1
|
Baeza-Morales A, Medina-García M, Martínez-Peinado P, Pascual-García S, Pujalte-Satorre C, López-Jaén AB, Martínez-Espinosa RM, Sempere-Ortells JM. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1060. [PMID: 39334719 PMCID: PMC11428676 DOI: 10.3390/antiox13091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins. The review also explores the pro-oxidant function of carotenoids within cancer cells. In fact, although their overall contribution to cellular antioxidant defences is well known and significant, some carotenoids can exhibit pro-oxidant effects under certain conditions and are able to elevate reactive oxygen species (ROS) levels in tumoural cells, triggering mitochondrial pathways that would lead to cell death. The final balance between their antioxidant and pro-oxidant activities depends on several factors, including the specific carotenoid, its concentration and the redox environment of the cell. Clinical trials are discussed, highlighting the conflicting results of carotenoids in cancer treatment and the importance of personalized approaches. Emerging research on rare carotenoids like bacterioruberin showcases their superior antioxidant capacity and selective cytotoxicity against aggressive cancer subtypes, such as triple-negative breast cancer. Future directions include innovative delivery systems, novel combinations and personalized treatments, aiming to enhance the therapeutic potential of carotenoids. This review highlights the promising yet complex landscape of carotenoid-based cancer therapies, calling for continued research and clinical exploration.
Collapse
Affiliation(s)
- Andrés Baeza-Morales
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Miguel Medina-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Pascual Martínez-Peinado
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Sandra Pascual-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Carolina Pujalte-Satorre
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Ana Belén López-Jaén
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - José Miguel Sempere-Ortells
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| |
Collapse
|
2
|
Khaksar S, Kiarostami K, Ramdan M. Effect of Rosmarinic Acid on Cell Proliferation, Oxidative Stress, and Apoptosis Pathways in an Animal Model of Induced Glioblastoma Multiforme. Arch Med Res 2024; 55:103005. [PMID: 38759277 DOI: 10.1016/j.arcmed.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND In brain tumors, the complexity of the pathophysiological processes such as oxidative stress, cell proliferation, angiogenesis, and apoptosis have seriously challenged the definitive treatment. Rosmarinic acid (RA), as a polyphenolic compound, has been found to prevent tumor progression in some aggressive cancers. This study was designed to evaluate the anticancer effects of RA on brain tumors. METHOD Rats were divided into six groups. Implantation of C6 glioma cells was carried out in the caudate nucleus of the right hemisphere. RA at doses of 5, 10, and 20 mg/kg (i.p.) was administered to the treatment groups for seven days. Tumor volume (by MRI imaging), locomotor ability, survival time, histological alterations (by H & E staining), expression of p53 and p21 mRNAs (by RT-PCR), activities of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT] by assay kits), expression of caspase-3 and VEGF (by immunohistochemical analysis), and TUNEL-positive cells (by tunnel staining) were analyzed. RESULTS The results indicated that the RA at a dose of 20 mg/kg reduced the tumor volume, prolonged survival time, increased p53 and p21 mRNAs, attenuated SOD and CAT activities in tumor tissue, elevated caspase-3, and increased the number of TUNEL-positive cells. Furthermore, histological analysis revealed less invasion of tumor cells into the normal parenchyma in rats treated with RA (20 mg/kg). CONCLUSION These findings provide evidence that the ability of RA to reduce tumor volume could be related to factors that modulate oxidative stress (SOD and CAT enzymes), cell proliferation (p53 and p21), and apoptosis (caspase-3).
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahmoud Ramdan
- Department of Biology, Faculty of Science, Al-Furat University, Deir-ez-Zor, Syrian Arab Republic
| |
Collapse
|
3
|
Jafarisani M, Hashemi SA, Faridi N, Mousavi MF, Bathaie SZ. Cadmium nanocluster as a safe nanocarrier: biodistribution in BALB/c mice and application to carry crocin to breast cancer cell lines. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:522-542. [PMID: 38966182 PMCID: PMC11220307 DOI: 10.37349/etat.2024.00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 07/06/2024] Open
Abstract
Aim Metal nanoclusters are emerging nanomaterials applicable for drug delivery. Here, the toxicity and oxidative stress induction of divalent cationic cadmium (Cd2+) was compared with a Cd in the form of nanocluster. Then, it was used for targeted drug delivery into breast cancer cell lines. Methods Using a green chemistry route, a Cd nanocluster (Cd-NC) was synthesized based on bovine serum albumin. After characterization, its genotoxicity and oxidative stress induction were studied in both in vitro and in vivo. After that, it was conjugated with hyaluronic acid (HA). The efficiency of hyaloronized-Cd-CN (HA-Cd-NC) for loading and releasing crocin (Cro), an anticancer phytochemical, was studied. Finally, it was applied for cell death induction in a panel of breast cancer cell lines. Results The comet assay results indicated that, unlike Cd2+ and potassium permanganate (KMnO4), no genotoxicity and oxidative stress was induced by Cd-NC in vitro. Then, the pharmacokinetics of this Cd-NC was studied in vivo. The data showed that Cd-NC has accumulated in the liver and excreted from the feces of mice. Unlike Cd2+, no toxicity and oxidative stress were induced by this Cd-NC in animal tissues. Then, the Cd-NC was targeted toward breast cancer cells by adding HA, a ligand for the CD44 cell surface receptor. After that, Cro was loaded on HA-Cd-NC and it was used for the treatment of a panel of human breast cancer cell lines with varying degrees of CD44. The half-maximal drug inhibitory concentration (IC50) of Cro was significantly decreased when it was loaded on HA-Cd-NC, especially in MDA-MB-468 with a higher degree of CD44 at the surface. These results indicate the higher toxicity of Cro toward breast cancers when carried out by HA-Cd-NC. Conclusions The Cd-NC was completely safe and is a promising candidate for delivering anticancer drugs/phytochemicals into the targeted breast tumors.
Collapse
Affiliation(s)
- Moslem Jafarisani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - S. Ali Hashemi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - Mir F. Mousavi
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University (TMU), Tehran 14155-331, Iran
- Department of Chemistry, Faculty of basic Sciences, Tarbiat Modares University (TMU), Tehran 14115-175, Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| |
Collapse
|
4
|
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1467. [PMID: 38891276 PMCID: PMC11174376 DOI: 10.3390/plants13111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal 191201, India;
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
Yaribeygi H, Maleki M, Rashid-Farrokhi F, Abdullahi PR, Hemmati MA, Jamialahmadi T, Sahebkar A. Modulating effects of crocin on lipids and lipoproteins: Mechanisms and potential benefits. Heliyon 2024; 10:e28837. [PMID: 38617922 PMCID: PMC11015417 DOI: 10.1016/j.heliyon.2024.e28837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Dyslipidemia poses a significant risk to cardiovascular health in both diabetic and non-diabetic individuals. Therefore, it is crucial to normalize lipid homeostasis in order to prevent or minimize complications associated with dyslipidemia. However, pharmacological interventions for controlling lipid metabolism often come with adverse effects. As an alternative, utilizing herbal-based agents, which typically have fewer side effects, holds promise. Crocin, a naturally occurring nutraceutical, has been shown to impact various intracellular pathways, reduce oxidative stress, and alleviate inflammatory processes. Recent evidence suggests that crocin may also confer lipid-related benefits and potentially contribute to the normalization of lipid homeostasis. However, the specific advantages and the cellular pathways involved are not yet well understood. In this review, we present the latest findings regarding the lipid benefits of crocin, which could be instrumental in preventing or reducing disorders associated with dyslipidemia. Additionally, we explore the potential cellular mechanisms and pathways that mediate these lipid benefits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farin Rashid-Farrokhi
- CKD Research Centre, Shahid Beheshti University of Medical Science, IranNephrology Department, Masih Daneshvari Hospital, Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Disease, Tehran, Iran
| | | | - Mohammad Amin Hemmati
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Jia Y, Yang H, Yu J, Li Z, Jia G, Ding B. Crocin enhances the sensitivity to paclitaxel in human breast cancer cells by reducing BIRC5 expression. Chem Biol Drug Des 2024; 103:e14467. [PMID: 38661582 DOI: 10.1111/cbdd.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 04/26/2024]
Abstract
Paclitaxel (PTX) is one of the first-line chemotherapeutic agents for treating breast cancer. However, PTX resistance remains a major hurdle in breast cancer therapy. Crocin, the main chemical constituent of saffron, shows anti-cancer activity against various types of cancer. However, the effect of crocin on the resistance of PTX in breast cancer is still unknown. CCK-8 and TUNEL assays were employed to detect cell viability and apoptosis, respectively. The targets of crocin were predicted using HERB database and the targets associated with breast cancer were acquired using GEPIA database. The Venn diagram was utilized to identify the common targets between crocin and breast cancer. Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) expression was detected by qRT-PCR and western blot analysis. The correlation between BIRC5 expression and survival was analyzed by Kaplan-Meier plotter and PrognoScan databases. Our data suggested that crocin aggravated PTX-induced decrease of viability and increase of apoptosis in MCF-7 and MCF-7/PTX cells. BIRC5 was identified as the target of crocin against breast cancer. Crocin inhibited BIRC5 expression in MCF-7 and MCF-7/PTX cells. BIRC5 is overexpressed in breast cancer tissues, as well as PTX-sensitive and PTX-resistant breast cancer cells. BIRC5 expression is related to the poor survival of patients with breast cancer. Depletion of BIRC5 strengthened PTX-induced viability reduction and promotion of apoptosis in MCF-7 and MCF-7/PTX cells. Moreover, BIRC5 overexpression reversed the inhibitory effect of crocin on PTX resistance in breast cancer cells. In conclusion, crocin enhanced the sensitivity of PTX in breast cancer cells partially through inhibiting BIRC5 expression.
