, and fidelity. The combination of effects caused by modifications are ultimately linked to gene expression regulation at a genome-wide scale. The latter is especially true in systems that undergo rapid metabolic and or translational remodeling in response to external stimuli, such as the presence of stressors, but beyond that, modifications may also affect cell homeostasis. Although examples of the importance of RNA modifications in translation are accumulating rapidly, still what these contribute to the function of complex physiological systems such as muscle is only recently emerging. In the present review, we will introduce key information on various modifications and highlight connections between those and cellular malfunctions. In passing, we will describe well-documented roles for modifications in the nervous system and use this information as a stepping stone to emphasize a glaring paucity of knowledge on the role of RNA modifications in heart and skeletal muscle, with particular emphasis on mitochondrial function in those systems. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Domnauer M, Zheng F, Li L, Zhang Y, Chang CE, Unruh JR, Conkright-Fincham J, McCroskey S, Florens L, Zhang Y, Seidel C, Fong B, Schilling B, Sharma R, Ramanathan A, Si K, Zhou C. Proteome plasticity in response to persistent environmental change. Mol Cell 2021; 81:3294-3309.e12. [PMID: 34293321 DOI: 10.1016/j.molcel.2021.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023]
Abstract
Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.
Collapse
Affiliation(s)
- Matthew Domnauer
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA
| | - Fan Zheng
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Liying Li
- UCSF, 1550 Fourth St, RH490 San Francisco, CA 94158, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Catherine E Chang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | - Scott McCroskey
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Christopher Seidel
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Benjamin Fong
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA
| | - Rishi Sharma
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Arvind Ramanathan
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Institute for Stem Cell Science and Regenerative Medicine GKVK, Bengaluru, Karnataka 560065, India
| | - Kausik Si
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Chuankai Zhou
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA.
| |
Collapse
|
19
|
Abstract
Increased proliferation and protein synthesis are characteristics of transformed and tumor cells. Although the components of the translation machinery are often dysregulated in cancer, the role of tRNAs in cancer cells has not been well studied. Nevertheless, the number of related studies has recently started increasing. With the development of high throughput technologies such as next-generation sequencing, genome-wide differential tRNA expression patterns in breast cancer-derived cell lines and breast tumors have been investigated. The genome-wide transcriptomics analyses have been linked with many studies for functional and phenotypic characterization, whereby tRNAs or tRNA-related fragments have been shown to play important roles in breast cancer regulation and as promising prognostic biomarkers. Here, we review their expression patterns, functions, prognostic value, and potential therapeutic use as well as related technologies.
Collapse
|
20
|
Guay C, Jacovetti C, Bayazit MB, Brozzi F, Rodriguez-Trejo A, Wu K, Regazzi R. Roles of Noncoding RNAs in Islet Biology. Compr Physiol 2020; 10:893-932. [PMID: 32941685 DOI: 10.1002/cphy.c190032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and β-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between β-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Adriana Rodriguez-Trejo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Lentini JM, Alsaif HS, Faqeih E, Alkuraya FS, Fu D. DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat Commun 2020; 11:2510. [PMID: 32427860 PMCID: PMC7237682 DOI: 10.1038/s41467-020-16321-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
In mammals, a subset of arginine tRNA isoacceptors are methylated in the anticodon loop by the METTL2 methyltransferase to form the 3-methylcytosine (m3C) modification. However, the mechanism by which METTL2 identifies specific tRNA arginine species for m3C formation as well as the biological role of m3C in mammals is unknown. Here, we show that human METTL2 forms a complex with DALR anticodon binding domain containing 3 (DALRD3) protein to recognize particular arginine tRNAs destined for m3C modification. DALRD3-deficient human cells exhibit nearly complete loss of the m3C modification in tRNA-Arg species. Notably, we identify a homozygous nonsense mutation in the DALRD3 gene that impairs m3C formation in human patients exhibiting developmental delay and early-onset epileptic encephalopathy. These findings uncover an unexpected function for the DALRD3 protein in the targeting of distinct arginine tRNAs for m3C modification and suggest a crucial biological role for DALRD3-dependent tRNA modification in proper neurological development.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
