1
|
Amiri R, Nabi PN, Fazilat A, Roshani F, Nouhi Kararoudi A, Hemmati-Dinarvand M, Valilo M. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer. Horm Mol Biol Clin Investig 2024:hmbci-2024-0066. [PMID: 39665256 DOI: 10.1515/hmbci-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
One of the biggest challenges of today's society is cancer, which imposes a significant financial, emotional and spiritual burden on human life. Breast cancer (BC) is one of the most common cancers that affects people in society, especially women, and due to advanced treatment strategies and primary prevention, it is still the second cause of cancer-related deaths in society. Various genetic and environmental factors are involved in the development of BC. MicroRNAs (miRNA)s are non-coding RNAs, that the degradation or inhibition of them plays an important role in the prevention or development of cancer by modulating many cellular pathways including apoptosis, drug resistance, and tumorigenesis. Drug resistance is one of the important defense mechanisms of cancer cells against anticancer drugs and is considered one of the main causes of cancer treatment failure. Different miRNAs, including mir-7, mir-21, mir-31, and mir-124 control different cell activities, including drug resistance, through different pathways, including PI3K/AKT/mTOR, TGF-β, STAT3, and NF-kB. Therefore, cell signaling pathways are one of the important factors that miRNAs control cellular activities. Hence, in this study, we decided to highlight an overview of the relationship between miRNAs and signaling pathways in the development of drug resistance in BC.
Collapse
Affiliation(s)
- Reza Amiri
- Nargund College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Roshani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohsen Hemmati-Dinarvand
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Valilo
- Department of Biochemistry, 37555 Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran
| |
Collapse
|
2
|
Pelisenco IA, Zizioli D, Guerra F, Grossi I, Bucci C, Mignani L, Girolimetti G, Di Corato R, D'Agostino VG, Marchina E, De Petro G, Salvi A. miR-23b-3p, miR-126-3p and GAS5 delivered by extracellular vesicles inhibit breast cancer xenografts in zebrafish. Cell Commun Signal 2024; 22:552. [PMID: 39558342 PMCID: PMC11572517 DOI: 10.1186/s12964-024-01936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are a group of nanoscale cell-derived membranous structures secreted by all cell types, containing molecular cargoes involved in intercellular communication. EVs can be used to mimic "nature's delivery system" to transport nucleic acids, peptides, lipids, and metabolites to target recipient cells. EVs offer a range of advantages over traditional synthetic carriers, thus paving the way for innovative drug delivery approaches that can be used in different diseases, including cancer. Here, by using breast cancer (BC) cells treated with the multi-kinase inhibitor sorafenib, we generated EVs enriched in specific non-coding RNAs (miR-23b-3p, miR-126-3p, and the long ncRNA GAS5) and investigated their potential impact on the aggressive properties of the BC in vitro and in vivo using zebrafish. METHODS EVs were collected from 4 different BC cell lines (HCC1937, MDA-MB-231, MCF-7, and MDA-MB-453) and characterized by western blotting, transmission electron microscopy and nanoparticle tracking analysis. Levels of encapsulated miR-23b-3p, miR-126-3p, and GAS5 were quantified by ddPCR. The role of the EVs as carriers of ncRNAs in vivo was established by injecting MDA-MB-231 and MDA-MB-453 cells into zebrafish embryos followed by EV-based treatment of the xenografts with EVs rich in miR-23b-3p, miR-126-3p and GAS5. RESULTS ddPCR analysis revealed elevated levels of miR-23b-3p, miR-126-3p, and GAS5, encapsulated in the EVs released by the aforementioned cell lines, following sorafenib treatment. The use of EVs as carriers of these specific ncRNAs in the treatment of BC cells resulted in a significant increase in the expression levels of the three ncRNAs along with the inhibition of cellular proliferation in vitro. In vivo experiments demonstrated a remarkable reduction of xenograft tumor area, suppression of angiogenesis, and decreased number of micrometastasis in the tails after administration of EVs enriched with these ncRNAs. CONCLUSIONS Our study demonstrated that sorafenib-induced EVs, enriched with specific tumor-suppressor ncRNAs, can effectively inhibit the aggressive BC characteristics in vitro and in vivo. Our findings indicate an alternative way to enrich EVs with specific tumor-suppressor ncRNAs by treating the cells with an anticancer drug and support the development of new potential experimental molecular approaches to target the aggressive properties of cancer cells.
