1
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Jiang B, Yang J, He R, Wang D, Huang Y, Zhao G, Ning M, Zeng T, Li G. Integrated multi-omics analysis for lung adenocarcinoma in Xuanwei, China. Aging (Albany NY) 2023; 15:14263-14291. [PMID: 38095636 PMCID: PMC10756121 DOI: 10.18632/aging.205300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Xuanwei lung cancer (XWLC) is well-known for its high incidence and mortality. However, the molecular mechanism is still unclear. METHODS We performed a comprehensive transcriptomic, proteomic, and phosphoproteomic characterization of tumors and matched normal adjacent tissues from three XWLC patients with lung adenocarcinoma (LUAD). RESULTS Integrated transcriptome and proteome analysis revealed dysregulated molecules and pathways in tumors and identified enhanced metabolic-disease coupling. Non-coding RNAs were widely involved in post-transcriptional regulatory mechanisms to coordinate the progress of LUAD and partially explained the molecular differences between RNA and protein expression patterns. Phosphoproteome provided evidence support for new phosphate sites, reporting the potential roles of core kinase family members and key kinase pathways involved in metabolism, immunity, and homeostasis. In addition, by comparing with the previous LUAD researches, we emphasized the higher degree of oxidative phosphorylation in Xuanwei LUAD and pointed that VIPR1 deficiency aggravated metabolic dysfunction. CONCLUSION Our integrated multi-omics analysis provided a powerful resource for a systematic understanding of the molecular structure of XWLC and proposed therapeutic opportunities based on redox metabolism.
Collapse
Affiliation(s)
- Boyi Jiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Jiapeng Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Rui He
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Dong Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Mingjie Ning
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Teng Zeng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| | - Guangjian Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650032, China
| |
Collapse
|
3
|
Androgen Plays a Potential Novel Hormonal Therapeutic Role in Th17 Cells Predominant Neutrophilic Severe Asthma by Attenuating BECs Regulated Th17 Cells Differentiation via MBD2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3096528. [PMID: 36062195 PMCID: PMC9436621 DOI: 10.1155/2022/3096528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022]
Abstract
T helper 17 (Th17) cells subtype of non-T2 asthma is less responsive (resistant) to inhaled corticosteroids (ICS), so also called severe asthma. Methyl-CpG-binding domain protein 2 (MBD2) regulates the differentiation of the Th17 cells, showing the possibility of a therapeutic target in severe asthma. Androgen tends to show beneficial therapeutic effects and is a “hot research topic,” but its role in the differentiation and expression of Th17 cells via MBD2 is still unknown. The aim of this study was to evaluate how sex hormone interacts with MBD2 and affects the differentiation and expression of Th17 cells in severe asthma. Here, first, we measured the concentration of androgen, estrogen, and androgen estrogen ratio from subjects and correlated it with severe asthma status. Then, we established an animal model and bronchial epithelial cells (BECs) model of severe asthma to evaluate the role of MBD2 in the differentiation and expression of Th17 cells (IL-17), the therapeutic potential of sex hormones in severe asthma, and the effect of sex hormones in BECs regulated Th17 cells differentiation via MBD2 at the cellular level. Increased MBD2 expression and Th17 cells differentiation were noted in the animal and the BECs severe asthma models. Th17 cell differentiation and expression were MBD2 dependent. Androgen attenuated the differentiation of BECs regulated Th17 cells via MBD2 showing BECs as a therapeutic target of androgen, and these findings postulate the novel role of androgen in Th17 cells predominant neutrophilic severe asthma therapy through targeting MBD2.
Collapse
|
4
|
Hodeib H, Abd EL Hai D, Tawfik MA, Allam AA, Selim AF, Sarhan ME, Selim A, Sabry NM, Mansour W, Youssef A. The Impact of SKP2 Gene Expression in Chronic Myeloid Leukemia. Genes (Basel) 2022; 13:948. [PMID: 35741710 PMCID: PMC9223289 DOI: 10.3390/genes13060948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction: The prognosis of chronic myeloid leukemia (CML) patients has been dramatically improved with the introduction of imatinib (IM), the first tyrosine kinase inhibitor (TKI). TKI resistance is a serious problem in IM-based therapy. The human S-phase kinase-associated protein 2 (SKP2) gene may play an essential role in the genesis and progression of CML. Aim of the study: We try to explore the diagnostic/prognostic impact of SKP2 gene expression to predict treatment response in first-line IM-treated CML patients at an early response stage. Patients and methods: The gene expression and protein levels of SKP2 were determined using quantitative RT-PCR and ELISA in 100 newly diagnosed CML patients and 100 healthy subjects. Results: SKP2 gene expression and SKP2 protein levels were significantly upregulated in CML patients compared to the control group. The receiver operating characteristic (ROC) analysis for the SKP2 gene expression level, which that differentiated the CML patients from the healthy subjects, yielded a sensitivity of 86.0% and a specificity of 82.0%, with an area under the curve (AUC) of 0.958 (p < 0.001). The ROC analysis for the SKP2 gene expression level, which differentiated optimally from the warning/failure responses, yielded a sensitivity of 70.59% and a specificity of 71.21%, with an AUC of 0.815 (p < 0.001). Conclusion: The SKP2 gene could be an additional diagnostic and an independent prognostic marker for predicting treatment responses in first-line IM-treated CML patients at an early time point (3 months).
