1
|
Ming X, Chen S, Li H, Wang Y, Zeng H, Lv Y. 6-methylcoumarin/miR-122 suppresses hepatic Sortilin-mediated ApoB-100 secretion to attenuate aortic atherosclerosis. Cell Signal 2024; 124:111384. [PMID: 39243919 DOI: 10.1016/j.cellsig.2024.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate the effects of hepatic microRNA-122 (miR-122) on Sortilin-mediated apolipoprotein B100 (apoB-100) secretion, and on aortic lipid deposition and atherosclerosis (AS) lesions and to clarify the antiatherosclerotic mechanism of 6-methylcoumarin (6-MC) via the modulation of miR-122. Bioinformatics analysis revealed that miR-122 was putatively overexpressed in a liver-specific manner and was downregulated in steatotic livers. miR-122 was shown to suppress the expression of Sortilin by complementarily pairing to the 3'-untranslated region (3'-UTR) of Sortilin mRNA via bioinformatics and dual-luciferase reporter assays, impeding Sortilin-mediated apoB-100 secretion from HepG2 cells. Administration of 6-MC significantly upregulated hepatocellular miR-122 levels, reducing Sortilin expression and apoB-100 secretion in HepG2 cells. The miR-122 mimic vigorously enhanced 6-MC-depressed Sortilin expression, while miR-122 inhibitor repealed the inhibitory effect of 6-MC on Sortilin expression to some extent in HepG2 cells. After internal intervention with the miR-122 precursor, and 6-MC supplementation alone or in combination with the miR-122 sponge led to the reduction in blood triglyceride (TG) levels, low-density lipoprotein-cholesterol (LDL-C) and apoB-100 and a reduction in aortic lipid deposition and AS lesions in apolipoprotein E-deficient (ApoE-/-) mice fed a high fat diet (HFD). The hepatic levels of Sortilin and apoB-100 expression were also decreased in these treated mice. In conclusion, miR-122 suppresses Sortilin expression and Sortilin-mediated apoB-100 secretion to resist circulating LDL production and aortic AS development, which is enhanced by 6-MC-upregulated miR-122 in the liver.
Collapse
Affiliation(s)
- Xinyue Ming
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Shirui Chen
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Huijuan Li
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Yun Wang
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Haijun Zeng
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China.
| | - Yuncheng Lv
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Bojmar L, Zambirinis CP, Hernandez JM, Chakraborty J, Shaashua L, Kim J, Johnson KE, Hanna S, Askan G, Burman J, Ravichandran H, Zheng J, Jolissaint JS, Srouji R, Song Y, Choubey A, Kim HS, Cioffi M, van Beek E, Sigel C, Jessurun J, Velasco Riestra P, Blomstrand H, Jönsson C, Jönsson A, Lauritzen P, Buehring W, Ararso Y, Hernandez D, Vinagolu-Baur JP, Friedman M, Glidden C, Firmenich L, Lieberman G, Mejia DL, Nasar N, Mutvei AP, Paul DM, Bram Y, Costa-Silva B, Basturk O, Boudreau N, Zhang H, Matei IR, Hoshino A, Kelsen D, Sagi I, Scherz A, Scherz-Shouval R, Yarden Y, Oren M, Egeblad M, Lewis JS, Keshari K, Grandgenett PM, Hollingsworth MA, Rajasekhar VK, Healey JH, Björnsson B, Simeone DM, Tuveson DA, Iacobuzio-Donahue CA, Bromberg J, Vincent CT, O'Reilly EM, DeMatteo RP, Balachandran VP, D'Angelica MI, Kingham TP, Allen PJ, Simpson AL, Elemento O, Sandström P, Schwartz RE, Jarnagin WR, Lyden D. Multi-parametric atlas of the pre-metastatic liver for prediction of metastatic outcome in early-stage pancreatic cancer. Nat Med 2024; 30:2170-2180. [PMID: 38942992 DOI: 10.1038/s41591-024-03075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches. Patients were followed prospectively (median 3 years) and classified into four recurrence groups; early (<6 months after resection) or late (>6 months after resection) liver metastasis (LiM); extrahepatic metastasis (EHM); and disease-free survivors (no evidence of disease (NED)). Overall, PaC livers exhibited signs of augmented inflammation compared to controls. Enrichment of neutrophil extracellular traps (NETs), Ki-67 upregulation and decreased liver creatine significantly distinguished those with future metastasis from NED. Patients with future LiM were characterized by scant T cell lobular infiltration, less steatosis and higher levels of citrullinated H3 compared to patients who developed EHM, who had overexpression of interferon target genes (MX1 and NR1D1) and an increase of CD11B+ natural killer (NK) cells. Upregulation of sortilin-1 and prominent NETs, together with the lack of T cells and a reduction in CD11B+ NK cells, differentiated patients with early-onset LiM from those with late-onset LiM. Liver profiles of NED closely resembled those of controls. Using the above parameters, a machine-learning-based model was developed that successfully predicted the metastatic outcome at the time of surgery with 78% accuracy. Therefore, multi-parametric profiling of liver biopsies at the time of PaC diagnosis may determine metastatic risk and organotropism and guide clinical stratification for optimal treatment selection.