Collapse
Affiliation(s)
- Iulia Andreea Pelisenco
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 165, 73100, Lecce, Italy
| | - Ilaria Grossi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 165, 73100, Lecce, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Giulia Girolimetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 165, 73100, Lecce, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010, Arnesano, Italy
| | - Vito Giuseppe D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
| |
Collapse
|
3
|
Rezaei Z, Dastjerdi K, Allahyari A, ShahidSales S, Talebian S, Maharati A, Zangooie A, Zangouei AS, Sadri F, Sargazi S. Plasma microRNA-195, -34c, and - 1246 as novel biomarkers for the diagnosis of trastuzumab-resistant HER2-positive breast cancer patients. Toxicol Appl Pharmacol 2023; 475:116652. [PMID: 37557922 DOI: 10.1016/j.taap.2023.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Recently, miRNAs have been regarded as potential candidates for mediating therapeutic functions by targeting genes related to drug response. In this study, we suggested that plasma miRNAs may be correlated with response to trastuzumab in HER2-positive breast cancer patients. To determine whether miR-195, miR-23b-3p, miR-1246, and miR-34c-3p are involved in trastuzumab resistance, we screened their expressions in the BT-474 cell line, which was followed by plasma analysis from 20 trastuzumab-resistant HER2-positive breast cancer patients and 20 nonresistance subjects. Then, TargetScan, Pictar, and miRDB were applied to find the possible targets of the selected miRNAs. In addition, the expression status of admitted targets was evaluated. Our results showed that in resistant BT-474 cells, miR-1246, and miR-23b-3p were significantly upregulated, and miR-195-5p and miR-34c-3p were downregulated. In plasma analysis, we found miR-195-5p, miR-34c-3p, and miR-1246 meaningfully diminished in the resistant group, while the expression of miR-23b-3p was not statistically different. The expression levels of confirmed targets by qRT-PCR showed that the expression of RAF1, AKT3, c-MET, CCND1, PHLPP2, MYB, MAP2K1, and PTEN was significantly upregulated, while the expression of CCNG2 was significantly downregulated. The networks of miRNAs with their confirmed targets improved comprehension of miRNA-mediated therapeutic responses to trastuzumab and might be proposed for more characterization of miRNA functions. Moreover, these data indicated that miR-195-5p, miR-34c-3p, and miR-1246 could be possible biomarkers for prognosis and early detection of the trastuzumab-resistant group from the sensitive group of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran
| | - Kazem Dastjerdi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran.
| | - Abolghasem Allahyari
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Sadri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
The Role of MicroRNAs in HER2-Positive Breast Cancer: Where We Are and Future Prospective. Cancers (Basel) 2022; 14:cancers14215326. [PMID: 36358746 PMCID: PMC9657949 DOI: 10.3390/cancers14215326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Breast cancer is the most diagnosed malignancy in woman worldwide and, despite the availability of new innovative therapies, it remains the first cause of death for tumor in woman. 20% of all breast cancer cases are HER2 positive, meaning that they are characterized by an aberrant expression of the growth factor receptor HER2. This receptor is involved in survival and proliferation mechanisms, conferring to this breast cancer subtype a particular aggressiveness. The introduction of anti-HER2 agents, such as trastuzumab, in the clinical practice, significantly improved the prognosis. However, a great portion of patients is not responsive to this therapy. Thus, cancer research is working to provide new tools to better manage HER2 positive breast cancers, such as biomarkers and therapeutic approaches. MicroRNAs could be used for these purposes. They are small molecules involved in almost all biological processes, including cancer promoting pathways. Researchers consider microRNAs as promising clinical tools because they are easily detectable and stable in both tissues and blood samples, and an increasing body of evidence supports their potential use as targets of therapy, prognostic and predictive biomarkers, or therapeutic agents. This review sums up the most recent scientific publications about microRNAs in HER2 positive breast cancer. Abstract Breast cancer that highly expresses human epidermal growth factor receptor 2 (HER2+) represents one of the major breast cancer subtypes, and was associated with a poor prognosis until the introduction of HER2-targeted therapies such as trastuzumab. Unfortunately, up to 30% of patients with HER2+ localized breast cancer continue to relapse, despite treatment. MicroRNAs (miRNAs) are small (approximately 20 nucleotides long) non-coding regulatory oligonucleotides. They function as post-transcriptional regulators of gene expression, binding complementarily to a target mRNA and leading to the arrest of translation or mRNA degradation. In the last two decades, translational research has focused on these small molecules because of their highly differentiated expression patterns in blood and tumor tissue, as well as their potential biological function. In cancer research, they have become pivotal for the thorough understanding of oncogenic biological processes. They might also provide an efficient approach to early monitoring of tumor progression or response to therapy. Indeed, changes in their expression patterns can represent a flag for deeper biological changes. In this review, we sum up the recent literature regarding miRNAs in HER2+ breast cancer, taking into account their potential as powerful prognostic and predictive biomarkers, as well as therapeutic tools.