Collapse
Affiliation(s)
- Hossam Hodeib
- Clinical Pathology Department, Tanta University, Tanta 31527, Egypt; (H.H.); (D.A.E.H.); (A.Y.)
| | - Dina Abd EL Hai
- Clinical Pathology Department, Tanta University, Tanta 31527, Egypt; (H.H.); (D.A.E.H.); (A.Y.)
| | - Mohamed A. Tawfik
- Internal Medicine Department, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.F.S.); (M.E.S.); (A.S.)
| | - Alzahraa A. Allam
- Internal Medicine Department, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.F.S.); (M.E.S.); (A.S.)
| | - Ahmed F. Selim
- Internal Medicine Department, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.F.S.); (M.E.S.); (A.S.)
| | - Mohamed E. Sarhan
- Internal Medicine Department, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.F.S.); (M.E.S.); (A.S.)
| | - Amal Selim
- Internal Medicine Department, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.F.S.); (M.E.S.); (A.S.)
| | - Nesreen M. Sabry
- Clinical Oncology Department, Tanta University, Tanta 31527, Egypt; (N.M.S.); (W.M.)
| | - Wael Mansour
- Clinical Oncology Department, Tanta University, Tanta 31527, Egypt; (N.M.S.); (W.M.)
| | - Amira Youssef
- Clinical Pathology Department, Tanta University, Tanta 31527, Egypt; (H.H.); (D.A.E.H.); (A.Y.)
| |
Collapse
|
5
|
Xu YJ, Wei RS, Li XH, Li Q, Yu JR, Zhuang XF. MiR-421 promotes lipid metabolism by targeting PTEN via activating PI3K/AKT/mTOR pathway in non-small cell lung cancer. Epigenomics 2022; 14:121-138. [PMID: 35045733 DOI: 10.2217/epi-2021-0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims: We aim to investigate the effects of miR-421 on lipid metabolism in non-small cell lung cancer (NSCLC). Methods: The miR-421 expression and PTEN mRNA level in tumor tissues, adjacent normal tissues, human lung epithelial cells and NSCLC cell lines were detected with reverse transcription quantitative real-time PCR. Results: MiR-421 was increased, and PTEN was reduced remarkably in tumor tissues and NSCLC cell lines. Down-regulated miR-421 suppressed lipid accumulation, cell proliferation, migration and invasion, whereas overexpression of miR-421 had the opposite effects. MiR-421 directly targeted PTEN and negatively regulated PTEN expression. MiR-421 activated PI3K/AKT/mTOR pathway through regulating PTEN. Conclusion: MiR-421 promotes lipid metabolism through targeting PTEN via PI3K/AKT/mTOR pathway activation in NSCLC, indicating that miR-421 can be a latent therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yong-Jie Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Rui-Shi Wei
- Department of Thoracic Surgery, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, 213001, Jiangsu Province, China
| | - Xin-Hua Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Qiang Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi Province, China
| | - Jian-Rong Yu
- Department of Thoracic Surgery, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, 213001, Jiangsu Province, China
| | - Xiao-Fei Zhuang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, 030000, Shanxi Province, China
| |
Collapse
|
6
|
Mei J, Liu G, Li R, Xiao P, Yang D, Bai H, Hao Y. LncRNA SNHG6 knockdown inhibits cisplatin resistance and progression of gastric cancer through miR-1297/BCL-2 axis. Biosci Rep 2021; 41:BSR20211885. [PMID: 34821362 PMCID: PMC8661508 DOI: 10.1042/bsr20211885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance is a huge obstacle to gastric cancer (GC) treatment. Long non-coding RNAs (lncRNAs) have been manifested to exert pivotal functions in GC development. Herein, we aimed to explore the functional impact of lncRNA small nucleolar RNA host gene 6 (SNHG6) on DDP resistance and progression of GC. Quantitative real-time PCR (qRT-PCR) assay or Western blotting was performed to detect the expression of SNHG6, microRNA(miR)-1297, and epithelial-mesenchymal transition (EMT)-related factors and B-Cell Lymphoma 2 (Bcl-2) in DDP-resistant GC cells. Half inhibition concentration (IC50) to DDP, clonogenicity, apoptosis and invasion were examined via CCK-8 assay, colony formation assay, flow cytometry and Transwell assay, respectively. Target association between miR-1297 and SNHG6 or BCL-2 was demonstrated via dual-luciferase reporter assay or RIP assay. Xenograft models in nude mice were formed to investigate role of SNHG6 in vivo. We found that SNHG6 and BCL-2 were up-regulated, while miR-1297 expression was declined in GC tissues and DDP-resistant cells. Moreover, depletion of SNHG6 or gain of miR-1297 could repress DDP resistance, proliferation and metastasis of DDP-resistant cells, which was weakened by miR-1297 inhibition or BCL-2 overexpression. Besides, SNHG6 positively regulated BCL-2 expression by sponging miR-1297. Furthermore, SNHG6 knockdown repressed GC tumor growth in vivo. In a word, lncRNA SNHG6 knockdown had inhibitory effects on DDP resistance and progression of GC by sponging miR-1297, highlighting its potential in GC treatment.
Collapse
Affiliation(s)
- Jiazhuan Mei
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Guiju Liu
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Ruijun Li
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Peng Xiao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Dan Yang
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Hua Bai
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Yibin Hao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Guan Y, Ma Y, Tang Y, Liu X, Zhao Y, An L. MiRNA-221-5p suppressed the Th17/Treg ratio in asthma via RORγt/Foxp3 by targeting SOCS1. Allergy Asthma Clin Immunol 2021; 17:123. [PMID: 34863307 PMCID: PMC8643019 DOI: 10.1186/s13223-021-00620-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study was designed to investigate the mechanism and effects of miRNA-221-5p on the T-helper 17 (Th17)/T-regulatory (Treg) ratio in asthma. Methods BALB/c mice were intranasally challenged with 100 µg OVA on 14 and 21 day. Mice were rechallenged with 2.5% OVA-PBS on 22 and 28 day. Mice were sacrificed using on day 30 under 35 mg/kg pentobarbital sodium. PBMCs were induced vitro model of asthma using 500 ng of lipopolysaccharides (LPS) for 4 h. Results The expression of miRNA-221-5p was reduced in in vivo model, compared sham group. The vitro model of asthma treated with miRNA-221-5p mimic resulted in the reduction of IL-6, IL-17, IL-21 and IL-22 levels, and induction of IL-10, IL-35 and TGF-β levels. In addition, down-regulation of miRNA-221-5p induced the protein expression of suppressor of cytokine signaling 1 (SOCS1) and receptor-related orphan receptor-gamma-t (RORγt) and suppressed that of FOXP3 in in vitro model of asthma. Over-expression of miRNA-221-5p induced the protein expression of FOXP3, and suppressed that of SOCS1 and RORγt in in vitro model of asthma. The inhibition of SOCS1 or RORγt attenuated the effects of anti-miRNA-221-5p on Th17/Treg ratio in asthma. Conclusion miRNA-221-5p may play critical roles in driving the differentiation of Th17/Treg ratio via RORγt/Foxp3 by Targeting SOCS1, reduced the function of Th17 cells by directly inhibiting RORγt/SOCS1 and promoted the function of Treg cells via Foxp3/ SOCS1 in asthma.