22
|
2'-O-ribose methylation of transfer RNA promotes recovery from oxidative stress in Saccharomyces cerevisiae. PLoS One 2020; 15:e0229103. [PMID: 32053677 PMCID: PMC7018073 DOI: 10.1371/journal.pone.0229103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
Chemical modifications that regulate protein expression at the translational level are emerging as vital components of the cellular stress response. Transfer RNAs (tRNAs) are significant targets for methyl-based modifications, which are catalyzed by tRNA methyltransferases (Trms). Here, Saccharomyces cerevisiae served as a model eukaryote system to investigate the role of 2'-O-ribose tRNA methylation in the cell's response to oxidative stress. Using 2'-O-ribose deletion mutants for trms 3, 7, 13, and 44, in acute and chronic exposure settings, we demonstrate a broad cell sensitivity to oxidative stress-inducing toxicants (i.e., hydrogen peroxide, rotenone, and acetic acid). A global analysis of hydrogen peroxide-induced tRNA modifications shows a complex profile of decreased, or undetectable, 2'-O-ribose modification events in 2’-O-ribose trm mutant strains, providing a critical link between this type of modification event and Trm status post-exposure. Based on the pronounced oxidative stress sensitivity observed for trm7 mutants, we used a bioinformatic tool to identify transcripts as candidates for regulation by Trm7-catalyzed modifications (i.e., enriched in UUC codons decoded by tRNAPheGmAA). This screen identified transcripts linked to diverse biological processes that promote cellular recovery after oxidative stress exposure, including DNA repair, chromatin remodeling, and nutrient acquisition (i.e., CRT10, HIR3, HXT2, and GNP1); moreover, these mutants were also oxidative stress-sensitive. Together, these results solidify a role for TRM3, 7, 13, and 44, in the cellular response to oxidative stress, and implicate 2'-O-ribose tRNA modification as an epitranscriptomic strategy for oxidative stress recovery.
Collapse
|
23
|
Abstract
RNA plays essential roles in not only translating nucleic acids into proteins, but also in gene regulation, environmental interactions and many human diseases. Nature uses over 150 chemical modifications to decorate RNA and diversify its functions. With the fast-growing RNA research in the burgeoning field of 'epitranscriptome', a term describes post-transcriptional RNA modifications that can dynamically change the transcriptome, it becomes clear that these modifications participate in modulating gene expression and controlling the cell fate, thereby igniting the new interests in RNA-based drug discovery. The dynamics of these RNA chemical modifications is orchestrated by coordinated actions of an array of writer, reader and eraser proteins. Deregulated expression of these RNA modifying proteins can lead to many human diseases including cancer. In this review, we highlight several critical modifications, namely m6A, m1A, m5C, inosine and pseudouridine, in both coding and non-coding RNAs. In parallel, we present a few other cancer-related tRNA and rRNA modifications. We further discuss their roles in cancer promotion or tumour suppression. Understanding the molecular mechanisms underlying the biogenesis and turnover of these RNA modifications will be of great significance in the design and development of novel anticancer drugs.
Collapse
Affiliation(s)
- Phensinee Haruehanroengra
- Department of Chemistry and the RNA Institute, College of Arts and Science, University at Albany, State University of New York , Albany, NY, USA
| | - Ya Ying Zheng
- Department of Chemistry and the RNA Institute, College of Arts and Science, University at Albany, State University of New York , Albany, NY, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University , Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University , Houston, TX, USA
| | - Jia Sheng
- Department of Chemistry and the RNA Institute, College of Arts and Science, University at Albany, State University of New York , Albany, NY, USA
| |
Collapse
|
24
|