Collapse
|
5
|
Wang X, Huang Y, Yang Z, Yang Y, Wei F, Yan M, Li F. Efficacy and Risk Factors of Pyrrotinib in Second- and Third-Line Treatments for HER2-Positive Advanced Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7864114. [PMID: 36164613 PMCID: PMC9509258 DOI: 10.1155/2022/7864114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
A study to examine the efficacy and risk factors associated with pyrrotinib in the second- and third-line treatment of advanced breast cancer with Human epidermal growth factor receptor 2- (HER2-) positive cells was conducted. Progression-free survival (PFS) was assessed as the primary endpoint, and the objective response rate (ORR), overall survival (OS), and safety were secondary endpoints. Across all the patients, the ORR was 48.57%, and the disease control rate (DCR) was 94.29%. In the follow-up period, the median PFS was 15 months, and second-line treatment had significantly longer PFS than third-line treatment (P = 0.027). The OS among all the patients was up to 28 months, but the median OS has not yet been reached. Diarrhea (69.57%) was the most important AE, mainly in grades 1 and 2. According to the COX regression analysis, brain metastasis was a risk factor for PFS, while second-line treatment and capecitabine chemotherapy were relevant to a longer PFS correlation among patients. In the second- and third-line treatment, pyrrotinib is still highly effective and safe. Pyrrotinib is a potential ideal salvage treatment plan for patients who failed in first-line treatments.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yuxia Huang
- Department of Medical Oncology, Chizhou Second People's Hospital, Chizhou, Anhui 247100, China
| | - Zhen Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Fenfen Wei
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Min Yan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Fanfan Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
6
|
Da-Silva CCS, Anauate AC, Guirao TP, Novaes ADS, Maquigussa E, Boim MA. Analysis of exosome-derived microRNAs as early biomarkers of lipopolysaccharide-induced acute kidney injury in rats. Front Physiol 2022; 13:944864. [PMID: 36091362 PMCID: PMC9462429 DOI: 10.3389/fphys.2022.944864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022] Open
Abstract
Sepsis contributes to the high prevalence of acute kidney injury (AKI), which mainly occurs in hospitalized patients. The delay in AKI detection is a risk factor for death and chronicity; thus, early diagnosis is essential for initiating proper treatment strategies. Although serum creatinine is used as biomarker, it is increased in plasma serum creatinine only at late stages of AKI. MicroRNAs (miRNAs), a class of noncoding RNAs responsible for gene regulation, can be found in biological fluids within vesicles such as exosomes and may be promising tools for the early detection of AKI. We aimed to identify potential blood miRNAs that can be used as early biomarkers of sepsis-induced AKI in rats. Adult male Wistar rats received a single dose of lipopolysaccharide (LPS). The earliest significant increase in serum creatinine was detected 4 h after LPS administration. To evaluate whether miRNAs could act as early biomarkers, blood samples were collected before and 2 h after LPS infusion. Serum NGAL levels were used as a comparative marker. Serum miRNAs were derived from exosomes, and their expression were evaluated by the PCR array. miR-181a-5p and miR-23b-3p showed higher expression in LPS-treated rats than in the control animals (p < 0.05). Bioinformatics analysis showed that both miRNAs target molecules associated with transcription factors that regulate genes related to proinflammatory cytokines. Considering that LPS activates transcription factors that lead to the production of proinflammatory cytokines, possible premature changes in the serum levels of miR-181a-5p and miR-23b-3p may be used to identify sepsis-induced AKI earlier.
Collapse
Affiliation(s)
| | - Ana Carolina Anauate
- Renal Division, Department of Medicine, Universidade Federal de SP, São Paulo, Brazil
| | | | | | - Edgar Maquigussa
- Renal Division, Department of Medicine, Universidade Federal de SP, São Paulo, Brazil
- Postgraduate Program of Health and Environment, Universidade Metropolitana de Santos, Santos, Brazil
- *Correspondence: Edgar Maquigussa,
| | - Mirian Aparecida Boim
- Renal Division, Department of Medicine, Universidade Federal de SP, São Paulo, Brazil
- Postgraduate Program of Health and Environment, Universidade Metropolitana de Santos, Santos, Brazil
| |
Collapse
|
7
|
Ma J, Zhu M, Ye X, Wu B, Wang T, Ma M, Li T, Zhang N. Prognostic microRNAs associated with phosphoserine aminotransferase 1 in gastric cancer as markers of bone metastasis. Front Genet 2022; 13:959684. [PMID: 36061202 PMCID: PMC9437321 DOI: 10.3389/fgene.2022.959684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 01/30/2023] Open
Abstract
This study analyzed PSAT1-targeted miRNAs as a prognostic predictor for gastric cancer. The relationship between the clinical manifestations of gastric cancer in patients and phosphoserine aminotransferase 1 (PSAT1) was analyzed using correlation analysis. PSAT1 was highly expressed in gastric cancer, and its low expression was associated with a poor prognosis. By pan-cancer analysis, PSAT1 could affect the tumor immune microenvironment by immune infiltration analysis. Nine microRNAs targeting PSAT1 and associated with gastric cancer were screened by miRwalk and microRNA expression in TCGA tumor tissues. Six microRNAs were obtained by survival curve analysis, including hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p. Based on the above six microRNAs, a model for bone metastasis prediction in gastric cancer prediction was constructed. An analysis of a decision curve was performed based on the microRNAs obtained to predict bone metastasis from gastric cancer. It had a positive area under the curve (AUC) value of 0.746, and the decision curve analysis (DCA) indicated that it was clinically significant. Dual-luciferase reporter genes indicated that hsa-miR-497-5p and PSAT1 were targeted, and qRT-PCR results confirmed that hsa-miR-497-5p could down-regulate PSAT1 expression. MicroRNAs targeting the regulation of PSAT1 expression can well predict the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Jingwei Ma