Collapse
Affiliation(s)
- Yuanyuan Guan
- Department of Allergy, First Affiliated Hospital of Harbin Medical University, 199 Dongdazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yuemei Ma
- Department of Allergy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Tang
- Department of Allergy, First Affiliated Hospital of Harbin Medical University, 199 Dongdazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Xiaolei Liu
- Department of Allergy, First Affiliated Hospital of Harbin Medical University, 199 Dongdazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yan Zhao
- Department of Allergy, First Affiliated Hospital of Harbin Medical University, 199 Dongdazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lixin An
- Department of Allergy, First Affiliated Hospital of Harbin Medical University, 199 Dongdazhi Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
8
|
Wu H, Ning Y, Yu Q, Luo S, Gao J. Identification of key molecules in recurrent miscarriage based on bioinformatics analysis. Comb Chem High Throughput Screen 2021; 25:1745-1755. [PMID: 34433394 DOI: 10.2174/1386207324666210825142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recurrent miscarriage (RM) affects 1% to 5% of couples, and the mechanisms still stay unclear. In this study, we explored the underlying molecular mechanism and potential molecular biomarkers of RM as well as constructed a miRNA-mRNA regulation network. METHODS The microarray datasets GSE73025 and GSE22490, which represent mRNA and miRNA profiles, respectively, were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) with p-value < 0.05 and fold-change > 2 were identified while the miRNAs with p-value < 0.05 and fold-change > 1.3 were considered as significant differentially expressed miRNAs (DEMs). RESULTS A total of 373 DEGs, including 218 up-regulated genes and 155 down-regulated genes, were identified, while 138 up-regulated and 68 down-regulated DEMs were screened out. After functional enrichment analysis, we found GO biological process (BP) terms significantly enriched in the Fc-gamma receptor signaling pathway involved in phagocytosis. Moreover, signaling pathway analyses indicated that the neurotrophin signaling pathway (hsa04722) was the top KEGG enrichment. 6 hub genes (FPR1, C5AR1, CCR1, ADCY7, CXCR2, NPY) were screened out to construct a complex regulation network in RM because they had the highest degree of affecting the network. Besides, we constructed miRNA-mRNA network between DEMs target genes and DEGs in RM, including hsa-miR-1297- KLHL24 and hsa-miR-548a-5p-KLHL24 pairs. CONCLUSIONS In conclusion, the novel differentially expressed molecules in the present study could provide a new sight to explore the pathogenesis of RM as well as potential biomarkers and therapeutic targets for RM diagnosis and treatment.
Collapse
Affiliation(s)
- Haiwang Wu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen. China
| | - Qingying Yu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Songping Luo
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Jie Gao
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| |
Collapse
|
9
|
Alizadeh-Fanalou S, Khosravi M, Alian F, Rokhsartalb-Azar S, Nazarizadeh A, Karimi-Dehkordi M, Mohammadi F. Dual role of microRNA-1297 in the suppression and progression of human malignancies. Biomed Pharmacother 2021; 141:111863. [PMID: 34243098 DOI: 10.1016/j.biopha.2021.111863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded and tiny RNAs that modulate several biological functions, more importantly, the pathophysiology of numerous human cancers. They are bound with target mRNAs and thereby regulate gene expression at post-transcriptional levels. MiRNAs can either trigger cancer progression as an oncogene or alleviate it as a tumor suppressor. Abnormal expression of microRNA-1297 (miR-1297) has been noticed in several human cancers suggesting a distinct role for the miRNA in tumorigenesis. More specifically, it is both up-regulated and down-regulated in various cancers suggesting that it can act as both tumor suppressor and oncogene. This review systematically highlights the different roles of miR-1297 in the pathophysiology of human cancers, explains the mechanisms underlying miR-1297-mediated tumorigenesis, and discusses its potential prognostic, diagnostic, and therapeutic importance.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shirin Rokhsartalb-Azar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah branch, Islamic Azad University, Kermanshah, Iran.
| |
Collapse
|
10
|
Wang Q, Luo J, Sun R, Liu J. MicroRNA-1297 suppressed the Akt/GSK3 β signaling pathway and stimulated neural apoptosis in an in vivo sevoflurane exposure model. J Int Med Res 2021; 49:300060520982104. [PMID: 33843359 PMCID: PMC8044581 DOI: 10.1177/0300060520982104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective Common inhalation anesthetics used for clinical anesthesia (such as sevoflurane) may induce nerve cell apoptosis during central nervous system development. Furthermore, anesthetics can produce cognitive impairments, such as learning and memory impairments, that continue into adulthood. However, the precise mechanism remains largely undefined. We aimed to determine the function of microRNA-1297 (miR-1297) in sevoflurane-induced neurotoxicity. Methods Reverse transcription-polymerase chain reaction assays were used to analyze miR-1297 expression in sevoflurane-exposed mice. MTT and lactate dehydrogenase (LDH) assays were used to measure cell growth, and neuronal apoptosis was analyzed using flow cytometry. Western blot analyses were used to measure PTEN, PI3K, Akt, and GSK3β protein expression. Results In sevoflurane-exposed mice, miR-1297 expression was up-regulated compared with the control group. MiR-1297 up-regulation led to neuronal apoptosis, inhibition of cell proliferation, and increased LDH activity in the in vitro model of sevoflurane exposure. MiR-1297 up-regulation also suppressed the Akt/GSK3β signaling pathway and induced PTEN protein expression in the in vitro model. PTEN inhibition (VO-Ohpic trihydrate) reduced PTEN protein expression and decreased the effects of miR-1297 down-regulation on neuronal apoptosis in the in vitro model. Conclusion Collectively, the results indicated that miR-1297 stimulates sevoflurane-induced neurotoxicity via the Akt/GSK3β signaling pathway by regulating PTEN expression.