Collapse
Affiliation(s)
- Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
| |
Collapse
|
7
|
Ebrahimi N, Javadinia SA, Salek R, Fanipakdel A, Sepahi S, Dehghani M, Valizadeh N, Mohajeri SA. Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Concurrent Use of Crocin During Chemoradiation for Esophageal Squamous Cell Carcinoma. Cancer Invest 2024; 42:155-164. [PMID: 38385429 DOI: 10.1080/07357907.2024.2319754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Crocin is the major active carotenoid of saffron (Crocus sativus L.). Its pluripotent effects have led to a growing body of literature investigating its antitumor properties as well as its diverse potentials for mood stabilization, normal tissue protection, and inflammation reduction; However, there is a gap in clinical trials testing this substance in cancer patients. In this randomized, double-blind, placebo-controlled clinical trial, patients with newly diagnosed esophageal squamous cell carcinoma were randomly assigned to either 30 mg/day of crocin or placebo, prescribed during the neoadjuvant chemo-radiotherapy. The primary endpoints were pathological response and toxicity, and secondary endpoints were depression and anxiety levels and survival analysis.
Collapse
Affiliation(s)
- Nima Ebrahimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Javadinia
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Roham Salek
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Fanipakdel
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sepahi
- Food and Beverages Safety Research Center, Urmia University of Medical sciences, Urmia, Iran
| | - Mansoureh Dehghani
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Valizadeh
- Department of Radiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Saadat S, Ghasemi Z, Memarzia A, Behrouz S, Aslani MR, Boskabady MH. An overview of pharmacological effects of Crocus sativous and its constituents. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:391-417. [PMID: 38419885 PMCID: PMC10897555 DOI: 10.22038/ijbms.2023.73410.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 03/02/2024]
Abstract
Crocus sativus L. was used for the treatment of a wide range of disorders in traditional medicine. Due to the extensive protective and treatment properties of C. sativus and its constituents in various diseases, the purpose of this review is to collect a summary of its effects, on experimental studies, both in vitro and in vivo. Databases such as PubMed, Science Direct, and Scopus were explored until January 2023 by employing suitable keywords. Several investigations have indicated that the therapeutic properties of C. sativus may be due to its anti-oxidant and anti-inflammatory effects on the nervous, cardiovascular, immune, and respiratory systems. Further research has shown that its petals also have anticonvulsant properties. Pharmacological studies have shown that crocetin and safranal have anti-oxidant properties and through inhibiting the release of free radicals lead to the prevention of disorders such as tumor cell proliferation, atherosclerosis, hepatotoxicity, bladder toxicity, and ethanol induced hippocampal disorders. Numerous studies have been performed on the effect of C. sativus and its constituents in laboratory animal models under in vitro and in vivo conditions on various disorders. This is necessary but not enough and more clinical trials are needed to investigate unknown aspects of the therapeutic properties of C. sativus and its main constituents in different disorders.
Collapse
Affiliation(s)
- Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- These authors contributed equally to this work
| | - Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- These authors contributed equally to this work
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Lung Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Bao X, Hu J, Zhao Y, Jia R, Zhang H, Xia L. Advances on the anti-tumor mechanisms of the carotenoid Crocin. PeerJ 2023; 11:e15535. [PMID: 37404473 PMCID: PMC10315134 DOI: 10.7717/peerj.15535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
Saffron is located in the upper part of the crocus stigma of iridaceae, which has a long history of medicinal use. Crocin (molecular formula C44H64O24) is a natural floral glycoside ester compound extracted from saffron, which is a type carotenoid. Modern pharmacological studies have shown that crocin has multiple therapeutic effects including anti-inflammatory, anti-oxidant, anti-hyperlipidemic and anti-stone effects. In recent years, crocin has been widely noticed due to its considerable anti-tumor effects manifested by the induction of tumor cell apoptosis, inhibition of tumor cell proliferation, inhibition of tumor cell invasion and metastasis, enhancement of chemotherapy sensitivity and improvement of immune status. The anti-tumor effects have been shown in various malignant tumors such as gastric cancer, liver cancer, cervical cancer, breast cancer and colorectal cancer. In this review, we compiled recent studies on the anti-tumor effects of crocin and summarized its anti-tumor mechanism for developing ideas of treating malignancies and exploring anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhua Hu
- Shandong Provincial Hospital, Jinan, China
| | - Yan Zhao
- The Third Hospital of Jinan, Jinan, China
| | - Ruixue Jia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Lei Xia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Tang Y, Yang H, Yu J, Li Z, Xu Q, Xu Q, Jia G, Sun N. Network pharmacology-based prediction and experimental verification of the involvement of the PI3K/Akt pathway in the anti-thyroid cancer activity of crocin. Arch Biochem Biophys 2023; 743:109643. [PMID: 37211223 DOI: 10.1016/j.abb.2023.109643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Crocin, a unique water-soluble carotenoid extracted from saffron, is known to exert anticancer activity against various cancer types, including thyroid cancer (TC). However, the detailed mechanism underlying the anticancer effect of crocin in TC needs further exploration. Targets of crocin and targets associated with TC were acquired from public databases. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using DAVID. Cell viability and proliferation were assessed using MMT and EdU incorporation assays, respectively. Apoptosis was assessed using TUNEL and caspase-3 activity assays. The effect of crocin on phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) was explored by western blot analysis. A total of 20 overlapping targets were identified as candidate targets of crocin against TC. GO analysis showed that these overlapping genes were significantly enriched in the positive regulation of cell proliferation. KEGG results showed that the PI3K/Akt pathway was involved in the effect of crocin against TC. Crocin treatment inhibited cell proliferation and promoted apoptosis in TC cells. Moreover, we found that crocin inhibited the PI3K/Akt pathway in TC cells. 740Y-P treatment reversed the effects of crocin on TC cells. In conclusion, crocin suppressed proliferation and elicited apoptosis in TC cells via inactivation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yan Tang
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, Henan, 473065, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China.