Collapse
Affiliation(s)
- Linda Bojmar
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Constantinos P Zambirinis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jonathan M Hernandez
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jayasree Chakraborty
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lee Shaashua
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kofi Ennu Johnson
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Samer Hanna
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonas Burman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zheng
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua S Jolissaint
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rami Srouji
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Song
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ankur Choubey
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Han Sang Kim
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Michele Cioffi
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Elke van Beek
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlie Sigel
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Hakon Blomstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Carolin Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anette Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pernille Lauritzen
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Weston Buehring
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Yonathan Ararso
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Dylanne Hernandez
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Jessica P Vinagolu-Baur
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Madison Friedman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Caroline Glidden
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Laetitia Firmenich
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Grace Lieberman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Dianna L Mejia
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Naaz Nasar
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anders P Mutvei
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Doru M Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Bruno Costa-Silva
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Olca Basturk
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Boudreau
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Irina R Matei
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Ayuko Hoshino
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - David Kelsen
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jason S Lewis
- Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kayvan Keshari
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinagolu K Rajasekhar
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John H Healey
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bergthor Björnsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | | | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ronald P DeMatteo
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter J Allen
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber L Simpson
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Per Sandström
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - William R Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Lyden
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Kumar AHS. Network Proteins of Human Sortilin1, Its Expression and Targetability Using Lycopene. Life (Basel) 2024; 14:137. [PMID: 38255751 PMCID: PMC10817468 DOI: 10.3390/life14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Sortilin1 (SORT1) is a ubiquitously expressed transporter involved in sorting or clearing proteins and is pathologically linked to tissue fibrosis and calcification. Targeting SORT1 may have potential clinical efficacy in controlling or reversing cardiovascular fibrosis and/or calcification. Hence, this study assessed the protein-protein network of human SORT1 and its targetability using known nutra-/pharmaceuticals. MATERIAL AND METHODS Network proteins of human SORT1 were identified using the String database, and the affinity of the protein-protein interaction of this network was analysed using Chimera software (Chimera-1.17.3-mac64). The tissue-specific expression profile of SORT1 was evaluated and assessed for enrichment in different cell types, including immune cells. A library of in-house small molecules and currently used therapeutics for cardiovascular diseases were screened using AutoDock Vina to assess the targetability of human SORT1. The concentration affinity (CA) ratio of the small molecules was estimated to assess the clinical feasibility of targeting SORT1. RESULTS IGF2R, NTRK2, GRN and GGA1 were identified as high-affinity interaction networks of SORT1. Of these high-affinity interactions, IGF2R and GRN can be considered relevant networks in regulating tissue fibrosis or the microcalcification process due to their influence on T-cell activation, inflammation, wound repair, and the tissue remodelling process. The tissue cell-type enrichment indicated major expression of SORT1 in adipocytes, specialised epithelial cells, monocytes, cardiomyocytes, and thyroid glandular cells. The binding pocket analysis of human SORT1 showed twelve potential drug interaction sites with varying binding scores (0.86 to 5.83) and probability of interaction (0.004 to 0.304). Five of the drug interaction sites were observed to be targetable at the therapeutically feasible concentration of the small molecules evaluated. Empagliflozin, sitagliptin and lycopene showed a superior affinity and CA ratio compared to established inhibitors of SORT1. CONCLUSION IGF2R and GRN are relevant networks of SORT1, regulating tissue fibrosis or the microcalcification process. SORT1 can be targeted using currently approved small-molecule therapeutics (empagliflozin and sitagliptin) or widely used nutraceuticals (lycopene), which should be evaluated in a randomised clinical trial to assess their efficacy in reducing the cardiac/vascular microcalcification process.
Collapse
Affiliation(s)
- Arun H S Kumar
- Stemcology, School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
4
|
Liu J, Hu S, Chen L, Daly C, Prada Medina CA, Richardson TG, Traylor M, Dempster NJ, Mbasu R, Monfeuga T, Vujkovic M, Tsao PS, Lynch JA, Voight BF, Chang KM, Million VA, Cobbold JF, Tomlinson JW, van Duijn CM, Howson JMM. Profiling the genome and proteome of metabolic dysfunction-associated steatotic liver disease identifies potential therapeutic targets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.30.23299247. [PMID: 38076879 PMCID: PMC10705663 DOI: 10.1101/2023.11.30.23299247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 25% of the population and currently has no effective treatments. Plasma proteins with causal evidence may represent promising drug targets. We aimed to identify plasma proteins in the causal pathway of MASLD and explore their interaction with obesity. METHODS We analysed 2,941 plasma proteins in 43,978 European participants from UK Biobank. We performed genome-wide association study (GWAS) for all MASLD-associated proteins and created the largest MASLD GWAS (109,885 cases/1,014,923 controls). We performed Mendelian Randomization (MR) and integrated proteins and their encoding genes in MASLD ranges to identify candidate causal proteins. We then validated them through independent replication, exome sequencing, liver imaging, bulk and single-cell gene expression, liver biopsies, pathway, and phenome-wide data. We explored the role of obesity by MR and multivariable MR across proteins, body mass index, and MASLD. RESULTS We found 929 proteins associated with MASLD, reported five novel genetic loci associated with MASLD, and identified 17 candidate MASLD protein targets. We identified four novel targets for MASLD (CD33, GRHPR, HMOX2, and SCG3), provided protein evidence supporting roles of AHCY, FCGR2B, ORM1, and RBKS in MASLD, and validated nine previously known targets. We found that CD33, FCGR2B, ORM1, RBKS, and SCG3 mediated the association of obesity and MASLD, and HMOX2, ORM1, and RBKS had effect on MASLD independent of obesity. CONCLUSIONS This study identified new protein targets in the causal pathway of MASLD, providing new insights into the multi-omics architecture and pathophysiology of MASLD. These findings advise further therapeutic interventions for MASLD.
Collapse
Affiliation(s)
- Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Genetics Centre-of-Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Sile Hu
- Genetics Centre-of-Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Lingyan Chen
- Genetics Centre-of-Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Charlotte Daly
- Department of Discovery Technology and Genomics, Novo Nordisk Research Centre Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Tom G Richardson
- Genetics Centre-of-Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Traylor
- Genetics Centre-of-Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Niall J Dempster
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Richard Mbasu
- Department of Discovery Technology and Genomics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Thomas Monfeuga
- AI & Digital Research, Research & Early Development, Novo Nordisk Research Centre Oxford, UK
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - V A Million
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Genetics Centre-of-Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
- Department of Discovery Technology and Genomics, Novo Nordisk Research Centre Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- AI & Digital Research, Research & Early Development, Novo Nordisk Research Centre Oxford, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Jeremy F Cobbold
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | | | - Joanna M M Howson
- Genetics Centre-of-Excellence, Novo Nordisk Research Centre Oxford, Oxford, UK
| |
Collapse
|
5
|
Şimsek Z, Alizade E, Abdurahmanova İ, Güner A, Zehir R, Pala S. Serum sortilin as a predictor of stroke in patients with intermediate carotid artery stenosis. Vascular 2023; 31:317-324. [PMID: 35403511 DOI: 10.1177/17085381211067051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sortilin was an important molecular protein involved in the pathogenesis of atherosclerosis. Besides, serum sortilin was associated with adverse cerebrovascular events. Atherosclerotic stenosis in the carotid artery is a major etiology for ischemic stroke. The risk of stroke in patients with intermediate carotid artery stenosis (CAS) was unknown. Hence, the aim of the present study was to evaluate the relationship between serum sortilin levels and stroke in patients with intermediate CAS. METHODS A total of 195 intermediate CAS patients were included in this cross-sectional study. The patients were divided into two groups as symptomatic (N = 95) and asymptomatic (N = 100) patients. Patients with a transient ischemic attack (TIA), retinal ischemic event, or ischemic stroke resulting from the narrowed carotid artery were considered to be symptomatic. Serum sortilin concentrations were measured using the enzyme-linked immunosorbent assay. RESULTS Serum sortilin level was significantly higher in the symptomatic group than in the severe asymptomatic group (1.53 ± 0.25 ng/mL vs 1.34 ± 0.19 ng/mL, p < 0.001). Besides, high serum sortilin levels (odds ratio = 4.91, 95% confidence intervals 1.24-19.51, p = 0.023) were identified as independent predictors of symptomatic carotid plaque. In the receiver operating characteristic curve analysis, serum sortilin levels higher than 1.34 ng/mL predicted stroke/TIA with a sensitivity of 66.3% and a specificity of 67% (AUC = 0.725, p < 0.001). CONCLUSIONS Serum sortilin level is increased in the presence of symptomatic intermediate CAS and may have clinical value in the management of patients with carotid artery disease.