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Meng Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Ye
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Bo Wu
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Tao Wang
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Muyuan Ma
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Tao Li
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ning Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
- *Correspondence: Ning Zhang,
| |
Collapse
|
8
|
Xu Q, Xu JL, Chen WQ, Xu WX, Song YX, Tang WJ, Xu D, Jiang MP, Tang J. Roles and mechanisms of miR-195-5p in human solid cancers. Biomed Pharmacother 2022; 150:112885. [PMID: 35453003 DOI: 10.1016/j.biopha.2022.112885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer persists as a worldwide disease that contributes to high morbidity and mortality rates. As a class of non-coding RNA, microRNAs (miRNAs) are one kind of important regulators in cancer and frequently implicated in tumor development and progression. Emerging experiments have suggested that miRNA-195-5p (miR-195-5p) can regulate neoplastic processes in many pathways. For instance, miR-195-5p can not only regulate proliferation, migration and invasion of tumor cells but also promote tumor cell apoptosis. Furthermore, low expression of miR-195-5p could induce drug resistance. Our review focuses on the expression of miR-195-5p in various tumors and elucidates the related mechanisms of which miR-195-5p participates in tumor biology, as well as summarizes the roles of miR-195-5p in tumor progression. We believe that miR-195-5p might have potential utility as a novel diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Qi Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jia-Lin Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Quan Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yu-Xin Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Juan Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Di Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Meng-Ping Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
9
|
Targeted Therapy Modulates the Secretome of Cancer-Associated Fibroblasts to Induce Resistance in HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413297. [PMID: 34948097 PMCID: PMC8706990 DOI: 10.3390/ijms222413297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
The combination of trastuzumab plus pertuzumab plus docetaxel as a first-line therapy in patients with HER2-positive metastatic breast cancer has provided significant clinical benefits compared to trastuzumab plus docetaxel alone. However, despite the therapeutic success of existing therapies targeting HER2, tumours invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. It is well known that the tumour microenvironment (TME) has a significant impact on cancer behaviour. Cancer-associated fibroblasts (CAFs) are essential components of the tumour stroma that have been linked to acquired therapeutic resistance and poor prognosis in breast cancer. For this reason, it would be of interest to identify novel biomarkers in the tumour stroma that could emerge as therapeutic targets for the modulation of resistant phenotypes. Conditioned medium experiments carried out in our laboratory with CAFs derived from HER2-positive patients showed a significant capacity to promote resistance to trastuzumab plus pertuzumab therapies in two HER2-positive breast cancer cell lines (BCCLs), even in the presence of docetaxel. In order to elucidate the components of the CAF-conditioned medium that may be relevant in the promotion of BCCL resistance, we implemented a multiomics strategy to identify cytokines, transcription factors, kinases and miRNAs in the secretome that have specific targets in cancer cells. The combination of cytokine arrays, label-free LC-MS/MS quantification and miRNA analysis to explore the secretome of CAFs under treatment conditions revealed several up- and downregulated candidates. We discuss the potential role of some of the most interesting candidates in generating resistance in HER2-positive breast cancer.
Collapse
|
10
|
Isca C, Piacentini F, Mastrolia I, Masciale V, Caggia F, Toss A, Piombino C, Moscetti L, Barbolini M, Maur M, Dominici M, Omarini C. Circulating and Intracellular miRNAs as Prognostic and Predictive Factors in HER2-Positive Early Breast Cancer Treated with Neoadjuvant Chemotherapy: A Review of the Literature. Cancers (Basel) 2021; 13:cancers13194894. [PMID: 34638377 PMCID: PMC8508299 DOI: 10.3390/cancers13194894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that can act as both oncogene and tumor suppressors. Deregulated miRNA expression has been detected in human cancers, including breast cancer (BC). Considering their important roles in tumorigenesis, miRNAs have been investigated as potential prognostic and diagnostic biomarkers. Neoadjuvant setting is an optimal model to investigate in vivo the mechanism of treatment resistance. In the management of human epidermal growth factor receptor-2 (HER2)-positive early BC, the anti-HER2-targeted therapies have drastically changed the survival outcomes. Despite this, growing drug resistance due to the pressure of therapy is relatively frequent. In the present review, we focused on the main miRNAs involved in HER2-positive BC tumorigenesis and discussed the recent evidence on their predictive and prognostic value.
Collapse
Affiliation(s)
- Chrystel Isca
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Federico Piacentini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Federica Caggia
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Angela Toss
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Claudia Piombino
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Luca Moscetti
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
| | - Monica Barbolini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Michela Maur
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
| | - Massimo Dominici
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Claudia Omarini
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
- Correspondence: ; Tel.: +39-059-4222845
| |
Collapse
|
11
|