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Quanxiao Xu
- Department of Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Qiu Xu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Na Sun
- Department of Invasive Technology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223302, China
| |
Collapse
|
11
|
Khaksar S, Kiarostami K, Alinaghi S. The Effects of Methanol Extracts of Hyssopus officinalis on Model of Induced Glioblastoma Multiforme (GBM) in Rats. J Mol Neurosci 2022; 72:2045-2066. [PMID: 35963984 DOI: 10.1007/s12031-022-02058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022]
Abstract
Given the complexity of pathophysiological processes of brain tumors, ineffective therapies, and high mortality rate, new therapeutic options with less toxicity are necessary. Hyssopus officinalis (hyssop) is an aromatic plant with important biological activities. The aim of this study is to assess the anti-cancer effect of hyssop extract on damages of glioblastoma multiforme. In this study, total flavonoids, phenolic content, and quantification of phenolic compound of hyssop extracts were analyzed. In vitro antioxidant properties of hyssop extract were also examined. In addition, cell viability, apoptosis, and cell cycle were evaluated in C6 glioma cell culture. In vivo, the rats were divided randomly into four main groups: intact, control, vehicle, and treatment groups. 1 × 106 C6 rat glioma cells were implanted into the right caudate nucleus of the rat's brain. The treatment group received the methanol extract of hyssop (100 mg/kg) for 7 days. Evolution of locomotor activity, tumor volume, survival rate, activities of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), vascular endothelial growth factor (VEGF) expression, TUNEL-positive cells, p53 and p21 mRNA expression, and histological alterations were performed. The results showed that the methanol extract of hyssop increased the apoptosis and reduced the cell division of C6 glioma cells in cell culture. Moreover, methanol extract decreased the tumor volume and prolonged survival. Also, the activity of SOD and CAT enzymes was reduced in tumor tissue and enhanced in surrounding tissue. TUNEL-positive cells were increased in methanol extract of hyssop group. The expression of p53 and p21 mRNA was upregulated in the treatment group. Moreover, the histological analysis indicated a considerable decrease in invasion of tumor cells and inflammation in the hyssop-treated rats. According to the achieved results, it can be stated that hyssop has sufficient potential to inhibit damage of brain tumors, at least in part, by affecting the oxidative stress and cell proliferation pathways.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Shahrzad Alinaghi
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
12
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11061074. [PMID: 35739971 PMCID: PMC9220052 DOI: 10.3390/antiox11061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
Collapse
|
15
|
Mehmood Y, Anwar F, Saleem U, Hira S, Ahmad B, Bashir M, Imtiaz MT, Najm S, Ismail T. The anti-cancer potential of 2,4,6 tris-methyphenylamino1,3,5-triazine compound against mammary glands cancer: Via down-regulating the hormonal, inflammatory mediators, and oxidative stress. Life Sci 2021; 285:119994. [PMID: 34592236 DOI: 10.1016/j.lfs.2021.119994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
AIM OF THE STUDY Breast cancer is caused by abnormal growth of the cells and progressed due to the over-expression of estrogen (ER) and progesterone (PR). The current study was designed to evaluate the anti-tumor activity of 2,4,6 tris-methyphenylamino1,3,5-triazine compound (MPAT) in N-nitroso, N-methyl urea (NMU)-induced mammary gland cancer. METHODS Molecular docking and in-vitro studies were conducted before the in-vivo analysis. Female Albino rats were divided into 5 groups (n = 6). Group I received Carboxymethylcellulose (CMC) (1 mL/100 g). Group II (diseased group) received NMU 50 mg/kg. Group III (standard group) received tamoxifen (5 mg/kg). Group IV-V received MPAT at doses of 30 and 60 mg/kg respectively. All groups received NMU intraperitoneally except the control group at 3 weeks intervals for 12 weeks. After 12 weeks of NMU dosing, MPAT was given for 15 consecutive days. Biochemical, oxidative stress markers, hormonal profile, and inflammatory mediators were analyzed. KEY FINDINGS MPAT showed significant interaction with the selected targets in docking studies. An over-expression of ER and PR was observed in NMU-treated rats which were restored significantly after MPAT administration. Nitrite and MDA levels were high in the diseased group and MPAT treatment attenuated the oxidative damage after treatment. Antioxidants such as superoxide dismutase (SOD), Catalase (CAT), total sulfhydryl (TSH), glutathione (GSH), and Lactate dehydrogenase (LDH) values were low in NMU-treated rats. SIGNIFICANCE This study concluded that MPAT can be used as an anticancer agent due to its significant effects on down-regulating the hormonal profile and oxidative stress markers.
Collapse
Affiliation(s)
- Yumna Mehmood
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Manal Bashir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Tayyab Imtiaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Saima Najm
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore 55150, Pakistan
| | - Tariq Ismail
- COMSAT University, Department of Pharmacy, Abbottabad, Pakistan.
| |
Collapse
|
16
|
Salek R, Dehghani M, Mohajeri SA, Talaei A, Fanipakdel A, Javadinia SA. Amelioration of anxiety, depression, and chemotherapy related toxicity after crocin administration during chemotherapy of breast cancer: A double blind, randomized clinical trial. Phytother Res 2021; 35:5143-5153. [PMID: 34164855 DOI: 10.1002/ptr.7180] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023]
Abstract
The effects of saffron (Crocus sativus L.) on mood disorders have already been established. More recently, its anti-neoplastic effects have provoked a great attention. This study aims to assess the effects of crocin administration during doxorubicin-based chemotherapy of breast cancer on anxiety, depression, and chemotherapy toxicity profile. Seventy-two patients with non-metastatic Her2/neu positive or triple negative breast cancer were enrolled and randomly assigned to receive either 30 mg/day of crocin or placebo during chemotherapy [2:2]. Beck's Depression and Anxiety Inventories were used at baseline and end of the trial. In addition, the ECOG Common Toxicity Criteria were applied to assess chemotherapy side-effects. After the intervention, the degree of anxiety and depression decreased significantly in the crocin group (p = .001 for both) and increased significantly in the placebo-group (p = .006 and p = .036, respectively). There were significantly higher grade II-IV leukopenia (47.2% vs. 19.4%, p = .012) in the crocin group, and grade II-IV hypersensitivity-reaction (30.6% vs. 5.6%, p = .006) in addition to neurological disorders (66.7% vs. 41.7%, p = .03) in the placebo-group. The results indicate that using crocin during chemotherapy in patients with breast cancer has ameliorated anxiety and depression. Moreover, leucopenia increased whereas hypersensitivity reaction and neurological disorders decreased in the crocin group. In addition, a trend toward survival improvement was observed, which is going to be investigated on longer follow up.
Collapse
Affiliation(s)
- Roham Salek
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoureh Dehghani
- Consultant Physician, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Talaei
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Fanipakdel
- Cancer Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
17
|
Kammath AJ, Nair B, P S, Nath LR. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 2021; 45:e13285. [PMID: 32524639 DOI: 10.1111/jfbc.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Spices are dietary agents with immense potential for cancer chemo-prevention. A wide variety of spices are extensively used as food flavoring agents which possess potent antioxidant, anti-inflammatory, and anticancer properties due to the presence of certain bio-active compounds in them. In vitro, in vivo studies and clinical trials of selected spices against various types of cancer are being specified in this review. Effect of certain putative dietary spices namely turmeric, clove, garlic, ginger, fennel, black cumin, cinnamon, pepper, saffron, rosemary, and chilli along with its role in cancer are being discussed. Literature search was conducted through PubMed, Google scholar, Science direct, and Scopus using the keywords "spice," "cancer," "natural medicine," "herbal compound," "bioactive compounds." About 4,000 published articles and 127 research papers were considered to grab the brief knowledge on spices and their anticancer potential on a predefined inclusion and exclusion criteria. PRACTICAL APPLICATION: Historically, spices and herbs are known for its traditional flavor, odor, and medicinal properties. Intensified risk of chronic and pervasive clinical conditions and increased cost of advanced drug treatments have developed a keen interest among researchers to explore the miscellaneous properties of herbal spices. Cancer is one of the deleterious causes of mortality affecting a huge number of populations worldwide. Arrays of cancer treatments including surgery, chemotherapy, and radiation therapy are used to compromise the disease but effective only when the size of the tumor is small. So, an effective treatment need to be developed that produces less side effects and herbal spices are found to be the promising agents. In this review, we illustrate about different in vitro, in vivo, and clinical studies of wide range of culinary spices having antineoplastic potential.
Collapse
Affiliation(s)
- Adithya J Kammath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sreelekshmi P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
18
|
Zhu J, Zheng S, Liu H, Wang Y, Jiao Z, Nie Y, Wang H, Liu T, Song K. Evaluation of anti-tumor effects of crocin on a novel 3D tissue-engineered tumor model based on sodium alginate/gelatin microbead. Int J Biol Macromol 2021; 174:339-351. [PMID: 33529625 DOI: 10.1016/j.ijbiomac.2021.01.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
Crocin, as one of the biologically active components of saffron, has anti-inflammatory, anti-oxidant, anti-depressant and auxiliary anti-tumor effects. Studies have shown that crocin could promote breast cancer cell apoptosis. However, conventional methods are mainly based on two-dimensional (2D) cell culture models, which are difficult to reproduce the tumor environment in vivo due to space constraints. In this study, we prepared a three-dimensional (3D) cell model in vitro based on sodium alginate/gelatin to evaluate the inhibitory effect of crocin on MCF-7 cells, which could bridge the gap in crocin drug evaluation between 2D and 3D cell model in vitro. Different from the 2D culture, the cells were found to aggregate in a spherical shape in the 3D microgel beads. And the CCK-8 assay showed that the growth of MCF-7 cells exposed to crocin was inhibited in a time-related and concentration-related manner. Compared with 2D culture (IC50 that MCF-7 cells treated with crocin at 24 h, 48 h, 72 h: 3.68, 2.55 and 1.53 mg/mL, respectively), the IC50 value of 3D culture (IC50 that MCF-7 cells treated with crocin at 24 h, 48 h, 72 h: 10.12, 6.89 and 6.64 mg/mL, respectively) was significantly increased by 2.77, 2.70, 4.34 times, respectively. Besides, live/dead staining and scanning electron microscope (SEM) revealed that the 2D cultured cells shrank and ruptured after crocin treatment, and the number of living cells was considerably reduced; the size of the cell colonies in the 3D microgel beads decreased.