Collapse
Affiliation(s)
- Zeki Şimsek
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Elnur Alizade
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - İlahe Abdurahmanova
- Department of Cardiology, Ministry of Emergency Situation of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Ahmet Güner
- Department of Cardiology, 187456Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Regayip Zehir
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Selçuk Pala
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
SUMOylation targeting mitophagy in cardiovascular diseases. J Mol Med (Berl) 2022; 100:1511-1538. [PMID: 36163375 DOI: 10.1007/s00109-022-02258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Small ubiquitin-like modifier (SUMO) plays a key regulatory role in cardiovascular diseases, such as cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. As a multifunctional posttranslational modification molecule in eukaryotic cells, SUMOylation is essentially associated with the regulation of mitochondrial dynamics, especially mitophagy, which is involved in the progression and development of cardiovascular diseases. SUMOylation targeting mitochondrial-associated proteins is admittedly considered to regulate mitophagy activation and mitochondrial functions and dynamics, including mitochondrial fusion and fission. SUMOylation triggers mitochondrial fusion to promote mitochondrial dysfunction by modifying Fis1, OPA1, MFN1/2, and DRP1. The interaction between SUMO and DRP1 induces SUMOylation and inhibits lysosomal degradation of DRP1, which is further involved in the regulation of mitochondrial fission. Both SUMOylation and deSUMOylation contribute to the initiation and activation of mitophagy by regulating the conjugation of MFN1/2 SERCA2a, HIF1α, and PINK1. SUMOylation mediated by the SUMO molecule has attracted much attention due to its dual roles in the development of cardiovascular diseases. In this review, we systemically summarize the current understanding underlying the expression, regulation, and structure of SUMO molecules; explore the biochemical functions of SUMOylation in the initiation and activation of mitophagy; discuss the biological roles and mechanisms of SUMOylation in cardiovascular diseases; and further provide a wider explanation of SUMOylation and deSUMOylation research to provide a possible therapeutic strategy for cardiovascular diseases. Considering the precise functions and exact mechanisms of SUMOylation in mitochondrial dysfunction and mitophagy will provide evidence for future experimental research and may serve as an effective approach in the development of novel therapeutic strategies for cardiovascular diseases. Regulation and effect of SUMOylation in cardiovascular diseases via mitophagy. SUMOylation is involved in multiple cardiovascular diseases, including cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. Since it is expressed in multiple cells associated with cardiovascular disease, SUMOylation can be regulated by numerous ligases, including the SENP family proteins PIAS1, PIASy/4, UBC9, and MAPL. SUMOylation regulates the activation and degradation of PINK1, SERCA2a, PPARγ, ERK5, and DRP1 to mediate mitochondrial dynamics, especially mitophagy activation. Mitophagy activation regulated by SUMOylation further promotes or inhibits ventricular diastolic dysfunction, perfusion injury, ventricular remodelling and ventricular noncompaction, which contribute to the development of cardiovascular diseases.
Collapse
|
7
|
AKADAM-TEKER AB, TEKER E. Effect of SORT1 rs599839 Polymorphism on Lipid Profiles: A Single City Experience. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.987894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Amaç: VPS10p ailesinin bir reseptörü olan Sortilin-1(SORT1)’i kodlayan SORT1 geni 1p13.3’de lokalizedir. SORT1 genom çapında ilişkilendirme çalışmalarında (GWAS) hepatik lipit metabolizması ve düşük dansiteli lipoprotein-kolesterol (LDL-K) seviyeleri ile olan ilişkisinden dolayı koroner kalp hastalığı (KKH) oluşturma riski ile ilişkilendirilmiştir. SORT1 gen bölgesi üzerindeki çeşitli varyasyonlar lipit profilleri üzerinde farklı etkilere neden olmaktadır. Bizim bu çalışmadaki amacımız; Giresun ilinde SORT1 rs599839 gen varyantlarının KKH gelişimi ve lipit parametreleri üzerine bir etkisinin olup olmadığını belirlemektir.Yöntem: Bu vaka-kontrol çalışmasında 396 kişiden oluşan erkek çalışma grubunda (209 KKH /187 kontrol) SORT1 rs599839 polimorfizmi için TaqMan 5’ Allelik Ayrım Testi ile genotipleme yapıldı.Bulgular: Hasta ve kontrol grupları arasında SORT1 rs599839 genotip dağılımları açısından istatistiksel olarak fark bulunmamaktadır (p=0.81). G allel varlığı hem hasta hem de kontrol grubunda daha düşük Total-Kolesterol (TK) (sırasıyla; p=0.005,p=0.032) ve LDL-K (sırasıyla; p=0.005,p=0.040) seviyelerine sebep olurken daha yüksek yüksek dansiteli lipoprotein-kolesterol (HDL-K) (sırasıyla; p=0.001,p=0.006) seviyeleri gözlenmiştir.Sonuç: Bulgularımız SORT1 rs599839 polimorfizminin direk olarak KKH patogenezine katkısının olmadığı yönündedir. Ancak, minör G allel varlığının TK ve LDL-K seviyelerini düşürürken, HDL-K seviyelerinde yükselmeye sebep olduğu görülmüştür. Bu durum minör G allel varlığının lipit profili üzerine olumlu etki gösterdiği ve KKH’a karşı koruyucu olduğu izlenimini vermiştir.
Collapse
Affiliation(s)
| | - Erhan TEKER
- Dr. Ali Menekşe Göğüs Hastalıkları Hastanesi
| |
Collapse
|
8
|
The association between serum Sestrin2 and the risk of coronary heart disease in patients with type 2 diabetes mellitus. BMC Cardiovasc Disord 2022; 22:281. [PMID: 35729499 PMCID: PMC9215095 DOI: 10.1186/s12872-022-02727-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Coronary heart disease (CHD) is one of the most common causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Oxidative stress is one of the important contributors to the pathogenesis of CHD. Sestrin2 is a stress-induced antioxidant protein that plays a important role in T2DM and CHD. However, the relationship between serum Sestrin2 levels and T2DM with CHD remains unclear.