Collapse
Affiliation(s)
- Quan Wang
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingcong Luo
- Department of Anesthesiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Ruiqiang Sun
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jia Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
11
|
Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021; 10:cells10051147. [PMID: 34068643 PMCID: PMC8150781 DOI: 10.3390/cells10051147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
More than half of all cancer patients receive chemotherapy, however, some of them easily acquire drug resistance. Resistance to chemotherapy has become a massive obstacle to achieve high rates of pathological complete response during cancer therapy. S-phase kinase-associated protein 2 (Skp2), as an E3 ligase, was found to be highly correlated with drug resistance and poor prognosis. In this review, we summarize the mechanisms that Skp2 confers to drug resistance, including the Akt-Skp2 feedback loop, Skp2-p27 pathway, cell cycle and mitosis regulation, EMT (epithelial-mesenchymal transition) property, enhanced DNA damage response and repair, etc. We also addressed novel molecules that either inhibit Skp2 expression or target Skp2-centered interactions, which might have vast potential for application in clinics and benefit cancer patients in the future.
Collapse
Affiliation(s)
- Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China;
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
- Correspondence:
| |
Collapse
|
12
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
13
|
Ding L, Sun R, Yan Q, Wang C, Han X, Cui Y, Li R, Liu J. MiR-506 exerts antineoplastic effects on osteosarcoma cells via inhibition of the Skp2 oncoprotein. Aging (Albany NY) 2021; 13:6724-6739. [PMID: 33621206 PMCID: PMC7993745 DOI: 10.18632/aging.202530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/11/2020] [Indexed: 12/27/2022]
Abstract
S-phase kinase-associated protein 2 (Skp2) performs oncogenic functions in cancers; however, how Skp2 is regulated post-transcriptionally is elusive in osteosarcoma. Therefore, we determined whether miR-506 could directly target Skp2 in osteosarcoma to perform its tumor suppressive functions. Here, we found that miR-506 mimics suppressed cell viability, induced apoptosis, and attenuated migration and invasion in osteosarcoma cells. Moreover, upregulation of Skp2 accelerated cell viability and motility and rescued the tumor suppressive effect of miR-506 in osteosarcoma cells. Moreover, downregulation of Skp2 inhibited cell viability and decreased cell motility, which enhanced the antitumor activity induced by miR-506 mimic transfection in osteosarcoma cells. Our western blotting results implied that miR-506 inhibited Skp2 expression and subsequently upregulated Foxo1 and p57 in OS cells. In summary, miR-506 performs an anticancer activity via directly targeting Skp2 in osteosarcoma cells, indicating that inactivation of Skp2 by miR-506 might be an alternative strategy for treating osteosarcoma.
Collapse
Affiliation(s)
- Lu Ding
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.,Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Rongxin Sun
- Department of Orthopedics, Sixth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Qi Yan
- Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China
| | - Chengwei Wang
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Xiaoping Han
- Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yong Cui
- Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Rong Li
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.,Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China.,Postdoctoral Research Center on Clinical Medicine, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Jiwen Liu
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.,Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
14
|
Han GH, Chay DB, Nam S, Cho H, Chung JY, Kim JH. Prognostic Significance of Transient Receptor Potential Vanilloid Type 1 (TRPV1) and Phosphatase and Tension Homolog (PTEN) in Epithelial Ovarian Cancer. Cancer Genomics Proteomics 2020; 17:309-319. [PMID: 32345672 DOI: 10.21873/cgp.20191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/22/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transient receptor potential vanilloid type 1 (TRPV1) has been studied in human malignancies, but has not been studied in epithelial ovarian cancer (EOC). We, therefore, investigated the significance of TRPV1 and correlation with phosphatase and tension homolog (PTEN) in EOC. MATERIALS AND METHODS Immunohistochemical analyses for TRPV1 and PTEN were performed using a tissue microarray. Moreover, the role of TRPV1 in cell growth was assessed in a EOC cell line. RESULTS High TRPV1 expression and the combination of high TRPV1 and low PTEN expression were an independent prognostic factor for overall survival and disease-free survival. In vitro results demonstrated that knockdown of TRPV1 was associated with decreased cell viability and colony formation. CONCLUSION There is a strong association between TRPV1 and PTEN and the combination of TRPV1 and PTEN is a strong indicator of prognostic predictor in EOC.
Collapse
Affiliation(s)
- Gwan Hee Han
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Doo Byung Chay
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sanghee Nam
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea .,Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Li Y, Zheng J, Gong C, Lan K, Shen Y, Ding X. Development of an immunogenomic landscape for the competing endogenous RNAs network of peri-implantitis. BMC MEDICAL GENETICS 2020; 21:208. [PMID: 33081707 PMCID: PMC7576812 DOI: 10.1186/s12881-020-01145-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Peri-implantitis is an inflammation that occurs around the implant, resulting in varying degrees of inflammatory damage to the soft and hard tissues. The characteristic criterion is the loss of the supporting bone in an inflammatory environment. However, the specific mechanisms and biomarkers involved in peri-implantitis remain to be further studied. Recently, competing endogenous RNAs (ceRNA) and immune microenvironment have been found to play a more important role in the inflammatory process. In our study, we analyzed the expression of immune related microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and message RNAs (mRNAs) in peri-implantitis by analyzing GSE33774 and GSE57631. METHODS In this study, we explored the expression profile data of immune-related lncRNAs, miRNAs and mRNAs, and constructed immune-related ceRNA network involved in the pathogenesis of peri-implantitis. In addition, the CIBERSORT was used to evaluate the content of immune cells in normal tissues and peri-implantitis to detect the immune microenvironment of peri-implantitis. RESULTS In the analysis, 14 DElncRNAs, 16 DEmiRNAs, and 18 DEmRNAs were used to establish an immune related ceRNA network and the immune infiltration patterns associated with peri-implantitis was discovered. Through the mutual verification of the two datasets, we found that GSK3B and miR-1297 may have important significance in the immune microenvironment and pathogenesis of peri-implantitis and GSK3B was closely related to four types of immune cells, especially with the highest correlation with resting mast cells (P = 0.0003). CONCLUSIONS Through immune-related ceRNA network, immune-related genes (IRGs) and immune cell infiltration can further comprehensively understand the pathogenesis of peri-implantitis, which built up an immunogenomic landscape with clinical significance for peri-implantitis.