Collapse
Affiliation(s)
- Jingjing Zhu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Hanbo Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW 2139, Australia
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Wang
- Department of Spine Surgery, First Affiliated Hospital, Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116011, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
19
|
Lambrianidou A, Koutsougianni F, Papapostolou I, Dimas K. Recent Advances on the Anticancer Properties of Saffron ( Crocus sativus L.) and Its Major Constituents. Molecules 2020; 26:E86. [PMID: 33375488 PMCID: PMC7794691 DOI: 10.3390/molecules26010086] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death globally with an estimated 9.6 million deaths in 2018 and a sustained rise in its incidence in both developing and developed countries. According to the WHO, about 1 in 6 deaths is due to cancer. Despite the emergence of many pioneer therapeutic options for patients with cancer, their efficacy is still time-limited and noncurative. Thus, continuous intensive screening for superior and safer drugs is still ongoing and has resulted in the detection of the anticancer properties of several phytochemicals. Among the spices, Crocus sativus L. (saffron) and its main constituents, crocin, crocetin, and safranal, have attracted the interest of the scientific community. Pharmacological experiments have established numerous beneficial properties for this brilliant reddish-orange dye derived from the flowers of a humble crocus family species. Studies in cultured human malignant cell lines and animal models have demonstrated the cancer prevention and antitumor activities of saffron and its main ingredients. This review provides an insight into the advances in research on the anticancer properties of saffron and its components, discussing preclinical data, clinical trials, and patents aiming to improve the pharmacological properties of saffron and its major ingredients.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (A.L.); (F.K.); (I.P.)
| |
Collapse
|
20
|
Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 2020; 62:3232-3249. [PMID: 33356506 DOI: 10.1080/10408398.2020.1864279] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saffron (Crocus sativus L.) is used as a spice for its organoleptic characteristics related to its coloring and flavoring properties, and it has been also used in traditional medicine to treat various diseases. The main chemical components responsible for these properties are crocin, crocetin and safranal. These compounds have been shown to have a wide spectrum of biological activities, including several properties as antigenotoxic, antioxidant, anticancer, anti-inflammatory, antiatherosclerotic, antidiabetic, hypotensive, hypoglycemic, antihyperlipidemic, antidegenerative and antidepressant, among others. This review article highlights the antioxidant effects of these bioactive compounds to reduce reactive oxygen species (ROS) and the mechanisms of action involved, since there are a multitude of diseases related to oxidative stress and the generation of free radicals (FRs). Recent studies have shown that the effects of crocin, crocetin and safranal against oxidative stress include the reduction in lipid peroxidation (malondialdehyde [MDA] levels) and nitric oxide (NO) levels, and the increase in the levels of glutathione, antioxidant enzymes (superoxide dismutase [SOD], catalase (CAT) and glutathione peroxidase [GPx]) and thiol content. Therefore, due to the great antioxidant effects of these saffron compounds, it makes saffron a potential source of bioactive extracts for the development of bioactive ingredients, which can be used to produce functional foods.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | | | - María José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| |
Collapse
|
21
|
Hashemi SA, Karami M, Bathaie SZ. Saffron carotenoids change the superoxide dismutase activity in breast cancer: In vitro, in vivo and in silico studies. Int J Biol Macromol 2020; 158:845-853. [PMID: 32360463 DOI: 10.1016/j.ijbiomac.2020.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023]
Abstract
Superoxide dismutase (SOD) is an important member of the antioxidant defense system and is proposed as a therapeutic agent against the ROS-mediated diseases, and a therapeutic target for cancer treatment. Saffron carotenoids, crocin (Cro) and crocetin (Crt), are antioxidants with anticancer activity. In the present study, we investigated the effects of Cro/Crt on the SOD activity in both in vivo and in vitro models of breast cancer. Both Cro and Crt showed strong radical scavenging activity and SOD inhibition in the MCF-7 breast cancer cell line. The UVVis, circular dichroism and fluorometry studies proposed the binding of both Cro and Crt with SOD; the ΔG° of binding at 310 °K was -8.6 and -4.4 kcal/mol, respectively. The docking analysis predicted the Cro/Crt binding near the active site channel, but in different sites. According to the obtained data, Cro inhibits SOD activity by scavenging superoxide radical (O2), while Crt inhibits SOD by affecting the copper-binding site. In contrast to the in vitro data, both Cro and Crt effectively increased SOD activity in breast tumors of BALB/c mice, after one month of treatment. The mechanism that is important to compensate for the SOD decreased activity in cancer.
Collapse
Affiliation(s)
- S Ali Hashemi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
22
|
Nasimian A, Farzaneh P, Tamanoi F, Bathaie SZ. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: The role of FOXO3a, PTEN and AKT signaling. Biochem Pharmacol 2020; 177:113999. [PMID: 32353423 DOI: 10.1016/j.bcp.2020.113999] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
Different groups have reported the Crocin anticancer activity. We previously showed Crocin-induced apoptosis in rat model of breast and gastric cancers, through the increased Bax/Bcl-2 ratio and caspases activity, as well as the cell cycle arrest in a p53-dependent manner. Since Crocin antioxidant activity has been shown under different conditions, it is interesting to elucidate its apoptotic mechanism. Here, we treated two breast cancer cell lines, MCF-7 and MDA-MB-231, with Crocin. MTT and ROS assays, cell cycle arrest, Bax/Bcl-2 ratio and caspase3 activity were determined. PARP cleavage and expression of some proteins were studied using Western blotting and immunofluorescence. The results indicated stepwise ROS generation in cytosol and mitochondria after Crocin treatment. Attenuating the early ROS level, using diphenyleneiodonium, diminished the sequent mitochondrial damage (decreasing Δψ) and downstream apoptotic signaling. Crocin induced ROS production, FOXO3a expression and nuclear translocation, and then, elevation of the expression of FOXO3a target genes (Bim and PTEN) and caspase-3 activation. Application of N-acetylcysteine blocked AKT/FOXO3a/Bim signaling. FOXO3a knockdown resulted in a decrease of Bim, PTEN and caspase 3, after Crocin treatment. PTEN knockdown caused a decrease in FOXO3a, Bim and caspase 3, in addition to an increase in p-AKT and p-FOXO3a, after Crocin treatment. In conclusion, Crocin induced apoptosis in MCF-7 and MDA-MB-231 human breast cancer cells. The ROS-activated FOXO3a cascade plays a central role in this process. FOXO3a-mediated upregulation of PTEN exerted a further inhibition of the AKT survival pathway. These data provide a new insight into applications of Crocin for cancer therapy.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14155-331, Tehran, Iran
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology & Molecular Genetics (MIMG), UCLA, LA, CA, USA
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14155-331, Tehran, Iran.
| |
Collapse
|
23
|
Ahmadabadi F, Saghebjoo M, Huang CJ, Saffari I, Zardast M. The effects of high-intensity interval training and saffron aqueous extract supplementation on alterations of body weight and apoptotic indices in skeletal muscle of 4T1 breast cancer-bearing mice with cachexia. Appl Physiol Nutr Metab 2020; 45:555-563. [PMID: 31935119 DOI: 10.1139/apnm-2019-0352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exercise training and antioxidant supplementation may improve unintentional weight loss and programmed cell death associated with cancer cachexia. The aim of this study was to examine the alterations of body weight and apoptotic indices in skeletal muscle of 4T1 breast cancer-bearing mice with cachexia following 4 weeks of high-intensity interval training (HIIT) and saffron aqueous extract (SAE) supplementation. Female BALB/c mice following induction of breast cancer were divided into (i) controls, (ii) HIIT, (iii) SAE, (iv) HIIT+SAE, and (v) sham groups. Mice were euthanized and gastrocnemius muscle was collected after intervention. The control group elicited a significant weight reduction during third and fourth weeks of tumor injection, while other treatments such as HIIT and SAE, but not HIIT+SAE, showed that they counteracted this adverse event. Furthermore, HIIT and SAE treatments (not HIIT+SAE) demonstrated reduced caspase-3 and Bax levels compared with the control group. The level of Bcl-2 was elevated following both HIIT and SAE treatments compared with the control group. Finally, the ratio of Bcl-2 to Bax was significantly higher in both HIIT and SAE groups, but was lower in HIIT+SAE group compared with sham group. It is likely that either HIIT or SAE intervention alone (not HIIT+SAE) represents a readily applicable approach in the regulation of muscle wasting and apoptosis in cancer cachexia. Novelty HIIT is associated with a reduced risk of cancer-related muscle wasting. SAE enhances the improvement of muscle loss and apoptotic indices. Combination of HIIT and SAE does not improve cancer-related loss of muscle mass and mediate apoptotic activation.