Liu Z, Zhang L, Chen W, Yuan F, Yang Z, Liu S, Le F. miR-195-5p regulates cell proliferation, apoptosis, and invasion of thyroid cancer by targeting telomerase reverse transcriptase. Bioengineered 2021; 12:6201-6209. [PMID: 34482792 PMCID: PMC8806884 DOI: 10.1080/21655979.2021.1963908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In most human primary cancers, the expression, or telomerase activity, of telomerase reverse transcriptase (TERT) is detectable. However, the mechanism ofTERTactivity within oncogenesis of thyroid cancer remains largely unknown. In this study, we identified miR-195-5p as having involvement in cell proliferation, apoptosis, and invasion in human thyroid cancer. MTT was used to measure cell proliferation, Transwell chamber was used to measure invasion. Western blotting was used to detect the expressions of TERT, PCNA, and Ki67. Target gene prediction software predicted that TERT may be the target gene of miR-195-5p. Luciferase reporting system was used to identify the targeting relationship. A significant increase of in TERT expression was observed by immunohistochemistry compared with normal tissue, however, a decrease in miR-195-5p expression using qRT-PCRand western blot compared with normal cells. Functional analysis demonstrates that miR-195-5p negatively correlated withTERTand inhibitedTERTexpression through its interaction with theTERT3ʹ-untranslatedregion (3ʹ-UTR). Overexpression of miR-195-5p was shown to inhibit proliferation and invasion, and promote apoptosis of CAL-62 thyroid cancer cells. miR-195-5p-mediatedeffects were rescued by the overexpression ofTERT. Altogether, our data demonstrate that miR-195-5p regulates cell proliferation, apoptosis, and invasion in human thyroid cancer viaTERT, providing evidence of a new potential therapeutic target for further investigation.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department Of Neonatal Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Li Zhang
- Electrocardiography Room, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University ,Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology ,Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Wen Chen
- Department Of Breast Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Fenqian Yuan
- Department Of Head And Neck Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Zhi Yang
- Department Of Neonatal Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Sheng Liu
- Department Of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei Le
- Department Of Head And Neck Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Gao K, Wang T, Qiao Y, Cui B. miR-23b-5p promotes the chemosensitivity of temozolomide via negatively regulating TLR4 in glioma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:979-987. [PMID: 34110366 DOI: 10.1093/abbs/gmab066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common malignancy in the brain, with poor survival and often highly resistant to chemotherapy and radiotherapy. Temozolomide (TMZ) is an alkylating agent widely used for glioma treatment. However, resistance to TMZ results in treatment failure, while the underlying mechanisms remain unclear. Mounting evidence suggests that dysregulated microRNA (miRNA) expression plays a critical function in glioma development and resistance to TMZ treatment. In this study, we found that miR-23b-5p was downregulated in glioma tissues and cell lines. Overexpression of miR-23b-5p inhibited cell proliferation and promoted cell apoptosis in glioma cells, while miR-23b-5p enhanced the chemosensitivity of TMZ in glioma cells. Furthermore, we identified that Toll-like receptor 4 (TLR4) is a direct target of miR-23b-5p in glioma cells. Knockdown of TLR4 suppressed cell proliferation and enhanced cell apoptosis and promoted chemosensitivity to TMZ treatment in glioma cells. In addition, we demonstrated that overexpression of TLR4 abrogated the regulatory function of miR-23b-5p in glioma cells on cell proliferation, cell apoptosis, and the chemosensitivity of TMZ treatment. In summary, our data suggest that miR-23b-5p promotes the chemosensitivity of TMZ via negatively regulating TLR4 in glioma, which provides a new therapeutic strategy for TMZ-resistant glioma treatment.
Collapse
Affiliation(s)
- Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuan Qiao
- Department of Endocrinology, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Bo Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
13
|
Mu L, Yang F, Guo D, Li P, Zhang M. Overexpression of secretory clusterin (sCLU) induces chemotherapy resistance in human gastric cancer cells by targeting miR-195-5p. Bioengineered 2021; 11:472-483. [PMID: 32250192 PMCID: PMC7161562 DOI: 10.1080/21655979.2020.1747825] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent focus has turned to secretory clusterin (sCLU) as a key contributor to chemoresistance of anticancer agents, but the role of sCLU on chemotherapy drug response to gastric cancer cells is not fully understood. Previous research found that sCLU was overexpressed in the induced multidrug-resistant MGC-803/5-FU cell line, suggesting that sCLU upregulation was closely related to chemoresistance to anticancer agents. In the present study, we aimed to clarify the role and mechanisms of sCLU in regulating the chemoresistance of gastric cancer cells. Cell apoptosis and cell viability were evaluated by annexin V/propidium iodide staining and CCK8. Expression of sCLU and miR-195-5P was detected using quantitative RT-PCR assays. The expression of sCLU in gastric cancer tissues was detected by RT-PCR assays. Upregulating or downregulating sCLU or miR-195-5P in gastric cancer cells was used to evaluate the mechanisms of chemoresistance. We found that sCLU was significantly elevated in the MGC-803/5-FU and SGC-7901 cells, and the downregulating sCLU sensitized MGC-803/5-FU and SGC-7901 cells to cisplatin and Docetaxel by upregulation of miR-195-5P. Upregulating sCLU in MGC-803 and HGC-27 cells was resistant to cisplatin and Docetaxel by downregulating miR-195-5p. Targeting miR-195-5P reduced the sensitivity of MGC-803 cells to 5-FU, and miR-195-5P overexpression enhanced the sensitivity of MGC-803/5-FU cells to 5-FU. The overexpression of sCLU in gastric cancer tissues was associated with chemoresistance. Our findings suggest that overexpression of sCLU induced chemoresistance in gastric cancer cells by downregulating miR-195-5p, thus providing a potential target for the development of agents that targeting sCLU for gastric cancer therapy.