Collapse
Affiliation(s)
- Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.,State key laboratory of molecular engineering of polymers, Fudan University, Shanghai, P.R. China
| | - Jina Zheng
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Chanjuan Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Kengfu Lan
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yuqing Shen
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Xiaojun Ding
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China. .,State key laboratory of molecular engineering of polymers, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
16
|
The Combination of Transient Receptor Potential Vanilloid Type 1 (TRPV1) and Phosphatase and Tension Homolog (PTEN) is an Effective Prognostic Biomarker in Cervical Cancer. Int J Gynecol Pathol 2020; 40:214-223. [PMID: 32287115 DOI: 10.1097/pgp.0000000000000677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) has been reported to play an important role in human cancers. However, the knowledge about TRPV1 in cervical cancer is sparse. Therefore, we evaluated the expression and clinical significance of TRPV1 in cervical cancer. Immunohistochemical analyses were performed for TRPV1 and phosphatase and tension homolog (PTEN) to delineate clinical significance using 150 cervical cancers, 230 cervical intraepithelial neoplasias, and 312 normal cervical epithelial tissues in a tissue microarray. Furthermore, the role of TRPV1 in cell growth was assessed in a cervical cancer cell line. The TRPV1 expression was significantly higher in cervical cancer tissues than in cervical intraepithelial neoplasias, and normal epithelial tissues (P<0.001). In cervical cancer tissues, TRPV1 expression negatively correlated with PTEN expression (Spearman ρ=-0.121, P=0.009). Multivariate survival analysis revealed high TRPV1 expression (hazard ratio=3.41, 95% confidence interval: 1.25-9.27, P=0.016) as an independent prognostic factor for overall survival. Notably. the high TRPV1/low PTEN expression showed the highest hazard ratio (5.87; 95% confidence interval: 2.18-15.82, P<0.001) for overall survival. In vitro results demonstrated that the overexpression of TRPV1 was associated with increased cell viability and colony formation. Overexpression of TRPV1 could be a good biomarker for the prediction of chemoradiation response. Our result suggested promising potential of high TRPV1/low PTEN as prognostic and survival makers. The possible link between the biologic function of TRPV1 and PTEN in cervical cancer warrants further studies.
Collapse
|
17
|
Akgun S, Kucuksayan H, Ozes ON, Can O, Alikanoglu AS, Yildiz M, Akca H. NF-κB-Induced Upregulation of miR-548as-3p Increases Invasion of NSCLC by Targeting PTEN. Anticancer Agents Med Chem 2020; 19:1058-1068. [PMID: 30727918 DOI: 10.2174/1871520619666190206165215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is an aggressive cancer type due to high metastatic capacity. Nuclear Factor Kappa B (NF-κB) is a consistently active transcription factor in malignant lung cancer cells and has crucial significance in NSCLC progression. It is also implicated in the transcriptional regulation of many genes including microRNAs (miRNAs) that function as tumor suppressor or oncogene. It has been increasingly reported that several miRNAs defined as gene members are induced by NF-κB. The present study aimed to find novel miRNAs that are regulated by NF-κB. METHODS Chromatin İmmunoprecipitation Sequencing (ChIP-Seq) experiment and bioinformatic analysis were used to determine NF-κB-dependent miRNAs. Western blot analysis, quantitative real-time polymerase chain reaction (qRT-PCR), luciferase reporter gene assays were carried out to investigate the target genes of miRNAs. To determine biologic activity, transwell invasion and MTT assay were carried out on H1299 NSCLC cell line. miRNA expression level was evaluated in metastatic and non-metastatic tissue samples of NSCLC patients. RESULTS ChIP-Seq and qRT-PCR experiments showed that miR-548as-3p is transcriptionally regulated by NF- κB in response to Tumor Necrosis Factor-α (TNF-α) treatment. Then, we found that tumor suppressor Phosphatase and Tension homolog (PTEN) is a direct target of miR-548as-3p. Furthermore, miR-548as-3p mediates phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway and NF-κB-implicated genes including Matrix Metalloproteinases 9 (MMP9), Slug and Zeb1. We further showed that miR-548as-3p increased invasiveness of NSCLC cells and was upregulated in metastatic tumor tissues compared to non-metastatic ones. CONCLUSION All these findings provide a miRNAs-mediated novel mechanism for NF-κB signaling and that miR-548as-3p could be a biomarker for NSCLC metastasis.
Collapse
Affiliation(s)
- Sakir Akgun
- Department of Medical Biology, Pamukkale University, Kinikli, Denizli, Turkey.,Medical Biology Department, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Hakan Kucuksayan
- Department of Medical Biology, Pamukkale University, Kinikli, Denizli, Turkey
| | - Osman N Ozes
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey
| | - Ozge Can
- Department of Medical Biology, Pamukkale University, Kinikli, Denizli, Turkey
| | | | - Mustafa Yildiz
- Medical Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hakan Akca
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Kinikli, Denizli, Turkey.,ILTAM Cancer Biology Laboratory, Pamukkale University, Kinikli, Denizli, Turkey
| |
Collapse
|
18
|
MiR-1297 negatively regulates metabolic reprogramming in glioblastoma via repressing KPNA2. Hum Cell 2020; 33:619-629. [PMID: 32124270 DOI: 10.1007/s13577-019-00316-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Cancer cell growth is characterized by reprogrammed glucose metabolism and subsequent high rate of glycolysis. The metabolic reprogramming is essential for cell proliferation and drug resistance of cancer cells including glioblastoma (GBM). MicroRNAs play pivotal roles during GBM development. In the present study, we discovered a significant downregulation of miR-1297 in GBM. Decreased miR-1297 expression was associated with prolonged overall survival of patients with glioma. Overexpression of miR-1297 promoted cell proliferation and glycolysis in GBM cells. Bioinformatic analysis (TargetScan and miRanda) indicated that miR-1297 might target 3'UTR of KPNA2, a key regulator of glycolysis in GBM. The regulation was confirmed in a dual-luciferase reporter assay in GBM cells. Furthermore, overexpression of KPNA2 could reverse miR-1297 mimic induced cell growth arrest and inhibition of glycolysis in GBM cells. Finally, a negative correlation between miR-1297 and KPNA2 mRNA levels was observed in GBM tissues. Collectively, the data demonstrated that the abnormal metabolic reprogramming was driven by miR-1297 in GBM and suggested miR-1297 as a tumor suppressor.