Collapse
Affiliation(s)
- Fereshteh Ahmadabadi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Marziyeh Saghebjoo
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Iman Saffari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pathology, Birjand Atherosclerosis and Coronary Artery Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
24
|
Crocetin and crocin decreased cholesterol and triglyceride content of both breast cancer tumors and cell lines. AVICENNA JOURNAL OF PHYTOMEDICINE 2020; 10:384-397. [PMID: 32850295 PMCID: PMC7430959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Inhibition of lipid metabolism in breast cancer has been suggested as an effective approach for cancer therapy. Saffron-derived crocetin (Crt) and crocin (Cro) with the known anticancer activity, have shown hypolipidemic effect in diabetes and atherosclerosis. Here, we investigated the effect of Crt/Cro on lipid content in breast cancer. MATERIALS AND METHODS A multi-model approach involving in vivo, in vitro and in silico studies was applied. The 4T1-induced breast cancer in mice was used to investigate the effect of Crt/Cro on cholesterol (Chl) and triglyceride (TG) levels in serum and tumor tissues. The Chl/TG levels were also assessed in the cytosol of MDA-MB-231 and MCF-7 breast cancer cell lines 6, 12 and 24 hr after Crt/Cro treatment. The interaction between Crt/Cro and hydroxymethylglutaryl coenzyme A reductase (HMGCR) was also computed by docking analysis. RESULTS Crt reduced both serum (p=0.003) and tumor (p=0.011) Chl and TG (p=0.001) levels in mice. Cro reduced TG levels in tumor (p=0.014) and serum (p=0.002) and Chl level in tumor (p=0.013) tissues. Crt reduced both Chl and TG in MDA-MB-231 (p=0.014 and p=0.002, respectively) and MCF-7 (p=0.014 and p=0.002, respectively), after 24 h. Cro reduced both Chl and TG in MDA-MB-231 (p=0.014 and p=0.002, respectively) and MCF-7 (p=0.014 and p=0.002, respectively), after 24 h. Crt binds to the active site of HMGCR with higher affinity (ΔG0=-6.6 kcal/mol) than simvastatin (ΔG0 =-6.0 kcal/mol). CONCLUSION Crt and Cro effectively decreased Chl/TG content in the sera of tumor bearing mice, in breast tumors and breast cancer cell lines. Crt showed a higher hypolipidemic potential than Cro. In silico analysis indicated Crt binding in the HMGCR active site.
Collapse
|
25
|
Hatziagapiou K, Kakouri E, Lambrou GI, Koniari E, Kanakis C, Nikola OA, Theodorakidou M, Bethanis K, Tarantilis PA. Crocins: The Active Constituents of Crocus Sativus L. Stigmas, Exert Significant Cytotoxicity on Tumor Cells In Vitro. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666181029120446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::Tumors of the childhood are considered to be grave and devastating pathologies, with high mortality rates. Current therapeutic options like cytotoxic drugs and radiotherapy target both healthy and malignant cells, thus resulting in long-term neurological and intellectual sequelae and endocrinological disorders.Objectives::In this study, we focused on the anticancer potency of crocins, the main constituents of Crocus sativus L, stigmas. Crocins were first extracted using organic solvents from the dried stigmas and then were identified using the HPLC analysis.Materials and Methods::TE-671 cells were treated with the extract of crocins using a range of concentrations between 0.25-mg/ mL and 16 mg/mL. Viability of the cells was measured at 24h, 48h, 72h and 96h. In addition, we have examined the expression levels of the p53 gene using Real-Time Reverse Transcription PCR.Results::Results showed that crocins exerted significant cytotoxic and anti-proliferative effects in a concentration and time - dependent-manner on TE-671 cells. Furthermore, p53 manifested similar expression pattern as the anti-proliferative effect of crocin.Conclusion::Our data demonstrate that crocins could be a novel promising agent for the improvement of tumor treatment.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George I. Lambrou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Koniari
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalabos Kanakis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Olti A. Nikola
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita Theodorakidou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Bethanis
- Laboratory of Physics, Department of Biotechnology, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Petros A. Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
26
|
Colapietro A, Mancini A, D'Alessandro AM, Festuccia C. Crocetin and Crocin from Saffron in Cancer Chemotherapy and Chemoprevention. Anticancer Agents Med Chem 2019; 19:38-47. [PMID: 30599111 DOI: 10.2174/1871520619666181231112453] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 03/17/2018] [Accepted: 08/21/2018] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Cancer is a disorder which has a powerful impact on the quality life and life expectancy despite the increase in drugs and treatments available for cancer patients. Moreover, many new therapeutic options are known to have adverse reactions without any improvement in outcome than before. Nowadays, natural products or plant derivatives are used as chemoprevention drugs and chemotherapy is the new approach that uses specific cell premalignant transformation in the malignant form. Natural substances derived from plants, such as polyphenols, flavonoids, carotenoids, alkaloids and others, can be biologically active and have a wide spectrum of effects. The protective effects of Saffron carotenoids (crocin and crocetin) have been extensively studied mainly for their antioxidant properties, however, they have various other biological activities including tumor growth inhibition with the induction of cell death. METHODS The relevant information on Saffron and its carotenoids was collected from scientific databases (such as PubMed, Web of Science, Science Direct). To identify all published articles in relation to saffron, crocin and crocetin, in different types of cancer, no language restriction has been used. RESULTS To date, crossing the words saffron and cancer, approximately 150 articles can be found. If crossing is made between crocin and cancer, approximately 60 articles can be found. With the crossing between crocetin and cancer, the number is approximately 55, while between carotenoids and cancer, the number exceeds 16.000 reports. In all the papers published to date, there are evidences that saffron and its carotenoids exert chemopreventive activity through anti-oxidant activity, cancer cells apoptosis, inhibition of cell proliferation, enhancement of cell differentiation, modulation of cell cycle progression and cell growth, modulation of tumor metabolism, stimulation of cell-to-cell communication and immune modulation. CONCLUSION Here, we have tried to offer an up-to-date overview of pre-clinical experimental investigations on the potential use of the main carotenoids of saffron in tumor models and focus the attention on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Radiobiology Laboratory, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Radiobiology Laboratory, University of L'Aquila, L'Aquila, Italy
| | - Anna Maria D'Alessandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Radiobiology Laboratory, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
27
|
Korani S, Korani M, Sathyapalan T, Sahebkar A. Therapeutic effects of Crocin in autoimmune diseases: A review. Biofactors 2019; 45:835-843. [PMID: 31430413 DOI: 10.1002/biof.1557] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The immune system when acts against selfmolecules results in an imbalance in immunologic tolerance leading to the development of several autoimmune diseases (ADs) such as rheumatoid arthritis, asthma, ulcerative colitis, type 1 diabetes, and multiple sclerosis. Improved recognition of the mechanisms of ADs has led to the advancement of the management of these diseases. The principal mediators of ADs are inflammatory molecules. The herbal medicines due to their antioxidant and antiinflammatory properties have an important role in the management of ADs. Crocin is the principal chemical component extracted from saffron, which is a medicinal plant. This review focuses on the therapeutic effects of Crocin in various ADs.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Korani
- Nanotechnology Research Center, Buali (Avicenna) Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Chen SS, Gu Y, Lu F, Qian DP, Dong TT, Ding ZH, Zhao S, Yu ZH. Antiangiogenic effect of crocin on breast cancer cell MDA-MB-231. J Thorac Dis 2019; 11:4464-4473. [PMID: 31903234 DOI: 10.21037/jtd.2019.11.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Crocin is the major chemical constituent of the Chinese herb saffron. A number of studies have indicated that crocin induces an antitumor effect by inhibiting proliferation and inducing the apoptosis of tumor cells. However, the effect of crocin on tumor angiogenesis remains unknown. Methods The effects of prolonged crocin exposure on breast cancer cell MDA-MB-231, human umbilical vein endothelial cells (HUVECs) and mice were examined. Results Crocin had a profound effect on the morphology and proliferation rate of MDA-MB-231 and HUVECs. Furthermore, crocin induced apoptosis and cell cycle arrest at the G2/M phase in MDA-MB-231 cells in a dose-dependent manner. This confirms that crocin induces the inhibition of HUVECs. Furthermore, the expression of CD34 in tumor tissues decreased after crocin treatment. Conclusions Crocin has an anti-angiogenesis effect that may be correlated to the decreased expression of CD34. Crocin is likely to be involved in the regulation of molecules in the angiogenesis pathway.
