1
|
Weidner L, Lorenz J, Quach S, Braun FK, Rothhammer-Hampl T, Ammer LM, Vollmann-Zwerenz A, Bartos LM, Dekorsy FJ, Holzgreve A, Kirchleitner SV, Thon N, Greve T, Ruf V, Herms J, Bader S, Milenkovic VM, von Baumgarten L, Menevse AN, Hussein A, Sax J, Wetzel CH, Rupprecht R, Proescholdt M, Schmidt NO, Beckhove P, Hau P, Tonn JC, Bartenstein P, Brendel M, Albert NL, Riemenschneider MJ. Translocator protein (18kDA) (TSPO) marks mesenchymal glioblastoma cell populations characterized by elevated numbers of tumor-associated macrophages. Acta Neuropathol Commun 2023; 11:147. [PMID: 37697350 PMCID: PMC10496331 DOI: 10.1186/s40478-023-01651-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.
Collapse
Affiliation(s)
- Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Frank K Braun
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Laura-Marie Ammer
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Niklas Thon
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tobias Greve
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
2
|
Wang J, Beecher K. TSPO: an emerging role in appetite for a therapeutically promising biomarker. Open Biol 2021; 11:210173. [PMID: 34343461 PMCID: PMC8331234 DOI: 10.1098/rsob.210173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that an obesogenic Western diet causes neuroinflammatory damage to the brain, which then promotes further appetitive behaviour. Neuroinflammation has been extensively studied by analysing the translocator protein of 18 kDa (TSPO), a protein that is upregulated in the inflamed brain following a damaging stimulus. As a result, there is a rich supply of TSPO-specific agonists, antagonists and positron emission tomography ligands. One TSPO ligand, etifoxine, is also currently used clinically for the treatment of anxiety with a minimal side-effect profile. Despite the neuroinflammatory pathogenesis of diet-induced obesity, and the translational potential of targeting TSPO, there is sparse literature characterizing the effect of TSPO on appetite. Therefore, in this review, the influence of TSPO on appetite is discussed. Three putative mechanisms for TSPO's appetite-modulatory effect are then characterized: the TSPO–allopregnanolone–GABAAR signalling axis, glucosensing in tanycytes and association with the synaptic protein RIM-BP1. We highlight that, in addition to its plethora of functions, TSPO is a regulator of appetite. This review ultimately suggests that the appetite-modulating function of TSPO should be further explored due to its potential therapeutic promise.
Collapse
Affiliation(s)
- Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Da Pozzo E, Tremolanti C, Costa B, Giacomelli C, Milenkovic VM, Bader S, Wetzel CH, Rupprecht R, Taliani S, Da Settimo F, Martini C. Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation. Int J Mol Sci 2019; 20:ijms20184467. [PMID: 31510070 PMCID: PMC6770267 DOI: 10.3390/ijms20184467] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.
Collapse
Affiliation(s)
- Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
- Correspondence:
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| |
Collapse
|
4
|
Cumming P, Burgher B, Patkar O, Breakspear M, Vasdev N, Thomas P, Liu GJ, Banati R. Sifting through the surfeit of neuroinflammation tracers. J Cereb Blood Flow Metab 2018; 38:204-224. [PMID: 29256293 PMCID: PMC5951023 DOI: 10.1177/0271678x17748786] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
The first phase of molecular brain imaging of microglial activation in neuroinflammatory conditions began some 20 years ago with the introduction of [11C]-( R)-PK11195, the prototype isoquinoline ligand for translocator protein (18 kDa) (TSPO). Investigations by positron emission tomography (PET) revealed microgliosis in numerous brain diseases, despite the rather low specific binding signal imparted by [11C]-( R)-PK11195. There has since been enormous expansion of the repertoire of TSPO tracers, many with higher specific binding, albeit complicated by allelic dependence of the affinity. However, the specificity of TSPO PET for revealing microglial activation not been fully established, and it has been difficult to judge the relative merits of the competing tracers and analysis methods with respect to their sensitivity for detecting microglial activation. We therefore present a systematic comparison of 13 TSPO PET and single photon computed tomography (SPECT) tracers belonging to five structural classes, each of which has been investigated by compartmental analysis in healthy human brain relative to a metabolite-corrected arterial input. We emphasize the need to establish the non-displaceable binding component for each ligand and conclude with five recommendations for a standard approach to define the cellular distribution of TSPO signals, and to characterize the properties of candidate TSPO tracers.