Aim This study aimed to investigate the relationship between serum Sestrin2 levels and CHD in patients with type 2 diabetes. Methods A total of 70 T2DM patients with CHD and 69 T2DM patients were enrolled in this study. Clinical features and metabolic indices were identified. Serum Sestrin2 was measured by ELISA. Results Serum Sestrin2 levels in T2DM-CHD groups were significantly lower compared with the T2DM group (11.17 (9.79, 13.14) ng/mL vs 9.46 (8.34, 10.91) ng/mL). Bivariate correlation analysis revealed that serum Sestrin2 levels were negatively correlated with age (r = − 0.256, P = 0.002), BMI (r = − 0.206, P = 0.015), FBG (r = − 0.261, P = 0.002) and Tyg index (r = − 0.207, P < 0.014). Binary logistic regression suggested that low serum Sestrin2 levels were related to the increased risk of T2DM-CHD (P < 0.05). In addition, the receiver operating characteristic analysis revealed that the area under the curve of Sestrin2 was 0.724 (95% CI 0.641–0.808, P < 0.001) to predict T2DM-CHD patients (P < 0.001). Conclusion The Sestrin2 levels were highly associated with CHD in diabetes patients. Serum Sestrin2 may be involved in the occurrence and development of diabetic with CHD.
Collapse
|
9
|
Crocetin exerts hypocholesterolemic effect by inducing LDLR and inhibiting PCSK9 and Sortilin in HepG2 cells. Nutr Res 2022; 98:41-49. [DOI: 10.1016/j.nutres.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
|
10
|
PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Molecules 2022; 27:molecules27020434. [PMID: 35056760 PMCID: PMC8778893 DOI: 10.3390/molecules27020434] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
PCSK9 has now become an important target to create new classes of lipid-lowering drugs. The prevention of its interaction with LDL receptors allows an increase in the number of these receptors on the surface of the cell membrane of hepatocytes, which leads to an increase in the uptake of cholesterol-rich atherogenic LDL from the bloodstream. The PCSK9 antagonists described in this review belong to different classes of compounds, may have a low molecular weight or belong to macromolecular structures, and also demonstrate different mechanisms of action. The mechanisms of action include preventing the effective binding of PCSK9 to LDLR, stimulating the degradation of PCSK9, and even blocking its transcription or transport to the plasma membrane/cell surface. Although several types of antihyperlipidemic drugs have been introduced on the market and are actively used in clinical practice, they are not without disadvantages, such as well-known side effects (statins) or high costs (monoclonal antibodies). Thus, there is still a need for effective cholesterol-lowering drugs with minimal side effects, preferably orally bioavailable. Low-molecular-weight PCSK9 inhibitors could be a worthy alternative for this purpose.
Collapse
|
11
|
Simsek Z, Alizade E, Güner A, Zehir R. Correlation between serum sortilin levels and severity of extracranial carotid artery stenosis. Int J Clin Pract 2021; 75:e14733. [PMID: 34387924 DOI: 10.1111/ijcp.14733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory vascular condition characterised by intimal thickening with cholesterol accumulation and macrophage foam cell infiltration causing plaque formation at the site of the injured vessel wall. This condition is a major contributor to carotid artery stenosis (CAS). Sortilin, a member of the mammalian vacuolar protein sorting 10 protein family, promotes uptake of low-density lipoprotein particles into macrophages with consequent foam cell formation independent of the low-density lipoprotein receptor, and thereby, accelerates atherosclerotic plaque formation and progression. We investigated the correlation between serum sortilin levels and the severity of extracranial CAS. MATERIALS AND METHODS The study included 149 patients who underwent carotid angiography for suspected carotid artery disease. The North American Symptomatic Carotid Endarterectomy Trial 2011 criteria were used to determine the degree of CAS. Serum sortilin concentrations were measured using the enzyme-linked immunosorbent assay. RESULTS Serum sortilin levels were significantly higher in the severe CAS than in the non-severe CAS group (2.71 ± 0.71 ng/mL vs 1.63 ± 0.57 ng/mL, P < .001). Receiver operating characteristic curve analysis showed that serum sortilin levels >1.66 ng/mL predicted severe CAS with sensitivity of 83.49% and specificity of 56.76%. CONCLUSION Current data suggest that prediction of severe CAS may serve as an atherosclerosis biomarker and significantly contribute to research on disease progression in atherosclerosis, as well as in other arterial diseases. Sortilin may be a potential therapeutic target owing to its role in the pathogenesis of atherosclerotic carotid artery disease.
Collapse
Affiliation(s)
- Zeki Simsek
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Elnur Alizade
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Ahmet Güner
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Regayip Zehir
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
12
|
Werida RH, Omran A, El-Khodary NM. Sortilin and Homocysteine as Potential Biomarkers for Coronary Artery Diseases. Int J Gen Med 2021; 14:6167-6176. [PMID: 34611430 PMCID: PMC8485923 DOI: 10.2147/ijgm.s324889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to assess the relationship of coronary artery disease (CAD) with levels of homocysteine and sortilin in Egyptian patients. Background CAD is a primary contributor to cardiac disease and a prominent cause of death globally. Patients and Methods We enrolled 45 patients with CAD evaluated by coronary CT angiography and 42 control subjects without CAD. Plasma-homocysteine and -sortilin levels were measured with a commercial ELISA kit. Results Elevated levels of homocysteine and sortilin were observed in the CAD patients compared to controls (13.75±1.40 vs 7.73±2.06 μmol/L, P=0 and 160.91±32.17 vs 143.02±32.30 ng/dL, P=0.02, respectively). Significantly higher total cholesterol, low density–lipoprotein cholesterol and triglycerides (P<0.05) and lower high density–lipoprotein cholesterol (P<0.05) were seen among patients with CAD than the control group. Sortilin levels were positively associated with homocysteine levels (r=0.32, P=0.006), total cholesterol (r=0.61, P=0), low density–lipoprotein cholesterol (r=0.37, P=0.001), triglycerides (r=0.91, P=0), troponin I (r=0.82, P=0), Gensini score (r=0.93, P=0) and high-sensitivity CRP (r=0.87, P=0) in all subjects. Homocysteine has a significantly negative association with high density–lipoprotein cholesterol (r=−0.42, P=0). Conclusion Elevated homocysteine and sortilin levels are crucial risk factors of CAD in Egyptian patients.