Cheng QY, Xiong J, Ma CJ, Dai Y, Ding JH, Liu FL, Yuan BF, Feng YQ. Chemical tagging for sensitive determination of uridine modifications in RNA. Chem Sci 2020; 11:1878-1891. [PMID: 34123281 PMCID: PMC8148390 DOI: 10.1039/c9sc05094a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The discovery of dynamic and reversible modifications in messenger RNA (mRNA) is opening new directions in RNA modification-mediated regulation of biological processes. Methylation is the most prevalent modification occurring in mRNA and the methyl group is mainly decorated in the adenine, cytosine, and guanine base or in the 2′-hydroxyl group of ribose. However, methylation of the uracil base (5-methyluridine, m5U) has not been discovered in mRNA of eukaryotes. In the current study, we established a method of N-cyclohexyl-N′-β-(4-methylmorpholinium) ethylcarbodiimide p-toluenesulfonate (CMCT) labelling coupled with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) analysis for the sensitive determination of uridine modifications in RNA. Our results demonstrated that the detection sensitivities of uridine modifications in RNA increased up to 1408 fold upon CMCT labelling. Using the developed method, we identified the distinct existence of m5U in mRNA of various mammalian cells and tissues. In addition, the stable isotope tracing monitored by mass spectrometry revealed that the methyl group of m5U originated from S-adenosyl-l-methionine (SAM). Our study expanded the list of modifications occurring in mRNA of mammals. Future work on transcriptome-wide mapping of m5U will further uncover the functional roles of m5U in mRNA of mammals. The discovery of dynamic and reversible modifications in messenger RNA is opening new directions in RNA modification-mediated regulation of biological processes.![]()
Collapse
Affiliation(s)
- Qing-Yun Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Jun Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Cheng-Jie Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Yi Dai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Jiang-Hui Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Fei-Long Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| |
Collapse
|
25
|
Rafels-Ybern À, Torres AG, Camacho N, Herencia-Ropero A, Roura Frigolé H, Wulff TF, Raboteg M, Bordons A, Grau-Bove X, Ruiz-Trillo I, Ribas de Pouplana L. The Expansion of Inosine at the Wobble Position of tRNAs, and Its Role in the Evolution of Proteomes. Mol Biol Evol 2019; 36:650-662. [PMID: 30590541 DOI: 10.1093/molbev/msy245] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.
Collapse
Affiliation(s)
- Àlbert Rafels-Ybern
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Andrea Herencia-Ropero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Helena Roura Frigolé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Thomas F Wulff
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Marina Raboteg
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Xavier Grau-Bove
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain.,ICREA, Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.,ICREA, Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
27
|
Abstract
Current development of epitranscriptomics field requires efficient experimental protocols for precise mapping and quantification of various modified nucleotides in RNA. Despite important advances in the field during the last 10 years, this task is still extremely laborious and time-consuming, even when high-throughput analytical approaches are employed. Moreover, only a very limited subset of RNA modifications can be detected and only rarely be quantified by these powerful techniques. In the past, we developed and successfully applied alkaline fragmentation-based RiboMethSeq approach for mapping and precise quantification of multiple 2'-O-methylation residues in ribosomal RNA. Here we describe a RiboMethSeq protocol adapted for the analysis of bacterial and eukaryotic tRNA species, which also contain 2'-O-methylations at functionally important RNA regions.
Collapse
|
28
|
Yu YP, Tsung A, Liu S, Nalesnick M, Geller D, Michalopoulos G, Luo JH. Detection of fusion transcripts in the serum samples of patients with hepatocellular carcinoma. Oncotarget 2019; 10:3352-3360. [PMID: 31164957 PMCID: PMC6534357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma is one of the most lethal cancers in the United States. Early detection of the disease is crucial for reducing the mortality of this malignancy. Recently, we identified a panel of fusion genes present in several types of human cancers, including hepatocellular carcinoma. Among 8 fusion genes, MAN2A1-FER, TRMT11-GRIK2 and CCNH-C5orf30 appear most frequently in hepatocellular carcinoma samples. In this study, we showed that the fusion transcripts of MAN2A1-FER, CCNH-C5orf30 and SLC45A2-AMACR were detected in the serum samples of liver cancer patients as circulating cell-free RNA. The distributions of these gene fusion RNA fragments largely matched those of the primary HCC samples. In contrast, the sera of all healthy individuals free of human malignancies were shown to be negative for these fusion genes. These results suggest that gene fusion RNA is frequently shed from liver cancer cells. The detection of serum cell-free fusion transcripts may provide a new approach to aid in the diagnosis, follow-up or therapy of liver cancers.