Collapse
Affiliation(s)
- Shuang-Shuang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,Department of Medical Oncology, Huai'an Cancer Hospital, Huai'an 223200, China
| | - Yuan Gu
- Shanghai Medical School of Fudan University, Shanghai 200433, China
| | - Fang Lu
- Usc School of Engineering, University Park, Los Angeles, CA, USA
| | - Dan-Ping Qian
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting-Ting Dong
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hai Ding
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Shuang Zhao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zheng-Hong Yu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
29
|
Abedimanesh S, Bathaie SZ, Ostadrahimi A, Asghari Jafarabadi M, Taban Sadeghi M. The effect of crocetin supplementation on markers of atherogenic risk in patients with coronary artery disease: a pilot, randomized, double-blind, placebo-controlled clinical trial. Food Funct 2019; 10:7461-7475. [PMID: 31667483 DOI: 10.1039/c9fo01166h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Molecular mechanisms of atherogenesis are considered to be emerging therapeutic targets for atherosclerosis prevention. Cell and animal studies have shown that crocetin can decelerate atherogenesis. However, the anti-atherogenic properties of crocetin in humans are still ambiguous. METHODS AND RESULTS Fifty clinically diagnosed CAD patients were randomly divided into two parallel groups, crocetin and placebo, who received one capsule of crocetin (10 mg) and placebo per day, respectively, for two months. Serum circulating homocysteine (Hcy) [-1.09 (-1.64 to -0.54) μM, P = 0.001], heart-type fatty acid binding protein (h-FABP) [-2.07 (-2.72 to -1.43) ng mL-1, P = 0.001], intercellular adhesion molecule 1 [-14.92 (-21.92 to -7.92) ng mL-1, P = 0.001], vascular cell adhesion molecule 1 [-18.61 (-29.73 to -7.49) ng mL-1, P = 0.002], and monocyte chemoattractant protein 1 [-4.67 (-6.50 to -2.83) pg mL-1, P = 0.001] decreased significantly after the trial in the crocetin group, while high-density lipoprotein (HDL) significantly increased [+4.21 (0.68 to 7.73) mg mL-1, P = 0.021]. Also, systolic [-0.21 (-0.32 to -0.10) mmHg, P = 0.001] and diastolic [-0.20 (-0.34 to -0.07) mmHg, P = 0.004] blood pressures decreased significantly in the crocetin group. Nevertheless, clinically significant percentage changes were only observed in Hcy (-15.25 ± 3.15, μM), HDL (-10.70 ± 5.06, mg dL-1), and h-FABP (-21.10 ± 3.09, ng mL-1) in the crocetin group. Furthermore, the relative increase in the gene expressions of sirtuin1 and AMP-activated protein kinase and a decrease in the lectin-type oxidized LDL receptor 1 and nuclear factor-kappa B expression in isolated peripheral blood mononuclear cells in the crocetin group were significant at the end of the trial in comparison with the placebo. CONCLUSION As the first human study, we showed the ability of crocetin to alter the expression of atherogenic genes and endothelial cell adhesion molecules in CAD patients. It appears that crocetin could be considered as a promising anti-atherogenic candidate for future studies.
Collapse
Affiliation(s)
- Saeed Abedimanesh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Alireza Ostadrahimi
- Nutritional Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
30
|
Hashemi SA, Bathaie SZ, Mohagheghi MA. Interaction of saffron carotenoids with catalase: in vitro, in vivo and molecular docking studies. J Biomol Struct Dyn 2019; 38:3916-3926. [PMID: 31537178 DOI: 10.1080/07391102.2019.1668302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of saffron carotenoids, crocetin (Crt) and crocin (Cro) on the structure, function and kinetics of catalase (CAT) were investigated. Both Crt and Cro quenched the fluorescence emission of CAT through the dynamic mechanism, but Crt (Ksv= 8.1 × 104 mol-1) was more effective than Cro (Ksv= 0.6 × 104 mol-1) at 300 °K. The UV-vis and circular dichroism spectra showed conformational changes of CAT in the presence of both carotenoids, but with different degrees. Kinetic studies showed strong inhibition of CAT by Crt, while, different concentrations of Cro showed different effects. Our in vitro data showed that Crt treatment significantly (p = 0.002) reduced the CAT activity in MCF-7, up to 24 h. The in vivo results showed that both Crt and Cro significantly increased the CAT activity in the tumor (p = 0.000 for both), and liver (p = 0.000 and p = 0.026 for Crt and Cro, respectively) tissues of 4T1-induced breast cancer in BALB/c mice, after 4 weeks of treatment. These findings are consistent with the binding, thermodynamic and molecular docking data. In conclusion, Crt and Cro with some differences in the structure affect CAT structure, function and activity, but in a slightly different manner.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ali Hashemi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad-Ali Mohagheghi
- Cancer Research Center of Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
31
|
Naeimi M, Shafiee M, Kermanshahi F, Khorasanchi Z, Khazaei M, Ryzhikov M, Avan A, Gorji N, Hassanian SM. Saffron (Crocus sativus) in the treatment of gastrointestinal cancers: Current findings and potential mechanisms of action. J Cell Biochem 2019; 120:16330-16339. [PMID: 31245875 DOI: 10.1002/jcb.29126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
Abstract
Gastrointestinal (GI) cancers are major causes of cancer-related mortality worldwide and include malignancies of the GI tract such as the stomach, liver, pancreas, small intestine, colon, and rectum. Promising and selective anticancer effects of pharmacologically active components of saffron (Crocus sativus L.) have been shown in preclinical in vitro and in vivo studies. Saffron and its active components including crocin, crocetin, and safranal exert their anticancer effects through different mechanisms, including induction of apoptosis, influence on the cell cycle, and regulation of host immune response and anti-inflammatory activities. This review summarizes the recent literature on the chemopreventive properties of saffron in GI cancers to have a better understanding of the potential underlying mechanisms and hence the appropriate management of these malignancies.
Collapse
Affiliation(s)
- Maryam Naeimi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Shafiee
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Farnoush Kermanshahi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zahra Khorasanchi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Washington University, Saint Louis, Missouri
| | - Amir Avan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed M Hassanian
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Akbari-Fakhrabadi M, Najafi M, Mortazavian S, Rasouli M, Memari AH, Shidfar F. Effect of saffron (Crocus sativus L.) and endurance training on mitochondrial biogenesis, endurance capacity, inflammation, antioxidant, and metabolic biomarkers in Wistar rats. J Food Biochem 2019; 43:e12946. [PMID: 31368566 DOI: 10.1111/jfbc.12946] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
Abstract
We aimed to evaluate the effect of saffron (Crocus Sativus L.) treatment on endurance capacity, mitochondrial biogenesis, inflammation, antioxidant, and metabolic biomarkers in Wistar rats. Forty male rats were allocated equally into four groups: Saffron, Exercise and Saffron, Exercise and Placebo, and Placebo. Endurance training was accomplished on a specified rodent motor-driven treadmill. Running to fatigue test and also metabolic and molecular indices were measured after eight weeks of intervention. mtDNA copy number and NRF-1 gene expression increased significantly in the Ex + S group compared to the exercised and control group (p < 0.05). Endurance capacity time increased in the Ex + S group compared to the Ex group (p < 0.05). Malondialdehyde, CPK, AST, and IL-6 decreased and antioxidant parameters including Glutathione peroxidase and Glutathione increased in the Ex + S group compared to exercised rats (p < 0.01). Saffron enhanced mitochondrial biogenesis, decreased oxidative stress, inflammation, and modulated metabolic biomarkers in exercised rats. PRACTICAL APPLICATIONS: The influence of potential nutrient factors on exercise performance has reached much attention in recent years. Athletes require an appropriate sport supplement to reimburse their fatigue and improve their resilience. Saffron (Crocus Sativus L.) is a well-known spice in the food trade which is quite popular around the world by giving a desirable taste to food. In an experimental study, we showed that saffron extract treatment during endurance training could improve endurance capacity by modulating several metabolic and genomic factors. Therefore, by relying on the results of this study and the positive effects of saffron published in previous studies, saffron could be added to sport beverages and supplements to enhance an athlete's performance.