Collapse
Affiliation(s)
- Lihua Mu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengxia Yang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong Guo
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Li
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Maoshen Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
14
|
Development of a microRNA Panel for Classification of Abnormal Mammograms for Breast Cancer. Cancers (Basel) 2021; 13:cancers13092130. [PMID: 33925125 PMCID: PMC8124944 DOI: 10.3390/cancers13092130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer screening by mammography suffers from high rates of false positivity, resulting in unnecessary investigative imaging and biopsies. There is an unmet need for biomarkers that can distinguish between malignant and benign breast lesions. We performed miRNA profiling on 638 patients with abnormal mammograms and 100 healthy controls. A six-miRNA panel was identified and validated in an independent cohort that had an AUC of 0.881 when differentiating between cases versus those with benign lesions or healthy individuals with normal mammograms. In addition, biomarker panel scores increased with tumor size, stage and number of lymph nodes involved. This study demonstrates that circulating miRNAs can potentially be used in conjunction with mammography to differentiate between patients with malignant and benign breast lesions. Abstract Mammography is extensively used for breast cancer screening but has high false-positive rates. Here, prospectively collected blood samples were used to identify circulating microRNA (miRNA) biomarkers to discriminate between malignant and benign breast lesions among women with abnormal mammograms. The Discovery cohort comprised 72 patients with breast cancer and 197 patients with benign breast lesions, while the Validation cohort had 73 and 196 cancer and benign cases, respectively. Absolute expression levels of 324 miRNAs were determined using RT-qPCR. miRNA biomarker panels were identified by: (1) determining differential expression between malignant and benign breast lesions, (2) focusing on top differentially expressed miRNAs, and (3) building panels from an unbiased search among all expressed miRNAs. Two-fold cross-validation incorporating a feature selection algorithm and logistic regression was performed. A six-miRNA biomarker panel identified by the third strategy, had an area under the curve (AUC) of 0.785 and 0.774 in the Discovery and Validation cohorts, respectively, and an AUC of 0.881 when differentiating between cases versus those with benign lesions or healthy individuals with normal mammograms. Biomarker panel scores increased with tumor size, stage and number of lymph nodes involved. Our work demonstrates that circulating miRNA signatures can potentially be used with mammography to differentiate between patients with malignant and benign breast lesions.
Collapse
|
15
|
Khodadadian A, Varghaiyan Y, Babakhanzadeh E, Alipourfard I, Haghi-Daredeh S, Ghobadi A, Hemmati-Dinarvand M, Talebi M, Ghasemi N. Fertility preservation in women with ovarian cancer: Finding new pathways: A case-control study. Int J Reprod Biomed 2021; 19:157-166. [PMID: 33718760 PMCID: PMC7922293 DOI: 10.18502/ijrm.v19i2.8474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/30/2020] [Accepted: 08/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background Surgery and chemotherapy are the two most common treatments for cancers, including ovarian cancer. Although most ovarian cancers occur over the age of 45 yr, it may involve younger women and affect their reproductive ability. Objective To assess the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), Forkhead Box O1 (FOXO1), and miR-340 genes in the ovarian cancer tissues as well as ovarian cancer cell lines. Materials and Methods In this case-control study, 30 ovarian cancer samples (with the average age of 37 ± 2.5 years) coupled with their non-tumor marginal tissue (as a control) were collected. Proliferated cell lines were treated with several concentrations of cisplatin, and the half maximal inhibitory concentration (IC50) of cisplatin was quantified by MTT-assay. After RNA extraction, cDNA synthesis and qRT-PCR were done. Finally, the results were analyzed. Results While the expression levels of miR-340 and FOXO1 genes in tumor samples displayed a significant reduction (p ≤ 0.001), the LGR5 gene presented a significant increase in expression (p ≤ 0.0001). However, conversely, the expression levels of miR-340 and FOXO1 genes in cisplatin-sensitive cell lines, after 24, 48, and 72 hr of cisplatin treatment, indicated a significant increase (p ≤ 0.001) while the expression of LGR5 gene showed a significant decrease in the cisplatin-sensitive cell line (p < 0.05). Conclusion The LGR5, FOXO1, and miR-340 genes can be targeted for early diagnosis and more accurate treatment of ovarian cancer and may prevent some of the ovarian cancer complications such as infertility.
Collapse
Affiliation(s)
- Ali Khodadadian
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasser Varghaiyan
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Iraj Alipourfard
- Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,School of Pharmacy, Faculty of Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Saeed Haghi-Daredeh
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amin Ghobadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Bu L, Tian Y, Wen H, Jia W, Yang S. miR-195-5p exerts tumor-suppressive functions in human lung cancer cells through targeting TrxR2. Acta Biochim Biophys Sin (Shanghai) 2021; 53:189-200. [PMID: 33332541 DOI: 10.1093/abbs/gmaa159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
miR-195-5p has been widely explored in various cancers and is considered as a tumor-suppressive microRNA. However, its roles in human lung cancer pathogenesis are not fully elucidated. In this study, we aimed to explore how miR-195-5p is involved in malignant behaviors of lung adenocarcinoma (LUAD) cells. miR-195-5p expression was examined in the tumor tissues of patients with LUAD and human LUAD cell lines including A549 and PC-9. Thioredoxin reductase 2 (TrxR2) was predicted to be an mRNA target of miR-195-5p using online tools and validated by the Dual-Luciferase Reporter Assay. Lentivirus infection was used for gene overexpression, while gene knockdown was achieved by RNA interference. Cell proliferation was determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine methods, and cell migration and invasion were assayed with transwell experiments. Cell apoptosis was determined by annexin V staining-based flow cytometry. The antitumor effects of miR-195-5p were also evaluated in nude mice xenografted with A549 cells. We found that miR-195-5p was lowly expressed in human LUAD cells, and its overexpression markedly suppressed cell proliferation, migration, and invasion and increased the apoptosis of LUAD cells in vitro. TrxR2 knockdown phenocopied the tumor-suppressive effects of miR-195-5p overexpression, while simultaneous TrxR2 overexpression remarkably reversed the effects of miR-195-5p overexpression on malignant behaviors of A549 and PC-9 cells. Additionally, miR-195-5p overexpression inhibited the growth of xenografted A549 tumor in nude mice. Our work verified that miR-195-5p exerts tumor-suppressive functions in LUAD cells through targeting TrxR2 and suggested that the miR-195-5p/TrxR2 axis is a potential biomarker for LUAD therapy.