Collapse
Affiliation(s)
- Yan-Ping Yu
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Allan Tsung
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA,2Current address: Department of Surgery, Ohio State University School of Medicine, Columbus, Ohio 43210, USA
| | - Silvia Liu
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Nalesnick
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David Geller
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - George Michalopoulos
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jian-Hua Luo
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
29
|
Yu YP, Tsung A, Liu S, Nalesnick M, Geller D, Michalopoulos G, Luo JH. Detection of fusion transcripts in the serum samples of patients with hepatocellular carcinoma. Oncotarget 2019. [DOI: 10.18632/oncotarget.26918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Yan-Ping Yu
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Allan Tsung
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Current address: Department of Surgery, Ohio State University School of Medicine, Columbus, Ohio 43210, USA
| | - Silvia Liu
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Nalesnick
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David Geller
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - George Michalopoulos
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jian-Hua Luo
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
Advani VM, Ivanov P. Translational Control under Stress: Reshaping the Translatome. Bioessays 2019; 41:e1900009. [PMID: 31026340 PMCID: PMC6541386 DOI: 10.1002/bies.201900009] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Indexed: 01/01/2023]
Abstract
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Collapse
Affiliation(s)
- Vivek M. Advani
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America
| |
Collapse
|
31
|
Modulation of YrdC promotes hepatocellular carcinoma progression via MEK/ERK signaling pathway. Biomed Pharmacother 2019; 114:108859. [PMID: 30978526 DOI: 10.1016/j.biopha.2019.108859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence suggested that YrdC involved in growth, telomere homeostasis, translation and the N6-threonylcarbamoylation (t6A) of tRNA was abnormally expressed in the progression of tumor. However, the role of YrdC in hepatocellular carcinoma remained elusive. Our study aimed to investigate the clinical significance and oncogenic phenotypes of YrdC in hepatocellular carcinoma, and to determine its related mechanism of this disease. With the usage of GEO datasets, we analyzed the expression of YrdC in hepatocellular carcinoma (HCC). Kaplan-Meier survival analysis was used to evaluate the prognostic significance of hepatocellular carcinoma patients in TCGA. Gain- and loss-of-function analyses in vitro of YrdC were also performed to evaluate its effects on oncogenic phenotypes and relevant signaling pathways. YrdC expression was not only dysregulated in hepatocellular carcinoma tissue but also related to the prognosis of patients with hepatocellular carcinoma. In addition, YrdC depletion suppressed the capability of proliferation, migration and invasion of huh7 cells, while there was opposite result for YrdC overexpression. Our data also unraveled that YrdC promoted the progression of HCC by activating MEK/ERK signaling pathways. Together, our findings indicated that YrdC was a potential prognosis marker for hepatocellular carcinoma, and therapeutic strategies targeting YrdC might hold promise in improving the treatment of hepatocellular carcinoma.
Collapse
|
32
|
de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, Bujnicki JM. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 2019; 47:2143-2159. [PMID: 30698754 PMCID: PMC6412123 DOI: 10.1093/nar/gkz011] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
tRNA are post-transcriptionally modified by chemical modifications that affect all aspects of tRNA biology. An increasing number of mutations underlying human genetic diseases map to genes encoding for tRNA modification enzymes. However, our knowledge on human tRNA-modification genes remains fragmentary and the most comprehensive RNA modification database currently contains information on approximately 20% of human cytosolic tRNAs, primarily based on biochemical studies. Recent high-throughput methods such as DM-tRNA-seq now allow annotation of a majority of tRNAs for six specific base modifications. Furthermore, we identified large gaps in knowledge when we predicted all cytosolic and mitochondrial human tRNA modification genes. Only 48% of the candidate cytosolic tRNA modification enzymes have been experimentally validated in mammals (either directly or in a heterologous system). Approximately 23% of the modification genes (cytosolic and mitochondrial combined) remain unknown. We discuss these 'unidentified enzymes' cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analysis shows that modification genes are highly expressed in proliferative tissues like testis and transformed cells, but scarcely in differentiated tissues, with the exception of the cerebellum. Our work provides a comprehensive up to date compilation of human tRNA modifications and their enzymes that can be used as a resource for further studies.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
- Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Carl G Mangleburg
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
- Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
33
|
tRNA modification and cancer: potential for therapeutic prevention and intervention. Future Med Chem 2019; 11:885-900. [PMID: 30744422 DOI: 10.4155/fmc-2018-0404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs (tRNAs) undergo extensive chemical modification within cells through the activity of tRNA methyltransferase enzymes (TRMs). Although tRNA modifications are dynamic, how they impact cell behavior after stress and during tumorigenesis is not well understood. This review discusses how tRNA modifications influence the translation of codon-biased transcripts involved in responses to oxidative stress. We further discuss emerging mechanistic details about how aberrant TRM activity in cancer cells can direct programs of codon-biased translation that drive cancer cell phenotypes. The studies reviewed here predict future preventative therapies aimed at augmenting TRM activity in individuals at risk for cancer due to exposure. They further predict that attenuating TRM-dependent translation in cancer cells may limit disease progression while leaving noncancerous cells unharmed.