Collapse
|
19
|
Hu J, Ji C, Hua K, Wang X, Deng X, Li J, Graham D, Fang L. Hsa_circ_0091074 regulates TAZ expression via microRNA‑1297 in triple negative breast cancer cells. Int J Oncol 2020; 56:1314-1326. [PMID: 32319577 DOI: 10.3892/ijo.2020.5000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) has the highest recurrence, metastasis and mortality rate of all breast cancer subtypes, due to its typically more aggressive characteristics and lack of effective targeted treatment options. The Hippo pathway is a signaling cascade composed of a group of conserved kinases, which serves an important role in almost all cancer types. Both circular RNAs (circRNAs) and microRNAs (miRNAs) are types of non‑coding RNAs, which influence cancer progression. CircRNAs have been demonstrated to serve as miRNA 'sponges', binding to miRNAs to inhibit their function. In the present study, it was revealed that circular RNA hsa_circ_0091074 binds miR‑1297, and that there is an inverse association between the expression levels of the two non‑coding RNAs in breast cells, indicating that hsa_circ_0091074 may serve as an endogenous 'sponge' for miR‑1297. Subsequently, the potential function and mechanism underlying the involvement of miR‑1297 in breast cancer was investigated via MTT, colony formation, wound healing and cell cycle assays. Increased miR‑1297 expression resulted in a decrease in the protein levels of critical Hippo pathway transcriptional mediator Transcriptional coactivator with PDZ‑binding motif (TAZ), which is a putative target of miR‑1297. This was confirmed using dual‑luciferase reporter assays, which revealed that miR‑1297 targets TAZ by binding its 3'‑untranslated region (3'UTR). The current results indicate that miR‑1297 serves as a suppressor of breast cancer cell proliferation and invasiveness, and that this can be partially reversed by hsa_circ_0091074, suggesting that the hsa_circ_0091074/miR‑1297/TAZ/TEAD4 axis may represent a potential therapeutic target for triple negative breast cancer in the future.
Collapse
Affiliation(s)
- Jiashu Hu
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Changle Ji
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kaiyao Hua
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xuehui Wang
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaochong Deng
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jiayi Li
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Lin Fang
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
20
|
Gao C, Ren C, Liu Z, Zhang L, Tang R, Li X. GAS5, a FoxO1-actived long noncoding RNA, promotes propofol-induced oral squamous cell carcinoma apoptosis by regulating the miR-1297-GSK3β axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3985-3993. [PMID: 31583913 DOI: 10.1080/21691401.2019.1670189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Propofol, an intravenous anaesthetic agent, has been found to exhibit antitumour effects in various kinds of cancer cells. However, the potential roles and regulatory mechanisms of propofol in oral squamous cell carcinoma (OSCC) remain unknown. Herein, we found that propofol inhibits OSCC cell growth and promotes cell apoptosis in a dose- and time-dependent manner. Further mechanistic studies revealed that the long noncoding RNA GAS5 is induced by propofol in OSCC cells. Elevated GAS5 acts as a competing endogenous RNA for miR-1297 and attenuates its inhibitory effect on GSK3β, leading to GSK3β increase and Mcl1 decrease. Additionally, we found that FoxO1 binds to the promoter of GAS5, facilitating its transcription in response to propofol treatment. Thus, these results suggest that propofol exhibits antitumour effects in OSCC cells and that the FoxO1-GAS5-miR-1297-GSK3β axis plays an important role in propofol-induced OSCC cell apoptosis.
Collapse
Affiliation(s)
- Chengshun Gao
- Department of Anesthesiology, the Second Affiliated Hospital & Department of Prosthodontics, College of Stomatology, Dalian Medical University , Dalian , Liaoning , China
| | - Chunmei Ren
- Department of Anesthesiology, the Second Affiliated Hospital & Department of Prosthodontics, College of Stomatology, Dalian Medical University , Dalian , Liaoning , China
| | - Zhongxi Liu
- Department of Anesthesiology, the Second Affiliated Hospital & Department of Prosthodontics, College of Stomatology, Dalian Medical University , Dalian , Liaoning , China.,Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University , Dalian , Liaoning , China
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Xiaojie Li
- Department of Anesthesiology, the Second Affiliated Hospital & Department of Prosthodontics, College of Stomatology, Dalian Medical University , Dalian , Liaoning , China
| |
Collapse
|
21
|
Li X, Liu Q, Wang K, Luo W, Liang T, Yuan S, Zhen Y, Yan D. Retracted Article: LncRNA SNHG5 regulates the cell viability and apoptosis of glioma cells by the miR-1297/KPNA2 axis. RSC Adv 2020; 10:1498-1506. [PMID: 35494689 PMCID: PMC9048252 DOI: 10.1039/c9ra08693e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/28/2019] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNA small nucleolar RNA host gene 5 (lncRNA SNHG5) has been reported to participate in the occurrence and development of glioma. However, the function and underlying molecular mechanisms of SNHG5 in glioma remain largely unknown. The expressions of SNHG5, microRNA-1297 (miR-1297) and karyopherin subunit alpha 2 (KPNA2) in glioma tissues and cells were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) or western blot. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and apoptosis, respectively. Western blot was also performed to detect the expressions of autophagy-associated proteins. The relationship among lncRNA SNHG5, miR-1297 and KPNA2 was verified by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. SNHG5 and KPNA2 were over expressed, and the level of miR-1297 was down-regulated in glioma tissues and cell lines. Knockdown of SHNG5 promoted apoptosis, while suppressing cell viability and autophagy of A172 and LN340 cells. Meanwhile, SHNG5 harbored the binding sites with miR-1297, and a negative correlation between the expression of SNHG5 and miR-1297 in glioma tissues was also observed. Interestingly, silencing of miR-1297 undermined the SHNG5 depletion-mediated effect on cell viability, apoptosis, and autophagy. KPNA2 was a direct target of miR-1297, and negatively regulated by miR-1297. More importantly, gain of KPNA2 mitigated the effect of SHNG5l knockdown on glioma cells. Silencing of SNHG5 had an implication in inhibiting apoptosis and stimulating cell viability and autophagy by the miR-1297/KPNA2 axis in glioma. Long non-coding RNA small nucleolar RNA host gene 5 (lncRNA SNHG5) has been reported to participate in the occurrence and development of glioma.![]()