Collapse
Affiliation(s)
- Lina Bu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Northwest University, Xi’an No.3 Hospital, Xi’an 710018, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yingxuan Tian
- Department of Geriatric Respiratory, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Hongqing Wen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Northwest University, Xi’an No.3 Hospital, Xi’an 710018, China
| | - Weihong Jia
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Northwest University, Xi’an No.3 Hospital, Xi’an 710018, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
17
|
Huang Z, Xu Y, Wan M, Zeng X, Wu J. miR-340: A multifunctional role in human malignant diseases. Int J Biol Sci 2021; 17:236-246. [PMID: 33390846 PMCID: PMC7757049 DOI: 10.7150/ijbs.51123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs of approximately 22 nucleotides in length, which function by binding to the 3' UTR sequences of their target mRNAs. It has been reported that dysregulated miRNAs play pivotal roles in numerous diseases, including cancers, such as gastric, breast, colorectal, ovarian, and other cancers. Recent research efforts have been devoted to translating these basic discoveries into clinical applications that could improve the therapeutic outcome in patients with cancer. Early studies have shown that miR-340 may act either as an oncogene or a tumor suppressor by targeting genes related to proliferation, apoptosis, and metastasis, as well as those associated with diagnosis, treatment, chemoresistance, and prognosis. miR-340 has been shown to have a role in other diseases, such as autoimmune diseases, acute stroke, and alcoholic steatohepatitis. Nevertheless, the roles of miR-340 in human malignancies are still unclear, and the associated mechanisms are complex, involving a variety of signaling pathways, such as Wnt/β-catenin and the JAK-STAT pathways. Herein, we review the crucial roles of miR-340 in human cancers through the analysis of the latest research studies, with the aim of clarifying miR-340 function in malignant disease diagnosis, treatment, and prognosis, and to propose further investigations.
Collapse
Affiliation(s)
- Zheng Huang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Yesha Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Maoping Wan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Xixi Zeng
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| |
Collapse
|
18
|
Zabaleta ME, Forbes-Hernández TY, Simal-Gandara J, Quiles JL, Cianciosi D, Bullon B, Giampieri F, Battino M. Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Res Int 2020; 137:109623. [DOI: 10.1016/j.foodres.2020.109623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
|
19
|
Chen L, Zhu Q, Lu L, Liu Y. MiR-132 inhibits migration and invasion and increases chemosensitivity of cisplatin-resistant oral squamous cell carcinoma cells via targeting TGF-β1. Bioengineered 2020; 11:91-102. [PMID: 31906769 PMCID: PMC6961592 DOI: 10.1080/21655979.2019.1710925] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Numerous findings have demonstrated that MicroRNAs dysregulation plays a key role in many neoplasms, including oral squamous cell carcinoma (OSCC), yet the potential mechanisms of microRNAs in chemo-resistance remain elusive. Here, we analyzed the miR-132 expression in OSCC tissues and OSCC cell lines, and explored it role and mechanisms on invasion and migration and cisplatin (CDDP)-induced cell death. The clinical tissues of 37 patients with OSCCs and paired normal tissues were collected. The miR-132 expression in OSCC tissues and cell lines were detected by reverse transcription-quantitative polymerase chain reation (RT-qPCR). The in vitro repopulation models were established to mimic the biological processes of OSCC. The results showed that miR-132 expression was significantly decreased in the OSCC tissues and CDDP resistant OSCC cell line (CAL-27/CDDP). miR-132 mimic inhibited cell proliferation, invasion, migration and enhanced the pro-apoptotic ability of CDDP. On the contrary, downregulation of miR-132 promoted proliferation, invasion, migration and conferred OSCC cell resistance to CDDP-induced apoptosis in vitro. The TGF-β1 expression in OSCC tissues and CAL-27/CDDP cells was significantly higher. miR-132 significantly inhibited the TGF-β1/Smad2/3 signals. TGF-β1 upregulation significantly promoted OSCC cell proliferation and resumed OSCC cell chemo-resistance in the miR-132 overexpressing cells, which is contrary to the function of miR-132. In summary, miR-132 acts as a tumor suppressor and exerts a substantial role in inhibiting the proliferation, invasion, and enhanced the chemosensitivity to CDDP of OSCC via regulating TGF-β1/Smad2/3 signals in vitro. These observations indicate that miR-132 may be a suitable therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Liqiang Chen
- Department of Oral and Maxillofacial Surgery, The affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Dental Digital Medicine and 3D Printing Engineering Laboratory, Qingdao University, Qingdao, Shandong, China
| | - Qingli Zhu
- Department of Thyroid Surgery, The affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingwei Lu
- Department of Thyroid Surgery, The affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Dental Digital Medicine and 3D Printing Engineering Laboratory, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
20
|
miR-195 down-regulation is a distinctive biomarker of HER2 positive state in breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Hermawan A, Putri H. Integrative bioinformatics analysis reveals miR-494 and its target genes as predictive biomarkers of trastuzumab-resistant breast cancer. J Egypt Natl Canc Inst 2020; 32:16. [DOI: 10.1186/s43046-020-00028-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/17/2020] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
The focus of trastuzumab resistance biomarkers in recent decades has been on epigenetic and non-coding RNA-based mechanisms. In this study, the potential of miR-494 and its target genes as predictive biomarkers for breast cancer (BC) resistance to trastuzumab was identified. The microarray data were obtained from the GEO database, including GSE101841, GSE75669, and GSE66305. Data processing was conducted using GEO2R to obtain differentially expressed genes (DEGs).