Collapse
Affiliation(s)
- Rehab H Werida
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ayman Omran
- Department of Cardiology, Damanhour National Medical Institute, Damanhour, Egypt
| | - Noha M El-Khodary
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
13
|
Zhang Q, Lin W, Tian L, Di B, Yu J, Niu X, Liu J. Oxidized low-density lipoprotein activates extracellular signal-regulated kinase signaling to downregulate sortilin expression in liver sinusoidal endothelial cells. J Gastroenterol Hepatol 2021; 36:2610-2618. [PMID: 33694195 PMCID: PMC8518938 DOI: 10.1111/jgh.15486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Both type 2 diabetes mellitus and non-alcoholic fatty liver disease are closely associated with elevated levels of low-density lipoprotein cholesterol and its oxidized form (ox-LDL). This study aimed to investigate the regulation of sortilin in liver tissue and its potential implications for lipid metabolism. METHODS Sixty male Wistar rats were randomly divided into four groups: control group (n = 15), ox-LDL group (n = 15), PD98059 group (n = 15), and ox-LDL + PD98059 group (n = 15). Liver sinusoidal endothelial cells were extracted from liver tissue of the control group and were identified using an anti-CD31 antibody. Lipid droplet accumulation was observed by Oil red O and hematoxylin-eosin staining. The protein expression levels were detected by immunohistochemical staining, real-time reverse transcription-polymerase chain reaction, and western blot. Histopathologic examinations were performed by Gomori methenamine silver staining. RESULTS The ox-LDL group exhibited increased lipid droplet accumulation. Further, ox-LDL activated the extracellular signal-regulated kinase (ERK)-mediated downregulation of sortilin expression, whereas blocking of ERK signaling by PD98059 increased sortilin protein expression. Consistently, hematoxylin-eosin staining showed that the structure of the hepatocytes was loose and disordered in arrangement, with lipid droplets present in the cytoplasm of the ox-LDL group. However, PD98059 significantly improved the integration of the scaffold structure. Gomori methenamine silver staining showed that the ox-LDL group had darker and more obvious fragmented silver nitrate deposits in the basement membrane and sinus space. CONCLUSIONS Sortilin can protect liver sinusoidal endothelial cells from injury and maintain integration of the liver scaffold structure in ox-LDL-induced lipid-injured liver.
Collapse
Affiliation(s)
- Qi Zhang
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Wenyan Lin
- Gansu Provincial Hospital West CampusLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Limin Tian
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Baoshan Di
- Gansu Provincial Hospital West CampusLanzhouChina
| | - Jing Yu
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| | - Xiang'e Niu
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina,Gansu University of Chinese MedicineLanzhouChina
| | - Jing Liu
- Department of EndocrinologyGansu Provincial HospitalLanzhouChina,Clinical Research Center for Metabolic DiseasesGansu ProvincialLanzhouChina
| |
Collapse
|
14
|
Zhou C, Song H, Feng J, Hu Z, Yu ZL, Yang MJ, Shi P, Li YR, Guo YJ, Zhang T. RNA-Seq analysis and WGCNA reveal dynamic molecular responses to air exposure in the hard clam Mercenaria mercenaria. Genomics 2021; 113:2847-2859. [PMID: 34153497 DOI: 10.1016/j.ygeno.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Intertidal bivalves are constantly exposed to air due to daily and seasonal tidal cycles. The hard clam Mercenaria mercenaria is an economically important bivalve species and often subjected to air exposure for more than 10 days during long-distance transportation. Hard clam exhibits remarkable tolerance to air exposure. In this study, we performed RNA sequencing on hemocytes of M. mercenaria exposed to air for 0, 1, 5, 10, 20 and 30 days. The overall and dynamic molecular responses of hard clams to air exposure were revealed by different transcriptomic analysis strategies. As a result, most cytochrome P450 1A and 3A, and monocarboxylate transporter family members were up-regulated during air exposure. Additionally, the dominant molecular process in response to 5-d, 10-d, 20-d and 30-d air exposure was refolding of misfolded proteins in endoplasmic reticulum, lysosome-mediated degradation of phospholipids, protein metabolism and reorganization of cytoskeleton, and activation of anti-apoptotic process, respectively. Our results facilitated comprehensive understanding of the tolerance mechanisms of intertidal bivalves to air exposure.
Collapse
Affiliation(s)
- Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
15
|
Caveolin-1 in autophagy: A potential therapeutic target in atherosclerosis. Clin Chim Acta 2021; 513:25-33. [DOI: 10.1016/j.cca.2020.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
|
16
|
Christou N, Blondy S, David V, Verdier M, Lalloué F, Jauberteau MO, Mathonnet M, Perraud A. Neurotensin pathway in digestive cancers and clinical applications: an overview. Cell Death Dis 2020; 11:1027. [PMID: 33268796 PMCID: PMC7710720 DOI: 10.1038/s41419-020-03245-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Initially, NEUROTENSIN (NTS) has been shown to play physiological and biological functions as a neuro-transmitter/modulator in the central nervous system and as an endocrine factor in the periphery, through its binding to two kinds of receptors: NTSR1 and 2 (G protein-coupled receptors) and NTSR3/sortilin (a vacuolar protein-sorting 10-domain receptor). NTS also plays oncogenic roles in many types of cancer, including digestive cancers. In tumor tissues, NTS and NTSR1 expression is higher than in healthy ones and is associated with poor prognosis. NTS and NTRS1 promote cancer progression and play key functions in metastatic processes; they modulate several signaling pathways and they contribute to changes in the tumor microenvironment. Conversely, NTRS2 involvement in digestive cancers is poorly understood. Discovered for mediating NTS biological effects, sortilin recently emerged as a promising target as its expression was found to be increased in various types of cancers. Because it can be secreted, a soluble form of sortilin (sSortilin) appears as a new serum biomarker which, on the basis of recent studies, promises to be useful in both the diagnosis and tumor progression monitoring. More precisely, it appears that soluble sortilin can be associated with other receptors like TRKB. These associations occur in exosomes and trigger the aggressiveness of cancers like glioblastoma, leading to the concept of a possible composite theranostic biomarker. This review summarizes the oncogenic roles of the NTS signaling pathways in digestive cancers and discusses their emergence as promising early diagnostic and/or prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Niki Christou
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France.
- Service de Chirurgie Digestive, Endocrinienne et Générale, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France.