Collapse
|
34
|
Dimitrova DG, Teysset L, Carré C. RNA 2'-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel) 2019; 10:E117. [PMID: 30764532 PMCID: PMC6409641 DOI: 10.3390/genes10020117] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Nm (2'-O-methylation) is one of the most common modifications in the RNA world. It has the potential to influence the RNA molecules in multiple ways, such as structure, stability, and interactions, and to play a role in various cellular processes from epigenetic gene regulation, through translation to self versus non-self recognition. Yet, building scientific knowledge on the Nm matter has been hampered for a long time by the challenges in detecting and mapping this modification. Today, with the latest advancements in the area, more and more Nm sites are discovered on RNAs (tRNA, rRNA, mRNA, and small non-coding RNA) and linked to normal or pathological conditions. This review aims to synthesize the Nm-associated human diseases known to date and to tackle potential indirect links to some other biological defects.
Collapse
Affiliation(s)
- Dilyana G Dimitrova
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Laure Teysset
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Clément Carré
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
35
|
Lant JT, Berg MD, Heinemann IU, Brandl CJ, O'Donoghue P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem 2019; 294:5294-5308. [PMID: 30643023 DOI: 10.1074/jbc.rev118.002982] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.
Collapse
Affiliation(s)
| | | | | | | | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
36
|
Vasilieva EN, Laptev IG, Sergiev PV, Dontsova OA. The Common Partner of Several Methyltransferases Modifying the Components of The Eukaryotic Translation Apparatus. Mol Biol 2018. [DOI: 10.1134/s0026893318060171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Ayadi L, Galvanin A, Pichot F, Marchand V, Motorin Y. RNA ribose methylation (2'-O-methylation): Occurrence, biosynthesis and biological functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:253-269. [PMID: 30572123 DOI: 10.1016/j.bbagrm.2018.11.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Methylation of riboses at 2'-OH group is one of the most common RNA modifications found in number of cellular RNAs from almost any species which belong to all three life domains. This modification was extensively studied for decades in rRNAs and tRNAs, but recent data revealed the presence of 2'-O-methyl groups also in low abundant RNAs, like mRNAs. Ribose methylation is formed in RNA by two alternative enzymatic mechanisms: either by stand-alone protein enzymes or by complex assembly of proteins associated with snoRNA guides (sno(s)RNPs). In that case one catalytic subunit acts at various RNA sites, the specificity is provided by base pairing of the sno(s)RNA guide with the target RNA. In this review we compile available information on 2'-OH ribose methylation in different RNAs, enzymatic machineries involved in their biosynthesis and dynamics, as well as on the physiological functions of these modified residues.
Collapse
Affiliation(s)
- Lilia Ayadi
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Adeline Galvanin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florian Pichot
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
38
|
Chang YH, Nishimura S, Oishi H, Kelly VP, Kuno A, Takahashi S. TRMT2A is a novel cell cycle regulator that suppresses cell proliferation. Biochem Biophys Res Commun 2018; 508:410-415. [PMID: 30502085 DOI: 10.1016/j.bbrc.2018.11.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 01/15/2023]
Abstract
During the maturation of transfer RNA (tRNA), a variety of chemical modifications can be introduced at specific nucleotide positions post-transcriptionally. 5-Methyluridine (m5U) is one of the most common and conserved modifications from eubacteria to eukaryotes. Although TrmA protein in Escherichia coli and Trm2p protein in Saccharomyces cerevisiae, which are responsible for the 5-methylation of uracil at position 54 (m5U54) on tRNA, are well characterized, the biological function of the U54 methylation responsible enzyme in mammalian species remains largely unexplored. Here, we show that the mammalian tRNA methyltransferase 2 homolog A (TRMT2A) protein harbors an RNA recognition motif in the N-terminus and the conserved uracil-C5-methyltransferase domain of the TrmA family in the C-terminus. TRMT2A predominantly localizes to the nucleus in HeLa cells. TRMT2A-overexpressing cells display decreased cell proliferation and altered DNA content, while TRMT2A-deficient cells exhibit increased growth. Thus, our results reveal the inhibitory role of TRMT2A on cell proliferation and cell cycle control, providing evidence that TRMT2A is a candidate cell cycle regulator in mammals.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, Japan
| | - Susumu Nishimura
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Ireland
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan; Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
39
|