Collapse
Affiliation(s)
- Maryam Akbari-Fakhrabadi
- Department of Nutrition, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabehsadat Mortazavian
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Rasouli
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Memari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Rezaei N, Avan A, Pashirzad M, Rahmani F, Moradi Marjaneh R, Behnam-Rassouli R, Shafiee M, Ryzhikov M, Hashemzehi M, Ariakia F, Bahreyni A, Hassanian SM, Khazaei M. Crocin as a novel therapeutic agent against colitis. Drug Chem Toxicol 2019; 43:514-521. [PMID: 30714419 DOI: 10.1080/01480545.2018.1527850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease with high incidence and prevalence worldwide. To investigate the therapeutic potency of crocin, as a pharmacologically active component of saffron, in dextran sodium sulfate (DSS)-induced colitis mice model. Experimental colitis was induced by 7-day administration of DSS dissolved in water at a concentration of 1.5% (w/v). The animals were randomly divided into four groups (n¼6 for each group). (1) Control group received regular drinking water for four weeks, (2) the second group of mice received regular drinking water for three weeks and then received DSS for one week, (3) and (4) the other two groups received 50-ppm or 200-ppm crocin for three weeks, respectively, and then treated with DSS for one week. Our results showed that Crocin attenuates colitis disease activity index including body weight loss, diarrhea, rectal bleeding, and colon shortening in crocin pre-tread mice. Comparison of histology of colon tissues between groups showed that crocin significantly decreases colon histopathological score, at least partially, by eliciting anti-inflammatory responses in DSS-induced colitis mice. These results clearly showed that crocin is a novel therapeutic agent with low toxicity as well as great clinical significance in treatment of colitis.
Collapse
Affiliation(s)
- Nastaran Rezaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Pashirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi Marjaneh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihane Behnam-Rassouli
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Shafiee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, USA MO
| | - Milad Hashemzehi
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ariakia
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Bahreyni
- Department of Medical Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Sawant AV, Srivastava S, Prassanawar SS, Bhattacharyya B, Panda D. Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tubulin. Biochem Pharmacol 2019; 163:32-45. [PMID: 30710515 DOI: 10.1016/j.bcp.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Crocin, a constituent of the saffron spice, exhibits promising antitumor activity in animal models and also inhibits the proliferation of several types of cancer cells in culture. Recently, we have shown that crocin binds to purified tubulin at the vinblastine site, depolymerizes microtubules and induces a mitotic block in cultured cells. Here, we extend our previous suggestion and explore the cellular effects of crocin to further understand its mechanism of action. In a kinetic study, we observed that the crocin-induced depolymerization of microtubules preceded both DNA damage and reactive oxygen species generation indicating that depolymerizing microtubules is the primary action of crocin. Crocin also inhibited the growth of cold-depolymerized microtubules in HeLa cells indicating that it can inhibit microtubule dynamics. Using fluorescence recovery after photobleaching, crocin was found to suppress the spindle microtubule dynamics in live HeLa cells. Further, crocin treatment resulted in activation of spindle assembly checkpoint proteins, BubR1 and Mad2. Similar to other microtubule-targeting agents, crocin also perturbed the localization of end-binding protein EB1 from the growing microtubule ends and enhanced the acetylation of remaining microtubules. Further, crocin was found to bind to purified tubulin with a dissociation constant of 12 ± 1.5 μM. The results suggested that crocin exerted its antiproliferative effect primarily by inhibiting the assembly and dynamics of microtubules. Importantly, the combination of crocin with known anticancer agents like combretastatin A-4, cisplatin, doxorubicin or sorafenib, exerted a strong synergistic cytotoxic effect in HeLa cells indicating that crocin may enhance the effectiveness of other anticancer agents.
Collapse
Affiliation(s)
- Avishkar V Sawant
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shweta S Prassanawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
35
|
Effects of Combined Crocin and Epirubicin on Apoptosis and Cell Cycle Pathways in a Human Cervical Cancer Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.82575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Yaribeygi H, Zare V, Butler AE, Barreto GE, Sahebkar A. Antidiabetic potential of saffron and its active constituents. J Cell Physiol 2018; 234:8610-8617. [PMID: 30515777 DOI: 10.1002/jcp.27843] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
The prevalence of diabetes mellitus is growing rapidly worldwide. This metabolic disorder affects many physiological pathways and is a key underlying cause of a multitude of debilitating complications. There is, therefore, a critical need for effective diabetes management. Although many synthetic therapeutic glucose-lowering agents have been developed to control glucose homeostasis, they may have unfavorable side effects or limited efficacy. Herbal-based hypoglycemic agents present an adjunct treatment option to mitigate insulin resistance, improve glycemic control and reduce the required dose of standard antidiabetic medications. Saffron (Crocus sativus L.), whilst widely used as a food additive, is a natural product with insulin-sensitizing and hypoglycemic effects. Saffron contains several bioactive β carotenes, which exert their pharmacological effects in various tissues without any obvious side effects. In this study, we discuss how saffron and its major components exert their hypoglycemic effects by induction of insulin sensitivity, improving insulin signaling and preventing β-cell failure, all mechanisms combining to achieve better glycemic control.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Zare
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Arzi L, Farahi A, Jafarzadeh N, Riazi G, Sadeghizadeh M, Hoshyar R. Inhibitory Effect of Crocin on Metastasis of Triple-Negative Breast Cancer by Interfering with Wnt/β-Catenin Pathway in Murine Model. DNA Cell Biol 2018; 37:1068-1075. [DOI: 10.1089/dna.2018.4351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Laleh Arzi
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Farahi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nazli Jafarzadeh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamhossein Riazi
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
38
|
Amerizadeh F, Rezaei N, Rahmani F, Hassanian SM, Moradi‐Marjaneh R, Fiuji H, Boroumand N, Nosrati‐Tirkani A, Ghayour‐Mobarhan M, Ferns GA, Khazaei M, Avan A. Crocin synergistically enhances the antiproliferative activity of 5‐flurouracil through Wnt/PI3K pathway in a mouse model of colitis‐associated colorectal cancer. J Cell Biochem 2018; 119:10250-10261. [DOI: 10.1002/jcb.27367] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Forouzan Amerizadeh
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Nastaran Rezaei
- Department of Physiology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Department of clinical Biochemistry Student Research Committee, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biochemistry Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Reyhaneh Moradi‐Marjaneh
- Department of Physiology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Department of Physiology Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Nadia Boroumand
- Department of Medical Biochemistry Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | | | | | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton Sussex UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Physiology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Cancer Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
39
|
A Comparative Study on Anti-Invasion, Antimigration, and Antiadhesion Effects of the Bioactive Carotenoids of Saffron on 4T1 Breast Cancer Cells Through Their Effects on Wnt/β-Catenin Pathway Genes. DNA Cell Biol 2018; 37:697-707. [DOI: 10.1089/dna.2018.4248] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Khorasanchi Z, Shafiee M, Kermanshahi F, Khazaei M, Ryzhikov M, Parizadeh MR, Kermanshahi B, Ferns GA, Avan A, Hassanian SM. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:21-27. [PMID: 29747750 DOI: 10.1016/j.phymed.2018.03.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/30/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Saffron, the dried stigmas of Crocus sativus L., is a highly valued agricultural product that is used mainly as a food coloring and flavoring agent. Three main secondary metabolites of Crocus sativus including crocin, picrocrocin, and safranal are responsible for the color, the bitter taste and for the odor and aroma, respectively. As a component of traditional medicine, saffron has been utilized as a medicinal herb for treating various ailments including cramps, asthma, liver disease, menstruation disorders, pain, and in the pathogenesis of cancer. HYPOTHESIS/PURPOSE To summarize the recent published data on the chemo-preventive properties of Crocus sativus in cancer treatment. STUDY DESIGN We conducted a non-systematic review of the literature. METHODS A search of English-language literature was performed using Scopus, EMBASE and PubMed. We applied no restriction in time. Articles were searched using the keywords "Lung", "breast", "skin", "prostate", "leukemia", "cancer", "neoplasm", "tumor", "malignancy", "saffron", "crocus sativus", "crocin", "crocetin", "picrocrocin", and "safranal". RESULTS Saffron has been reported to exert anti-tumor and anti-cancer effects in various types of cancer including lung cancer, breast cancer, leukemia, skin cancer and prostate cancer. This appears to be via various mechanisms including: the induction of apoptosis, arresting cell cycle progression, suppressing expression of matrix metalloproteinase, modulatory effects on some phase II detoxifying enzymes and decreasing expression of inflammatory molecules are potential mechanisms of saffron-induced anticancer effects. CONCLUSION Saffron possesses potent anti-tumor properties and represents an efficacious and safe treatment.
