1
|
Zhang Y, Zhang M, Song H, Dai Q, Liu C. Tumor Microenvironment-Responsive Polymer-Based RNA Delivery Systems for Cancer Treatment. SMALL METHODS 2024:e2400278. [PMID: 38803312 DOI: 10.1002/smtd.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleic acid (RNA) therapeutics offer a broad prospect in cancer treatment. However, their successful application requires overcoming various physiological barriers to effectively deliver RNAs to the target sites. Currently, a number of RNA delivery systems based on polymeric nanoparticles are developed to overcome these barriers in RNA delivery. This work provides an overview of the existing RNA therapeutics for cancer gene therapy, and particularly summarizes those that are entering the clinical phase. This work then discusses the core features and latest research developments of tumor microenvironment-responsive polymer-based RNA delivery carriers which are designed based on the pathological characteristics of the tumor microenvironment. Finally, this work also proposes opportunities for the transformation of RNA therapies into cancer immunotherapy methods in clinical applications.
Collapse
Affiliation(s)
- Yahan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Wang G, Joel MDM, Yuan J, Wang J, Cai X, Ocansey DKW, Yan Y, Qian H, Zhang X, Xu W, Mao F. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease by inhibiting ERK phosphorylation in neutrophils. Inflammopharmacology 2020; 28:603-616. [PMID: 31938969 DOI: 10.1007/s10787-019-00683-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) can be caused by a variety of factors, including hereditary and environmental influences, that lead to dysfunction of the intestinal immune system. Mesenchymal stem cells (MSCs) exhibit important regulatory roles in relieving inflammation and repairing damaged tissues. Although neutrophils are important participants in the development of inflammatory reactions, they are also essential for maintaining intestinal balance during the process of mitigation of IBD by MSCs. Here, we constructed a dextran sulfate sodium (DSS)-induced mouse IBD model and evaluated the effects of treatment with human umbilical cord MSCs. Mouse body weight, faecal traits, colon/spleen gross morphology, tissue histology and immunohistochemical staining, and inflammatory factors were analysed. Magnetic beads were used to sort infiltrating neutrophils from intestinal tissues, and their phenotypes were identified. The neutrophil inflammatory environment was also simulated in vitro, and signalling pathways involved in MSC regulation of neutrophil phenotype were analysed. Human umbilical cord MSCs effectively alleviated DSS-induced weight loss, colon shortening, and intestinal mucosal injury, and reduced clinical disease activity index. The number of neutrophils that infiltrated the intestines of mice treated with human umbilical cord MSCs were decreased and polarised toward the N2 phenotype; at the same time, ERK phosphorylation was inhibited. In vitro experiments showed that addition of the ERK phosphorylation inhibitor, PD98059, down-regulated the expression of N1 neutrophils, while up-regulating that of N2 neutrophils. The colon tissues from patients with IBD were infiltrated with neutrophils. Further, relative to healthy controls, the markers of N1 neutrophils (ICAM-1, FAS, and CCL3) were highly expressed in colon tissues from patients with IBD, whereas the markers of N2 neutrophils (VEGF, CCL2, and CXCR4) were almost undetectable. In conclusion, during alleviation of IBD, human umbilical cord MSCs polarise neutrophils toward the "N2" phenotype by inhibiting activation of ERK signalling.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Mbobda Defo Marius Joel
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jintao Yuan
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212300, Jiangsu, People's Republic of China
| | - Jingyan Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiu Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|