Catalytic crosslinking-based methods for enzyme-specified profiling of RNA ribonucleotide modifications. Methods 2018; 156:60-65. [PMID: 30308313 DOI: 10.1016/j.ymeth.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Well over a hundred types of naturally occurring covalent modifications can be made to ribonucleotides in RNA molecules. Moreover, several types of such modifications are each known to be catalysed by multiple enzymes which largely appear to modify distinct sites within the cellular RNA. In order to aid functional investigations of such multi-enzyme RNA modification types in particular, it is important to determine which enzyme is responsible for catalysing modification at each site. Two methods, Aza-IP and methylation-iCLIP, were developed and used to map genome-wide locations of methyl-5-cytosine (m5C) RNA modifications inherently in an enzyme specific context. Though the methods are quite distinct, both rely on capturing catalytic intermediates of RNA m5C methyltransferases in a state where the cytosine undergoing methylation is covalently crosslinked to the enzyme. More recently the fundamental methylation-iCLIP principle has also been applied to map methyl-2-adenosine sites catalysed by the E. coli RlmN methylsynthase. Here I describe the ideas on which the two basic methods hinge, and summarise what has been achieved by them thus far. I also discuss whether and how such principles may be further exploited for profiling of other RNA modification types, such as methyl-5-uridine and pseudouridine.
Collapse
|
40
|
Huang SQ, Sun B, Xiong ZP, Shu Y, Zhou HH, Zhang W, Xiong J, Li Q. The dysregulation of tRNAs and tRNA derivatives in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:101. [PMID: 29743091 PMCID: PMC5944149 DOI: 10.1186/s13046-018-0745-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022]
Abstract
Transfer RNAs (tRNAs), traditionally considered to participate in protein translation, were interspersed in the entire genome. Recent studies suggested that dysregulation was observed in not only tRNAs, but also tRNA derivatives generated by the specific cleavage of pre- and mature tRNAs in the progression of cancer. Accumulating evidence had identified that certain tRNAs and tRNA derivatives were involved in proliferation, metastasis and invasiveness of cancer cell, as well as tumor growth and angiogenesis in several malignant human tumors. This paper reviews the importance of the dysregulation of tRNAs and tRNA derivatives during the development of cancer, such as breast cancer, lung cancer, and melanoma, aiming at a better understanding of the tumorigenesis and providing new ideas for the treatment of these cancers.
Collapse
Affiliation(s)
- Shi-Qiong Huang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Bao Sun
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Zong-Ping Xiong
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Jing Xiong
- Department of gynaecology and obstetrics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, 410078, People's Republic of China.
| | - Qing Li
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
41
|
Lentini JM, Ramos J, Fu D. Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the γ-toxin endonuclease. RNA (NEW YORK, N.Y.) 2018; 24:749-758. [PMID: 29440318 PMCID: PMC5900570 DOI: 10.1261/rna.065581.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The post-transcriptional modification of tRNA at the wobble position is a universal process occurring in all domains of life. In eukaryotes, the wobble uridine of particular tRNAs is transformed to the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification which is critical for proper mRNA decoding and protein translation. However, current methods to detect mcm5s2U are technically challenging and/or require specialized instrumental expertise. Here, we show that γ-toxin endonuclease from the yeast Kluyveromyces lactis can be used as a probe for assaying mcm5s2U status in the tRNA of diverse eukaryotic organisms ranging from protozoans to mammalian cells. The assay couples the mcm5s2U-dependent cleavage of tRNA by γ-toxin with standard molecular biology techniques such as northern blot analysis or quantitative PCR to monitor mcm5s2U levels in multiple tRNA isoacceptors. The results gained from the γ-toxin assay reveals the evolutionary conservation of the mcm5s2U modification across eukaryotic species. Moreover, we have used the γ-toxin assay to verify uncharacterized eukaryotic Trm9 and Trm112 homologs that catalyze the formation of mcm5s2U. These findings demonstrate the use of γ-toxin as a detection method to monitor mcm5s2U status in diverse eukaryotic cell types for cellular, genetic, and biochemical studies.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
42
|
Dewe JM, Fuller BL, Lentini JM, Kellner SM, Fu D. TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol 2017; 37:e00214-17. [PMID: 28784718 PMCID: PMC5640816 DOI: 10.1128/mcb.00214-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
Collapse
Affiliation(s)
- Joshua M Dewe
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin L Fuller