Collapse
Affiliation(s)
- Paul Cumming
- School of Psychology and Counselling and IHBI, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- QIMR Berghofer Institute, Brisbane, Australia
| | - Bjorn Burgher
- QIMR Berghofer Institute, Brisbane, Australia
- Metro North Mental Health Service, Brisbane, Australia
| | - Omkar Patkar
- School of Psychology and Counselling and IHBI, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- QIMR Berghofer Institute, Brisbane, Australia
| | - Michael Breakspear
- QIMR Berghofer Institute, Brisbane, Australia
- Metro North Mental Health Service, Brisbane, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Thomas
- Herston Imaging Research Facility, Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
- National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
- National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, Australia
| |
Collapse
|
5
|
Liu GJ, Middleton RJ, Kam WWY, Chin DY, Hatty CR, Chan RHY, Banati RB. Functional gains in energy and cell metabolism after TSPO gene insertion. Cell Cycle 2017; 16:436-447. [PMID: 28103132 PMCID: PMC5351937 DOI: 10.1080/15384101.2017.1281477] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent loss-of-function studies in tissue-specific as well as global Tspo (Translocator Protein 18 kDa) knockout mice have not confirmed its long assumed indispensability for the translocation of cholesterol across the mitochondrial inter-membrane space, a rate-limiting step in steroid biosynthesis. Instead, recent studies in global Tspo knockout mice indicate that TSPO may play a more fundamental role in cellular bioenergetics, which may include the indirect down-stream regulation of transport or metabolic functions. To examine whether overexpression of the TSPO protein alters the cellular bioenergetic profile, Jurkat cells with low to absent endogenous expression were transfected with a TSPO construct to create a stable cell line with de novo expression of exogenous TSPO protein. Expression of TSPO was confirmed by RT-qPCR, radioligand binding with [3H]PK11195 and immunocytochemistry with a TSPO antibody. We demonstrate that TSPO gene insertion causes increased transcription of genes involved in the mitochondrial electron transport chain. Furthermore, TSPO insertion increased mitochondrial ATP production as well as cell excitability, reflected in a decrease in patch clamp recorded rectified K channel currents. These functional changes were accompanied by an increase in cell proliferation and motility, which were inhibited by PK11195, a selective ligand for TSPO. We suggest that TSPO may serve a range of functions that can be viewed as downstream regulatory effects of its primary, evolutionary conserved role in cell metabolism and energy production.
Collapse
Affiliation(s)
- Guo-Jun Liu
- a Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW , Australia.,b Faculty of Health Science and Brain and Mind Centre, University of Sydney , NSW , Australia
| | - Ryan J Middleton
- a Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW , Australia
| | - Winnie Wai-Ying Kam
- a Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW , Australia.,c Department of Health Technology and Informatics , Hong Kong Polytechnic University , Hung Hom, Hong Kong , China
| | - David Y Chin
- d NCRIS Biologics Facility, Australian Institute for Bioengineering and Nanotechnology, University of Queensland , QLD , Australia
| | - Claire R Hatty
- a Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW , Australia.,b Faculty of Health Science and Brain and Mind Centre, University of Sydney , NSW , Australia
| | - Ronald H Y Chan
- a Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW , Australia.,b Faculty of Health Science and Brain and Mind Centre, University of Sydney , NSW , Australia
| | - Richard B Banati
- a Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW , Australia.,b Faculty of Health Science and Brain and Mind Centre, University of Sydney , NSW , Australia
| |
Collapse
|