| | - Sabrina Blondy
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Valentin David
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service de Pharmacie, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| | - Mireille Verdier
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Fabrice Lalloué
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Marie-Odile Jauberteau
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service d'Immunologie, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| | - Muriel Mathonnet
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service de Chirurgie Digestive, Endocrinienne et Générale, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| | - Aurélie Perraud
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service de Chirurgie Digestive, Endocrinienne et Générale, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| |
Collapse
|
17
|
Sparks RP, Arango AS, Jenkins JL, Guida WC, Tajkhorshid E, Sparks CE, Sparks JD, Fratti RA. An Allosteric Binding Site on Sortilin Regulates the Trafficking of VLDL, PCSK9, and LDLR in Hepatocytes. Biochemistry 2020; 59:4321-4335. [PMID: 33153264 DOI: 10.1021/acs.biochem.0c00741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ApoB lipoproteins (apo B-Lp) are produced in hepatocytes, and their secretion requires the cargo receptor sortilin. We examined the secretion of apo B-Lp-containing very low-density lipoprotein (VLDL), an LDL progenitor. Sortilin also regulates the trafficking of the subtilase PCSK9, which when secreted binds the LDL receptor (LDLR), resulting in its endocytosis and destruction at the lysosome. We show that the site 2 binding compound (cpd984) has multiple effects in hepatocytes, including (1) enhanced Apo-Lp secretion, (2) increased cellular PCSK9 retention, and (3) augmented levels of LDLR at the plasma membrane. We postulate that cpd984 enhances apo B-Lp secretion in part through binding the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3), which is present at higher levels on circulating VLDL form fed rats relative to after fasting. We attribute the enhanced VLDL secretion to its increased binding affinity for sortilin site 1 induced by cpd984 binding site 2. This hinders PCSK9 binding and secretion, which would subsequently prevent its binding to LDLR leading to its degradation. This suggests that site 2 is an allosteric regulator of site 1 binding. This effect is not limited to VLDL, as cpd984 augments binding of the neuropeptide neurotensin (NT) to sortilin site 1. Molecular dynamics simulations demonstrate that the C-terminus of NT (Ct-NT) stably binds site 1 through an electrostatic interaction. This was bolstered by the ability of Ct-NT to disrupt lower-affinity interactions between sortilin and the site 1 ligand PIP3. Together, these data show that binding cargo at sortilin site 1 is allosterically regulated through site 2 binding, with important ramifications for cellular lipid homeostasis involving proteins such as PCSK9 and LDLR.
Collapse
Affiliation(s)
- Robert P Sparks
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jermaine L Jenkins
- Structural Biology & Biophysics Facility, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Wayne C Guida
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles E Sparks
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Janet D Sparks
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Gao A, Li F, Zhou Q, Chen L. Sestrin2 as a potential therapeutic target for cardiovascular diseases. Pharmacol Res 2020; 159:104990. [PMID: 32505836 DOI: 10.1016/j.phrs.2020.104990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Sestrin2 is a cysteine sulfinyl reductase that plays crucial roles in regulation of antioxidant actions. Sestrin2 provides cytoprotection against multiple stress conditions, including hypoxia, endoplasmic reticulum (ER) stress and oxidative stress. Recent research reveals that upregulation of Sestrin2 is induced by various transcription factors such as p53 and activator protein 1 (AP-1), which further promotes AMP-activated protein kinase (AMPK) activation and inhibits mammalian target of rapamycin protein kinase (mTOR) signaling. Sestrin2 triggers autophagy activity to reduce cellular reactive oxygen species (ROS) levels by promoting nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) activation and Kelch-like ECH-associated protein 1 (Keap1) degradation, which plays a pivotal role in homeostasis of metabolic regulation. Under hypoxia and ER stress conditions, elevated Sestrin2 expression maintains cellular homeostasis through regulation of antioxidant genes. Sestrin2 is responsible for diminishing cellular ROS accumulation through autophagy via AMPK activation, which displays cardioprotection effect in cardiovascular diseases. In this review, we summarize the recent understanding of molecular structure, biological roles and biochemical functions of Sestrin2, and discuss the roles and mechanisms of Sestrin2 in autophagy, hypoxia and ER stress. Understanding the precise functions and exact mechanism of Sestrin2 in cellular homeostasis will provide the evidence for future experimental research and aid in the development of novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Anbo Gao
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China
| | - Feng Li
- Medical Shcool, Hunan University of Chinese Medicine, Changsha 410000, Hunan, People's Republic of China
| | - Qun Zhou
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, People's Republic of China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Provincial Science and Technology Department, 28 Western Changshen Road, Hengyang 421002, Hunan, People's Republic of China.
| |
Collapse
|
20
|
Huang S, Yu X, Wang H, Zheng J. Elevated serum sortilin is related to carotid plaque concomitant with calcification. Biomark Med 2020; 14:381-389. [PMID: 32077308 DOI: 10.2217/bmm-2019-0472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To explore whether elevated serum sortilin was associated with calcified carotid plaque and ischemic stroke. Methods: A total of 171 patients with cardiovascular risk factors were enrolled. Ultrasonography was performed to evaluate calcified plaques and noncalcified plaques. Serum sortilin concentration was measured by ELISA. Results: Serum sortilin level was higher in patients with calcified carotid plaque and positively related to carotid plaque burden, but not with ischemic stroke during the follow-up. Multivariable logistic regression analysis revealed serum sortilin level was an independent determinant for calcified carotid plaque (p = 0.001). Receiving operating characteristic analysis showed an area under the curve of sortilin for carotid calcification was 0.759. Conclusion: Higher serum sortilin level was associated with carotid calcification and severe carotid plaque score.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Ultrasound, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, Guangdong, PR China
| | - Xingxing Yu
- Department of Internal Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Haiqing Wang
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Jianlei Zheng
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| |
Collapse
|
21
|
Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin Chim Acta 2020; 506:72-83. [PMID: 32092316 DOI: 10.1016/j.cca.2020.02.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/29/2022]
Abstract
The present review is a summary of the recent literature concerning Bnip3 expression, function, and regulation, along with its implications in mitochondrial dysfunction, disorders of mitophagy homeostasis, and development of diseases of secondary mitochondrial dysfunction. As a member of the Bcl-2 family of cell death-regulating factors, Bnip3 mediates mPTP opening, mitochondrial potential, oxidative stress, calcium overload, mitochondrial respiratory collapse, and ATP shortage of mitochondria from multiple cells. Recent studies have discovered that Bnip3 regulates mitochondrial dysfunction, mitochondrial fragmentation, mitophagy, cell apoptosis, and the development of lipid disorder diseases via numerous cellular signaling pathways. In addition, Bnip3 promotes the development of cardiac hypertrophy by mediating inflammatory response or the related signaling pathways of cardiomyocytes and is also responsible for raising abnormal mitophagy and apoptosis progression through multiple molecular signaling pathways, inducing the pathogenesis and progress of hepatocellular carcinoma (HCC). Different molecules regulate Bnip3 expression at both the transcriptional and post-transcriptional level, leading to mitochondrial dysfunction and unbalance of mitophagy in hepatocytes, which promotes the development of non-alcoholic fatty liver disease (NAFLD). Thus, Bnip3 plays an important role in mitochondrial dysfunction and mitophagy homeostasis and has emerged as a promising therapeutic target for diseases of secondary mitochondrial dysfunction.