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | | | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
43
|
Krishnamohan A, Jackman JE. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10. Nucleic Acids Res 2017; 45:9019-9029. [PMID: 28911116 PMCID: PMC5587797 DOI: 10.1093/nar/gkx620] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
The tRNA m1G9 methyltransferase (Trm10) is a member of the SpoU-TrmD (SPOUT) superfamily of methyltransferases, and Trm10 homologs are widely conserved throughout Eukarya and Archaea. Despite possessing the trefoil knot characteristic of SPOUT enzymes, Trm10 does not share the same quaternary structure or key sequences with other members of the SPOUT family, suggesting a novel mechanism of catalysis. To investigate the mechanism of m1G9 methylation by Trm10, we performed a biochemical and kinetic analysis of Trm10 and variants with alterations in highly conserved residues, using crystal structures solved in the absence of tRNA as a guide. Here we demonstrate that a previously proposed general base residue (D210 in Saccharomyces cerevisiae Trm10) is not likely to play this suggested role in the chemistry of methylation. Instead, pH-rate analysis suggests that D210 and other conserved carboxylate-containing residues at the active site collaborate to establish an active site environment that promotes a single ionization that is required for catalysis. Moreover, Trm10 does not depend on a catalytic metal ion, further distinguishing it from the other known SPOUT m1G methyltransferase, TrmD. These results provide evidence for a non-canonical tRNA methyltransferase mechanism that characterizes the Trm10 enzyme family.
Collapse
Affiliation(s)
- Aiswarya Krishnamohan
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Rafels-Ybern À, Torres AG, Grau-Bove X, Ruiz-Trillo I, Ribas de Pouplana L. Codon adaptation to tRNAs with Inosine modification at position 34 is widespread among Eukaryotes and present in two Bacterial phyla. RNA Biol 2017; 15:500-507. [PMID: 28880718 DOI: 10.1080/15476286.2017.1358348] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The modification of adenosine to inosine at position 34 of tRNA anticodons has a profound impact upon codon-anticodon recognition. In bacteria, I34 is thought to exist only in tRNAArg, while in eukaryotes the modification is present in eight different tRNAs. In eukaryotes, the widespread use of I34 strongly influenced the evolution of genomes in terms of tRNA gene abundance and codon usage. In humans, codon usage indicates that I34 modified tRNAs are preferred for the translation of highly repetitive coding sequences, suggesting that I34 is an important modification for the synthesis of proteins of highly skewed amino acid composition. Here we extend the analysis of distribution of codons that are recognized by I34 containing tRNAs to all phyla known to use this modification. We find that the preference for codons recognized by such tRNAs in genes with highly biased codon compositions is universal among eukaryotes, and we report that, unexpectedly, some bacterial phyla show a similar preference. We demonstrate that the genomes of these bacterial species contain previously undescribed tRNA genes that are potential substrates for deamination at position 34.
Collapse
Affiliation(s)
- Àlbert Rafels-Ybern
- a Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac, Barcelona, Catalonia , Spain
| | - Adrian Gabriel Torres
- a Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac, Barcelona, Catalonia , Spain
| | - Xavier Grau-Bove
- b Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra) , Barcelona, Catalonia , Spain.,c Departament de Genètica, Microbiología i Estadística , Universitat de Barcelona , Catalonia , Spain
| | - Iñaki Ruiz-Trillo
- b Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra) , Barcelona, Catalonia , Spain.,c Departament de Genètica, Microbiología i Estadística , Universitat de Barcelona , Catalonia , Spain.,d ICREA , Pg. Lluís Companys 23, Barcelona , Catalonia , Spain
| | - Lluís Ribas de Pouplana
- a Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac, Barcelona, Catalonia , Spain.,d ICREA , Pg. Lluís Companys 23, Barcelona , Catalonia , Spain
| |
Collapse
|
45
|
Bednářová A, Hanna M, Durham I, VanCleave T, England A, Chaudhuri A, Krishnan N. Lost in Translation: Defects in Transfer RNA Modifications and Neurological Disorders. Front Mol Neurosci 2017; 10:135. [PMID: 28536502 PMCID: PMC5422465 DOI: 10.3389/fnmol.2017.00135] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 11/13/2022] Open
Abstract