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Neurosurgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou City 450000
- China
| | - Qiankun Liu
- Department of Neurosurgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou City 450000
- China
| | - Kang Wang
- Department of Neurosurgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou City 450000
- China
| | - Wenzheng Luo
- Department of Neurosurgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou City 450000
- China
| | - Tiansong Liang
- Department of Radiotherapy
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Shanpeng Yuan
- Department of Neurosurgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou City 450000
- China
| | - Yingwei Zhen
- Department of Neurosurgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou City 450000
- China
| | - Dongming Yan
- Department of Neurosurgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou City 450000
- China
| |
Collapse
|
22
|
Lin M, Xu Y, Gao Y, Pan C, Zhu X, Wang ZW. Regulation of F-box proteins by noncoding RNAs in human cancers. Cancer Lett 2019; 466:61-70. [DOI: 10.1016/j.canlet.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
|
23
|
Kim SH, Kim MO, Kim KR. Anti-growth Effects of Imatinib and GNF5 via Regulation of Skp2 in Human Hepatocellular Carcinoma Cells. J Cancer Prev 2018; 23:170-175. [PMID: 30671399 PMCID: PMC6330986 DOI: 10.15430/jcp.2018.23.4.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 11/03/2022] Open
Abstract
Background Human hepatocellular carcinoma (HCC) is a common liver tumor and the main cause of cancer-related death. Tyrosine kinase inhibitors, such as imatinib and GNF5 which were developed to treat chronic myelogenous leukemia, regulate the progression of various cancers. The aim of this study was to confirm the anti-tumor activity of tyrosine kinase inhibitors through regulation of S-phase kinase-associated protein 2 (Skp2), an important oncogenic factor in various cancer cells, in human hepatocarcinoma SK-HEP1 cells. Methods Cell viability and colony formation assays were conducted to evaluate the effects of imatinib, GNF5 and GNF2 on the growth of SK-HEP1 cells. Using immunoblot analysis, we assessed change of the activation of caspases, PARP, Akt, mitogen-activated protein kinases, and Skp2/p27/p21 pathway by imatinib and GNF5 in SK-HEP1 cells. Using sh-Skp2 HCC cells, the role of Skp2 in the effects of imatinib and GNF5 was evaluated. Results Imatinib and GNF5 significantly inhibited the growth of SK-HEP1 cells. Treatment of imatinib and GNF5 decreased Skp2 expression and Akt phosphorylation, and increased the expression of p27, p21, and active-caspases in SK-HEP1 cells. In sh-Skp2 HCC cells, cell growth and the expression of Skp2 were inhibited by more than in the mock group treated with imatinib and GNF5. Conclusions These results suggest that the anti-growth activity of tyrosine kinase inhibitors may be associated with the regulation of p27/p21 and caspases through Skp2 blockage in HCC cells.
Collapse
Affiliation(s)
- Sung Hyun Kim
- China-US (Henan) Hormel Cancer Institute, Henan, China
| | - Myoung-Ok Kim
- Department of Animal Science, College of Ecology and Environment Science, Kyungpook National University, Sangju, Korea
| | - Ki-Rim Kim
- Department of Dental Hygiene, College of Science and Technology, Kyungpook National University, Sangju, Korea
| |
Collapse
|
24
|
Guo L, Zhang H, Yan X. Protective effect of dihydromyricetin revents fatty liver through nuclear factor‑κB/p53/B‑cell lymphoma 2‑associated X protein signaling pathways in a rat model. Mol Med Rep 2018; 19:1638-1644. [PMID: 30592279 PMCID: PMC6390035 DOI: 10.3892/mmr.2018.9783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/31/2018] [Indexed: 01/23/2023] Open
Abstract
Dihydromyricetin is the major flavonoid in vine tea, whose pharmacological action has attracted increasing attention in recent years. The triglyceride, albumin (ALB), alanine aminotransferase, aspartate aminotransferase, malondialdehyde, superoxide dismutase, glutathione (GSH), GSH peroxidase, tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-18 expression levels were measured using enzyme-linked immunosorbent assay kits. The protein levels of ALB and collagen I, PPARα, NF-κB, p53 and Bax were used to measure using western blotting. The results revealed that dihydromyricetin prevented the development of fatty liver, and inhibited oxidative stress, inflammation and apoptosis in a fatty liver rat model. In addition, treatment with dihydromyricetin inhibited the levels of ALB and collagen I, while it induced peroxisome proliferator-activated receptor α protein expression. Dihydromyricetin also suppressed the protein expression levels of nuclear factor (NF)-κB, p53 and B-cell lymphoma 2-associated X protein (Bax) in the rat model. Collectively, it is concluded that dihydromyricetin exerted a protective effect on fatty liver through NF-κB/p53/Bax signaling pathways in a rat model.
Collapse
Affiliation(s)
- Lu Guo
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Haifeng Zhang
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Xiuping Yan
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
25
|
Duan YM, Jin Y, Guo ML, Duan LX, Wang JG. Differentially expressed genes of HepG2 cells treated with gecko polypeptide mixture. J Cancer 2018; 9:2723-2733. [PMID: 30087713 PMCID: PMC6072819 DOI: 10.7150/jca.26339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Gecko (Gekko japonicus) extracts have been used in traditional Chinese medicine for many years. It has been proven that the gecko polypeptide mixture (GPM) extracted from gecko can inhibit the growth of multiple types of tumor cells. In order to investigate the possible anti-tumor molecular mechanisms of GPM, we used RNA-seq technology to identify the differentially expressed genes (DEGs) of human hepatocellular carcinoma (HCC) HepG2 cells treated with or without GPM. MTT assay was used to detect the viability of HepG2 cells. DAPI fluorescence staining was performed to observe morphological changes in the nuclei of HepG2 cells. Western blot analysis was applied to observe the expressions of apoptosis-related and endoplasmic reticulum stress (ERS)-related proteins in HepG2 cells. Flow cytometry assay was performed to detect the apoptosis and reactive oxygen species (ROS) in HepG2 cells. Our results showed that GPM inhibited HepG2 cells proliferation and induced the apoptosis of HepG2 cells. RNA-seq analysis suggested that the ER-nucleus signaling pathway involved in the anti-cancer molecular mechanism of GPM. Therefore, GPM may induce apoptosis in HepG2 cells via the ERs pathway.