Collapse
|
22
|
Lv YC, Gao AB, Yang J, Zhong LY, Jia B, Ouyang SH, Gui L, Peng TH, Sun S, Cayabyab FS. Long-term adenosine A1 receptor activation-induced sortilin expression promotes α-synuclein upregulation in dopaminergic neurons. Neural Regen Res 2020; 15:712-723. [PMID: 31638096 PMCID: PMC6975149 DOI: 10.4103/1673-5374.266916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neurodegenerative diseases. However, the pathogenesis underlying long-term adenosine A1 receptor activation-induced neurodegeneration remains unclear. In this study, rats were intraperitoneally injected with 5 mg/kg of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) for five weeks. The mobility of rats was evaluated by forced swimming test, while their cognitive capabilities were evaluated by Y-maze test. Expression of sortilin, α-synuclein, p-JUN, and c-JUN proteins in the substantia nigra were detected by western blot analysis. In addition, immunofluorescence staining of sortilin and α-synuclein was performed to detect expression in the substantia nigra. The results showed that, compared with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg) + CPA co-treated rats, motor and memory abilities were reduced, surface expression of sortin and α-synuclein in dopaminergic neurons was reduced, and total sortilin and total α-synuclein were increased in CPA-treated rats. MN9D cells were incubated with 500 nM CPA alone or in combination with 10 μM SP600125 (JNK inhibitor) for 48 hours. Quantitative real-time polymerase chain reaction analysis of sortilin and α-synuclein mRNA levels in MN9D cells revealed upregulated sortilin expression in MN9D cells cultured with CPA alone, but the combination of CPA and SP600125 could inhibit this expression. Predictions made using Jasper, PROMO, and Alibaba online databases identified a highly conserved sequence in the sortilin promoter that was predicted to bind JUN in both humans and rodents. A luciferase reporter assay of sortilin promoter plasmid-transfected HEK293T cells confirmed this prediction. After sortilin expression was inhibited by sh-SORT1, expression of p-JUN and c-JUN was detected by western blot analysis. Long-term adenosine A1 receptor activation levels upregulated α-synuclein expression at the post-transcriptional level by affecting sortilin expression. The online tool Raptor-X-Binding and Discovery Studio 4.5 prediction software predicted that sortilin can bind to α-synuclein. Co-immunoprecipitation revealed an interaction between sortilin and α-synuclein in MN9D cells. Our findings indicate that suppression of prolonged adenosine A1 receptor activation potently inhibited sortilin expression and α-synuclein accumulation, and dramatically improved host cognition and kineticism. This study was approved by the University Committee of Animal Care and Supply at the University of Saskatchewan (approval No. AUP#20070090) in March 2007 and the Animals Ethics Committee of University of South China (approval No. LL0387-USC) in June 2017.
Collapse
Affiliation(s)
- Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China; Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - An-Bo Gao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College; Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan Province, China
| | - Jing Yang
- Department of Metabolism & Endocrinology, the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Li-Yuan Zhong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Bo Jia
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Shu-Hui Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Le Gui
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Tian-Hong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
23
|
Jing L, Li L, Ren X, Sun Z, Bao Z, Yuan G, Cai H, Wang L, Shao C, Wang Z. Role of Sortilin and Matrix Vesicles in Nε-Carboxymethyl-Lysine-Induced Diabetic Atherosclerotic Calcification. Diabetes Metab Syndr Obes 2020; 13:4141-4151. [PMID: 33177854 PMCID: PMC7650042 DOI: 10.2147/dmso.s273029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS To investigate the role of Sortilin and matrix vesicles (MVs) in Nε-Carboxymethyl-lysine (CML)-induced diabetic atherosclerotic calcification (AC). METHODS At human level, the correlation between Sortilin and CD9 (marker proteins of MVs) in serum MVs and CML in serum was explored by enzyme-linked immunosorbent assay (ELISA) detection and Pearson correlation analysis. After a diabetic apoE-/- mouse model was constructed, the calcification of aorta and the expressions of related proteins under CML and MVs injection were observed by calcification staining, immunofluorescence staining, and Western blot. MVs levels released by smooth muscle cells (SMCs) under different treatments was detected by nanometer tracking analysis (NTA). After treating SMCs with MVs and Anti-Sortilin, cell calcification was observed by Alizarin red staining. RESULTS Serological analysis of patients showed that the concentrations of Sortilin and CD9 in serum MVs were positively correlated with the concentration of CML in serum. Animal experiments showed that CML could promote the progression of diabetic AC and the high expression of Sortilin in plaques. Diabetic apoE-/- mouse tail vein injection of CML-induced SMCs-derived MVs obviously aggravated AC. Cell experiment results showed that a high concentration of CML significantly promoted the release of MVs from SMCs. MVs from this source could markedly worsen cell calcification, while the administration of GW4869 (a widely used extracellular vesicles biogenesis inhibitor) significantly reduced cell calcification. Finally, treatment of high concentrations of CML could also promote the recruitment of Sortilin to MVs, and administration of Anti-Sortilin could markedly reduce cell calcification caused by MVs. CONCLUSION We proved that CML not only affects the release of MVs from SMCs but also affects the recruitment of Sortilin to MVs, thereby promoting diabetic AC. This discovery may provide a new strategy for targeted prevention of vascular calcification in diabetes.
Collapse
Affiliation(s)
- Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
| | - Xiaomei Ren
- Department of Geriatrics, Zhongda Hospital Affiliated of Southeast University, Nanjing, People’s Republic of China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
| | - Zhengyang Bao
- Department of Internal Medicine, Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi214000, People’s Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
| | - Honghua Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
| | - Lin Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang212001, People’s Republic of China
- Correspondence: Zhongqun Wang Department of Cardiology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang212001, People’s Republic of ChinaTel +86 511 85030586 Email
| |
Collapse
|
24
|
Sun S, Yang J, Xie W, Peng T, Lv Y. Complicated trafficking behaviors involved in paradoxical regulation of sortilin in lipid metabolism. J Cell Physiol 2019; 235:3258-3269. [PMID: 31608989 DOI: 10.1002/jcp.29292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
This review aims to summarize and discuss the most recent advances in our understanding of the underlying mechanisms of the paradoxical effects of sortilin on lipid metabolism. The vacuolar protein sorting 10 protein (Vps10p) domain in the sortilin protein is responsible for substrate binding. Its cytoplasmic tail interacts with adaptor molecules, and modifications can determine whether sortilin trafficking occurs via the anterograde or retrograde pathway. The complicated trafficking behaviors likely contribute to the paradoxical roles of sortilin in lipid metabolism. The anterograde pathway of sortilin trafficking in hepatocytes, enterocytes, and peripheral cells likely causes an increase in plasma lipid levels, while the retrograde pathway leads to the opposite effect. Hepatocyte sortilin functions via the anterograde or retrograde pathway in a complicated and paradoxical manner to regulate apoB-containing lipoprotein metabolism. Clarifying the regulatory mechanisms underlying the trafficking behaviors of sortilin is necessary and may lead to artificial sortilin intervention as a potential therapeutic strategy for lipid disorder diseases. Conclusively, the paradoxical regulation of sortilin in lipid metabolism is likely due to its complicated trafficking behaviors.