Transfer RNAs (tRNAs) are key molecules participating in protein synthesis. To augment their functionality they undergo extensive post-transcriptional modifications and, as such, are subject to regulation at multiple levels including transcription, transcript processing, localization and ribonucleoside base modification. Post-transcriptional enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and influences specific anticodon-codon interactions and regulates translation, its efficiency and fidelity. This phenomenon of nucleoside modification is most remarkable and results in a rich structural diversity of tRNA of which over 100 modified nucleosides have been characterized. Most often these hypermodified nucleosides are found in the wobble position of tRNAs, where they play a direct role in codon recognition as well as in maintaining translational efficiency and fidelity, etc. Several recent studies have pointed to a link between defects in tRNA modifications and human diseases including neurological disorders. Therefore, defects in tRNA modifications in humans need intensive characterization at the enzymatic and mechanistic level in order to pave the way to understand how lack of such modifications are associated with neurological disorders with the ultimate goal of gaining insights into therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Bednářová
- Department of Biochemistry and Physiology, Institute of Entomology, Biology Centre, Academy of SciencesČeské Budějovice, Czechia.,Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| | - Marley Hanna
- Molecular Biosciences Program, Arkansas State UniversityJonesboro, AR, USA
| | - Isabella Durham
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State UniversityMississippi State, MS, USA
| | - Tara VanCleave
- Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| | - Alexis England
- Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| | | | - Natraj Krishnan
- Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| |
Collapse
|
46
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
47
|
Barroso M, Handy DE, Castro R. The Link Between Hyperhomocysteinemia and Hypomethylation. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817698994] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Madalena Barroso
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rita Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
48
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
49
|
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules 2017; 7:biom7010023. [PMID: 28264529 PMCID: PMC5372735 DOI: 10.3390/biom7010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The existence of SpoU-TrmD (SPOUT) RNA methyltransferase superfamily was first predicted by bioinformatics. SpoU is the previous name of TrmH, which catalyzes the 2’-O-methylation of ribose of G18 in tRNA; TrmD catalyzes the formation of N1-methylguanosine at position 37 in tRNA. Although SpoU (TrmH) and TrmD were originally considered to be unrelated, the bioinformatics study suggested that they might share a common evolution origin and form a single superfamily. The common feature of SPOUT RNA methyltransferases is the formation of a deep trefoil knot in the catalytic domain. In the past decade, the SPOUT RNA methyltransferase superfamily has grown; furthermore, knowledge concerning the functions of their modified nucleosides in tRNA has also increased. Some enzymes are potential targets in the design of anti-bacterial drugs. In humans, defects in some genes may be related to carcinogenesis. In this review, recent findings on the tRNA methyltransferases with a SPOUT fold and their methylated nucleosides in tRNA, including classification of tRNA methyltransferases with a SPOUT fold; knot structures, domain arrangements, subunit structures and reaction mechanisms; tRNA recognition mechanisms, and functions of modified nucleosides synthesized by this superfamily, are summarized. Lastly, the future perspective for studies on tRNA modification enzymes are considered.
Collapse
|
50
|
Next-Generation Sequencing-Based RiboMethSeq Protocol for Analysis of tRNA 2'-O-Methylation. Biomolecules 2017; 7:biom7010013. [PMID: 28208788 PMCID: PMC5372725 DOI: 10.3390/biom7010013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Analysis of RNA modifications by traditional physico-chemical approaches is labor intensive, requires substantial amounts of input material and only allows site-by-site measurements. The recent development of qualitative and quantitative approaches based on next-generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA species. The Illumina sequencing-based RiboMethSeq protocol was initially developed and successfully applied for mapping of ribosomal RNA (rRNA) 2′-O-methylations. This method also gives excellent results in the quantitative analysis of rRNA modifications in different species and under varying growth conditions. However, until now, RiboMethSeq was only employed for rRNA, and the whole sequencing and analysis pipeline was only adapted to this long and rather conserved RNA species. A deep understanding of RNA modification functions requires large and global analysis datasets for other important RNA species, namely for transfer RNAs (tRNAs), which are well known to contain a great variety of functionally-important modified residues. Here, we evaluated the application of the RiboMethSeq protocol for the analysis of tRNA 2′-O-methylation in Escherichia coli and in Saccharomyces cerevisiae. After a careful optimization of the bioinformatic pipeline, RiboMethSeq proved to be suitable for relative quantification of methylation rates for known modified positions in different tRNA species.
Collapse
|