Collapse
Affiliation(s)
- Zahra Khorasanchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnoush Kermanshahi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University, School of Medicine, Saint Louis, MO, USA
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Shafiee M, Arekhi S, Omranzadeh A, Sahebkar A. Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action. J Affect Disord 2018; 227:330-337. [PMID: 29136602 DOI: 10.1016/j.jad.2017.11.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Depression and anxiety are two common mental health problems with high economic and social costs. Currently, a number of treatments are available for patients with depression and anxiety disorders such as psychotherapy, electroconvulsive therapy and antidepressant drugs. Due to safety concerns, adverse effects, limited efficacy and low tolerability associated with many antidepressant and anti-anxiety medications, identification of novel agents with less toxicity and more favorable outcome is warranted. METHODS The current article provides a non-systematic review of the available in vitro, in vivo and clinical evidence on the efficacy, safety and mechanisms of action of saffron and its active ingredients in the treatment of anxiety, depression and other mental disorders. RESULTS Several interesting data have been reported about the antidepressant and anti-anxiety properties of saffron, the dried stigmas of Crocus sativus L., in several preclinical and clinical studies. In particular, a number of clinical trials demonstrated that saffron and its active constituents possess antidepressant properties similar to those of current antidepressant medications such as fluoxetine, imipramine and citalopram, but with fewer reported side effects. CONCLUSION Saffron may exert antidepressant effects and represents an efficacious and safe treatment.
Collapse
Affiliation(s)
- Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soheil Arekhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Evidence Based Medicine Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Omranzadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Evidence Based Medicine Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Hoshyar R, Mollaei H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J Pharm Pharmacol 2017; 69:1419-1427. [PMID: 28675431 DOI: 10.1111/jphp.12776] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Crocin is derived from dried stigmas of Crocus sativus L. (saffron). It has long been used to prevent and treat various diseases. Although crocin is suggested as one of the most effective cancer therapeutic constituents of saffron stigma, its exact molecular mechanisms are not fully understood. In this study, we reviewed anticancer effects of crocin and its underlying molecular mechanisms. KEY FINDINGS While several mechanisms may account for the antitumour activity of crocin, alteration of expression/activity of the genes and also epigenetic changes may be considered as necessary phenomena. These alternations may lead to inhibition of cancer cells' proliferation or/and induction of apoptosis through various mechanism including inhibition of synthesis of DNA and RNA, interaction with cellular topoisomerase, suppression of the telomerase activity and active STAT3, and targeting of microtubules. Moreover, this carotenoid could reverse the epithelial-mesenchymal transition and inhibit metastasis. CONCLUSIONS Knowing molecular mechanisms of antitumoral agents could guide us to choose the best chemotherapeutic compound especially for targeted therapy and also provide insights about possible side effects.
Collapse
Affiliation(s)
- Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Homa Mollaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
43
|
Patel S, Sarwat M, Khan TH. Mechanism behind the anti-tumour potential of saffron (Crocus sativus L.): The molecular perspective. Crit Rev Oncol Hematol 2017; 115:27-35. [PMID: 28602167 DOI: 10.1016/j.critrevonc.2017.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 04/15/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022] Open
Abstract
Cancer is a disorder which has noted a significant rise in incidence worldwide and continues to be the largest cause of mortality. It has a dramatic impact on human life expectancy and quality of life in spite of the increase in technology and the treatments available for cancer patients. These new therapeutic options being chemotherapy, radiotherapy, photolytic therapy and catalytic therapy are known to have many adverse reactions and also no better positive outcomes than before. Hence, research is now focused more on utilizing the vast repertoire of traditional medicinal knowledge i.e. the use of flora for treatment of cancer rather than the use of chemicals. One such herb is the Crocus sativus L., commonly known as Saffron, rich in carotenoids - crocin, crocetin and safranal. Various studies have been carried out over the past few years to confirm the anti-cancer properties of saffron, both in vivo using animal models and in vitro using human malignant cell lines on various types of cancers with positive results. The proposed mechanism of actions has also been worked upon. This review is aimed to provide a brief overview on the anti-tumor potential of saffron focusing on the molecular mechanism involved.
Collapse
Affiliation(s)
- Sweta Patel
- Amity Institute of Pharmacy, Amity University, Sector 125 Noida, UP 201313, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Sector 125 Noida, UP 201313, India.
| | - Tajdar H Khan
- Department of Pharmacology, College of Pharmacy, Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
44
|
Sajjadi M, Bathaie Z. Comparative Study on The Preventive Effect of Saffron Carotenoids, Crocin and Crocetin, in NMU-Induced Breast Cancer in Rats. CELL JOURNAL 2017; 19:94-101. [PMID: 28367420 PMCID: PMC5241521 DOI: 10.22074/cellj.2016.3901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/23/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Crocin (Cro) and crocetin (Crt) are two widely known saffron carotenoids, which exert anticancer effects by different mechanisms. Here, we investigated and compared the preventive effect of Cro and Crt at the initiation and promotion stages of breast cancer induction in an animal model. MATERIALS AND METHODS In this experimental study, female Wistar albino rats were injected with three doses of N-methyl-N-nitrosourea (NMU). The preventive intervention was done at different times for the initiation and promotion stages. Thus, Cro/Crt was administered by gavage 20 days before, or one week after, the first NMU injection, for the prevention at the initiation or promotion stages respectively. The treatment was repeated every three days, and continued up to the end of experiment. Tumor appearance was checked by palpation and some parameters were determined after sacrifice. RESULTS Tumor volume, latency period, and tumor number were significantly decreased in the rat groups treated with both saffron carotenoids for prevention at both the initiation and promotion stages. Tumor incidence was 77% due to NMU injection, which was decreased to 45 and 33% (on average) after Cro and Crt administration, respectively. In addition, enkephaline degrading aminopeptidase (EDA) was decreased significantly in the ovaries of the animals, however, changes in the brain were not significant. CONCLUSION Crt/Cro showed a significant protective effect against the NMU-induced breast cancer in rats. However, Crt was more effective than Cro and prevention at the initiation stage was more effective than at the promotion stage.
Collapse
Affiliation(s)
- Meysam Sajjadi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
45
|
Koul A, Abraham SK. Efficacy of crocin and safranal as protective agents against genotoxic stress induced by gamma radiation, urethane and procarbazine in mice. Hum Exp Toxicol 2017; 37:13-20. [PMID: 28111973 DOI: 10.1177/0960327116689715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crocin (CRO) and safranal (SAF) are bioactive constituents of saffron (dried stigma of Crocus sativus flower), an expensive spice with medicinal properties. Aqueous extract of saffron is known for its antigenotoxic effect against environmental genotoxins/carcinogens. However, there is need to identify saffron constituents responsible for this antigenotoxic effect. The aim of our investigation was to ascertain the role of CRO and SAF as inhibitors of in vivo genotoxic stress. For this purpose, Swiss albino mice were pretreated with CRO (50-mg/kg body weight (bw))/SAF (0.025- and 0.25-ml/kg bw) by gavage for 2 days. Thereafter, the pretreated mice were exposed to the genotoxic agents: (1) gamma radiation (GR; 2 Gy), (2) urethane (URE; 800 mg/kg) and (3) procarbazine (PCB; 60 mg/kg). In addition, CRO (50 mg/kg) was co-administered with the nitrosation reaction mixture of methylurea (MU; 300-mg/kg bw) + sodium nitrite (15 mg/kg) which can form N-nitroso-N-MU in the stomach. Genotoxic damage was measured by performing the bone marrow micronucleus test. Results obtained demonstrated significant reductions in the incidence of micronucleated polychromatic erythrocytes in the bone marrow of mice pretreated with CRO/SAF before exposure to the above DNA damaging agents, GR, URE and PCB. Co-administration of CRO with the nitrosation reaction mixture led to significant decrease in genotoxicity when compared to nitrosation reaction mixture alone. Histopathological studies revealed that these saffron constituents reduced testicular cell damage induced by the test genotoxins. The cell-free DNA-nicking assay using pBR322 DNA showed significant protective effects of CRO against hydroxyl radical-induced strand breaks.
Collapse
Affiliation(s)
- A Koul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - S K Abraham
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|