Collapse
Affiliation(s)
- Yi-Meng Duan
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Ying Jin
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Meng-Li Guo
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Leng-Xin Duan
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Jian-Gang Wang
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| |
Collapse
|
26
|
Chen Z, Zhang M, Qiao Y, Yang J, Yin Q. MicroRNA-1297 contributes to the progression of human cervical carcinoma through PTEN. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1120-1126. [PMID: 29916735 DOI: 10.1080/21691401.2018.1479711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The human cervical carcinoma oncogenic mechanisms still remain elusive. Thus, we proposed to understand the biological role of a newly discovered therapeutic miRNA. METHODS MiR-1297 related to human cervical carcinoma was selected for this study. TaqMan qRT- PCR assay was used to profile miRNA, phosphatase and tensin homolog (PTEN) expression in randomly chosen tumour with non-tumour tissues, and the apoptosis factors expression. Cell proliferation was monitored by CCK-8 assay and colony formation assay. Apoptosis was determined by flow cytometry. Protein level was determined by western blotting. 3'UTR was performed to validate the direct binding sites of miR-1297 on PTEN. SPSS was used for statistical analyses. RESULTS MiR-1297 is repressed and PTEN activated in human cervical cancer tissues. After miR-1297 overexpression, HeLa cells had an increase in cell proliferation and decrease in apoptosis. PTEN expression is negatively correlation with miR-1297. PTEN silencing display the similar pattern as miRNA-1297 overexpression to inhibit HeLa cell growth and apoptosis in vitro. CONCLUSIONS Our data indicate that miR-1297 contribute to the human cervical carcinoma through PTEN. miR-1297 could be a reasonable miRNA for future studies.
Collapse
Affiliation(s)
- Zhihua Chen
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Mengzhen Zhang
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuhuan Qiao
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Junjuan Yang
- b Women&infants Hospital Of Zhengzhou , Zhengzhou , China
| | - Qinan Yin
- c National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
27
|
Xu H, Wen Q. Downregulation of miR‑135a predicts poor prognosis in acute myeloid leukemia and regulates leukemia progression via modulating HOXA10 expression. Mol Med Rep 2018; 18:1134-1140. [PMID: 29845297 DOI: 10.3892/mmr.2018.9066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑135a (miR‑135a) has been shown to exert important roles in various human cancer types, such as glioblastoma, thyroid carcinoma and renal carcinoma. However, the function of miR‑135a in acute myeloid leukemia (AML) remains largely unknown. In the present study, it was demonstrated that miR‑135a expression was significantly downregulated in AML cells compared with normal control cells. Furthermore, the downregulation of miR‑135a in patients with AML predicted poor prognosis. Through functional experiments, overexpression of miR‑135a was demonstrated to significantly inhibit the proliferation and cell cycle of AML cells, while it promoted cellular apoptosis. miR‑135a directly targeted HOXA10 in AML cells. miR‑135a overexpression significantly suppressed the mRNA and protein levels of HOXA10 in AML cells. Moreover, there was an inverse association between miR‑135a expression and HOXA10 level in AML samples. Additionally, by ectopic expression of HOXA10, restoration of HOXA10 significantly abolished the effects of miR‑135a overexpression on AML cell proliferation, cell cycle and apoptosis. In conclusion, the present study demonstrated that miR‑135a serves as a tumor suppressor in AML by targeting HOXA10, and miR‑135a may be a promising prognostic biomarker for AML patients.
Collapse
Affiliation(s)
- Hongwei Xu
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Quan Wen
- General Internal Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
28
|
Lu M, Wang C, Chen W, Mao C, Wang J. miR-654-5p Targets GRAP to Promote Proliferation, Metastasis, and Chemoresistance of Oral Squamous Cell Carcinoma Through Ras/MAPK Signaling. DNA Cell Biol 2018; 37:381-388. [PMID: 29364705 DOI: 10.1089/dna.2017.4095] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is characterized by rapid local migration and invasion. This study was aimed at clarifying the effect of miR-654-5p on progression of OSCC. miR-654-5p promoted proliferation, metastasis, and chemoresistance of OSCC in vitro and in vivo. Consistently, miR-654-5p was upregulated in late-stage OSCC and was correlated with poor prognosis of OSCC patients. Furthermore, miR-654-5p was mechanistically verified to target Grb-2-related adaptor protein (GRAP), accompanied by the activation of Ras/MAPK signaling and the facilitation of epithelial-mesenchymal transition in OSCC cells. GRAP was downregulated in T1-2 stage versus T3-4 stage head and neck squamous cell carcinoma (HNSC) and was negatively correlated with tumor-node-metastases (TNM) stage in HNSC patients based on The Cancer Genome Atlas (TCGA) analysis. In addition, GRAP was positively correlated with good prognosis in HNSC patients. Our findings suggest that the miR-654-5p/GRAP/Ras/Erk signaling pathway in OSCC cells might contribute to the underlying mechanism through which miR-654-5p participates in the regulation of OSCC progression. miR-654-5p, as a potential biomarker for the clinical diagnosis and prognosis of OSCC, may be an effective anticancer target for the treatment of OSCC.
Collapse
Affiliation(s)
- Meng Lu
- Department of Oral Surgery, The Union Hospital of Fujian Medical University , Fuzhou, Fujian, P.R. China
| | - Chengyong Wang
- Department of Oral Surgery, The Union Hospital of Fujian Medical University , Fuzhou, Fujian, P.R. China
| | - Weihui Chen
- Department of Oral Surgery, The Union Hospital of Fujian Medical University , Fuzhou, Fujian, P.R. China
| | - Chuanqing Mao
- Department of Oral Surgery, The Union Hospital of Fujian Medical University , Fuzhou, Fujian, P.R. China
| | - Jin Wang
- Department of Oral Surgery, The Union Hospital of Fujian Medical University , Fuzhou, Fujian, P.R. China
| |
Collapse
|