Collapse
Affiliation(s)
- Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang City, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| |
Collapse
|
25
|
Lv Y, Yang J, Gao A, Sun S, Zheng X, Chen X, Wan W, Tang C, Xie W, Li S, Guo D, Peng T, Zhao G, Zhong L. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:471-483. [PMID: 30950489 DOI: 10.1093/abbs/gmz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 11/13/2022] Open
Abstract
Sortilin is closely associated with hyperlipidemia and the risk of atherosclerosis (AS). The role of sortilin and the underlying mechanism in peripheral macrophage are not fully understood. In this study, we investigated the effect of macrophage sortilin on ATP-binding cassette transporter A1 (ABCA1) expression, ABCA1-mediated cholesterol efflux, and aortic AS. Macrophage sortilin expression was upregulated by oxidized low-density lipoproteins (ox-LDLs) in both concentration- and time-dependent manners. Its expression reached the peak level when cells were incubated with 50 μg/ml ox-LDL for 24 h. Overexpression of sortilin in macrophage reduced cholesterol efflux, leading to an increase in intracellular total cholesterol, free cholesterol, and cholesterol ester. Sortilin was found to bind with ABCA1 protein and suppress macrophage ABCA1 expression, resulting in a decrease in cholesterol efflux from macrophages. The inhibitory effect of sortilin in cholesterol efflux was partially reversed by treatment with chloroquine, a lysosomal inhibitor. On the contrary, the ABCA1 protein level and ABCA1-mediated cholesterol efflux is increased by sortilin short hairpin RNA transfection. The fecal and biliary cholesterol 3H-sterol from cholesterol-laden mouse peritoneal macrophage was reduced by sortilin overexpression through lentivirus vector (LV)-sortilin in low-density lipoprotein receptor knockout mice, which was prevented by co-treatment with chloroquine. Treatment with LV-sortilin reduced plasma high-density lipoprotein and increased plasma ox-LDL levels. Accordingly, aortic lipid deposition and plaque area were exacerbated, and ABCA1 expression was reduced in mice in response to infection with LV-sortilin alone. These effects of LV-sortilin were partially reversed by chloroquine. Sortilin enhances lysosomal degradation of ABCA1 protein and suppresses ABCA1-mediated cholesterol efflux from macrophages, leading to foam cell formation and AS development.
Collapse
Affiliation(s)
- Yuncheng Lv
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Anbo Gao
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Sha Sun
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Xilong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Canada
| | - Xi Chen
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Wei Wan
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Medical Research Center, University of South China, Hengyang, China
| | - Wei Xie
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Dongming Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Guojun Zhao
- Department of Histology and Embryology, Guilin Medical University, Guilin, China
| | - Liyuan Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| |
Collapse
|
26
|
Saadane A, Petrov A, Mast N, El-Darzi N, Dao T, Alnemri A, Song Y, Dunaief JL, Pikuleva IA. Mechanisms that minimize retinal impact of apolipoprotein E absence. J Lipid Res 2018; 59:2368-2382. [PMID: 30333155 DOI: 10.1194/jlr.m090043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein E (APOE) is a component of lipid-transporting particles and a recognition ligand for receptors, which bind these particles. The APOE isoform ε2 is a risk factor for age-related macular degeneration; nevertheless, APOE absence in humans and mice does not significantly affect the retina. We found that retinal cholesterol biosynthesis and the levels of retinal cholesterol were increased in Apoe-/- mice, whereas cholesterol elimination by metabolism was decreased. No focal cholesterol deposits were observed in the Apoe-/- retina. Retinal proteomics identified the most abundant cholesterol-related proteins in WT mice and revealed that, of these cholesterol-related proteins, only APOA4 had increased expression in the Apoe-/- retina. In addition, there were changes in retinal abundance of proteins involved in proinflammatory and antiinflammatory responses, cellular cytoskeleton maintenance, vesicular traffic, and retinal iron homeostasis. The data obtained indicate that when APOE is absent, particles containing APOA1, APOA4, and APOJ still transport cholesterol in the intraretinal space, but these particles are not taken up by retinal cells. Therefore, cholesterol biosynthesis inside retinal cells increase, whereas metabolism to oxysterols decreases to prevent cells from cholesterol depletion. These and other compensatory changes underlie only a minor retinal phenotype in Apoe-/- mice.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Alexey Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Tung Dao
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Ahab Alnemri
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ying Song
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joshua L Dunaief
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
27
|
Feng L, Dou C, Wang J, Jiang C, Ma X, Liu J. Upregulated 14‑3‑3β aggravates restenosis by promoting cell migration following vascular injury in diabetic rats with elevated levels of free fatty acids. Int J Mol Med 2018; 42:1074-1085. [PMID: 29749466 DOI: 10.3892/ijmm.2018.3671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/09/2018] [Indexed: 11/05/2022] Open
Abstract
Mono‑unsaturated free fatty acids (FFAs) can serve as a predictive indicator of vascular restenosis following interventional therapy, particularly in individuals with high‑fat diet‑induced type 2 diabetes. However, the pathogenic mechanism remains to be fully elucidated. In the present study, the levels of tyrosine 3‑monooxygenase/tryptophan 5‑monooxygenase activation protein β (YWHAB; also known as 14‑3‑3β), in vascular smooth muscle cells (VSMCs) treated with different concentrations of oleic acid (OA) were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. The migration of VSMCs was examined using wound‑healing and Transwell migration assays. The protein distribution of B‑cell lymphoma 2 (BCL‑2)‑associated death promoter (BAD) in VSMCs treated with OA was examined by immunofluorescence and western blot analyses. In in vivo experiments, the carotid artery morphology of rats in different groups was assessed at 14 days post‑injury by non-invasive ultrasonographic imaging and confirmed by histological staining. The expression of YWHAB was upregulated by OA in a concentration‑dependent manner in VSMCs. In the in vivo experiments, carotid stenosis was more serious among high‑FFA diabetic rats. However, silencing of YWHAB significantly alleviated carotid neointimal hyperplasia among the diabetic rats with elevated FFA levels. In addition, YWHAB silencing alleviated the migration of OA‑treated VSMCs and increased translocation of the BAD protein from the cytoplasm to the mitochondria. In conclusion, the results showed that FFA‑induced upregulation of YWHAB was involved in neointimal hyperplasia by enhancing the migration of VSMCs following carotid artery injury. The inhibition of YWHAB may serve as a novel potential pharmacological target for preventing vascular restenosis following interventional therapy in diabetic individuals with high FFA levels.
Collapse
Affiliation(s)
- Lishuai Feng
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chaoran Dou
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chunyu Jiang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xu Ma
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jingjing Liu
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|