Results
The data analysis using GEO2R revealed that DEGs from GSE101841 and GSE75669 consisted of 3 and 135 upregulated miRNAs, respectively. On the other hand, the same analysis revealed 8 and 226 downregulated miRNAs for DEGs from GSE101841 and GSE75669, respectively. A Venn diagram showed that one miR was detectable in serum and tissue samples, namely miR-494. The miR-494 target was predicted using the miRecords database and resulted in 69 target genes. A Venn diagram between miR-494 target genes from miRecords and the mRNA array from GSE66305 revealed three potential targets of CNR1, RBM39, and ZNF207. A Kaplan–Meier survival plot showed that BC patients with a high miR-494 level and a low ZNF207 mRNA level had significantly worse overall survival. Validation of target genes in BC samples and trastuzumab-resistant and -sensitive BC cells with GEPIA and ONCOMINE highlighted the potential of CNR1, RBM39, and ZNF207 as predictive biomarkers of trastuzumab resistance in BC cells.
Conclusion
Taken together, these results suggest that miR-494 plays a role in the mechanism of BC resistance to trastuzumab by involving its target genes CNR1, RBM39, and ZNF207.
Collapse
|
22
|
Derakhshani A, Rezaei Z, Safarpour H, Sabri M, Mir A, Sanati MA, Vahidian F, Gholamiyan Moghadam A, Aghadoukht A, Hajiasgharzadeh K, Baradaran B. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. J Cell Physiol 2020; 235:3142-3156. [PMID: 31566722 DOI: 10.1002/jcp.29216] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) comprises around 20-30% of all BC subtypes and is correlated with poor prognosis. For many years, trastuzumab, a monoclonal antibody, has been used to inhibit the HER2 activity. Though, the main resistance to trastuzumab has challenged the use of this drug in the management of HER2-positive BC. Therefore, the determination of resistance mechanisms and the incorporation of new agents may lead to the development of a better blockade of the HER family receptor signaling. During the last few years, some therapeutic drugs have been developed for treating patients with trastuzumab-resistant HER2-positive BC that have more effective influences in the management of this condition. In this regard, the present study aimed at reviewing the mechanisms of trastuzumab resistance and the innovative therapies that have been investigated in trastuzumab-resistant HER2-positive BC subjects.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Morteza Sabri
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Atefeh Mir
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Mohammad Amin Sanati
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghadoukht
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Liu F, Qiu F, Fu M, Chen H, Wang H. Propofol Reduces Epithelial to Mesenchymal Transition, Invasion and Migration of Gastric Cancer Cells through the MicroRNA-195-5p/Snail Axis. Med Sci Monit 2020; 26:e920981. [PMID: 32115570 PMCID: PMC7067052 DOI: 10.12659/msm.920981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a life-threating malignancy worldwide. Accumulating studies suggest propofol has anti-tumor functions in addition to the anesthetic effect. This study aimed to figure out the effects of propofol treatment in GC development. MATERIAL AND METHODS Human GC SGC-7901 and NCI-N87 cells were treated with different doses of propofol. Then the invasion and migration of GC cells was measured. SGC-7901 cells following 10 μM propofol treatment were applied in the following experiments. MicroRNAs (miRNAs) with differential expression in cells with or without propofol treatment were analyzed. Expression of miR-195-5p, Snail, vimentin and E-cadherin in SGC-7901 cells was measured, and then loss-of-function of miR-195-5p and gain-of-function of Snail were performed. Target relation between miR-195-5p and Snail was confirmed using luciferase assay. Xenograft tumor was induced in nude mice to identify the effect of propofol on GC in vivo. RESULTS Propofol reduced epithelial to mesenchymal transition (EMT), invasion and migration of GC cells in a dose-dependent manner. Propofol elevated miR-195-5p expression but reduced Snail expression, and it reduced vimentin but increased E-cadherin expression in SGC-7901 cells. miR-195-5p directly bound to Snail. miR-195-5p inhibition or Snail promotion reversed propofol-inhibited malignant behaviors of SGC-7901 cells. In vitro results were reproduced in in vivo experiments. CONCLUSIONS Our study found that propofol could inhibit EMT, invasion, and migration of GC cells by promoting miR-195-5p expression and suppressing Snail expression. This study may provide novel insights in GC treatment.
Collapse
Affiliation(s)
- Fenghua Liu
- Department of Anesthesiology, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Fengyu Qiu
- Department of Anesthesiology, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Min Fu
- Department of Anesthesiology, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Huayong Chen
- Department of Anesthesiology, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Hui Wang
- Operating Room, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
24
|
Sun Y, Zhou Q, Li J, Zhao C, Yu Z, Zhu Q. LncRNA RP11-422N16.3 Inhibits Cell Proliferation and EMT, and Induces Apoptosis in Hepatocellular Carcinoma Cells by Sponging miR-23b-3p. Onco Targets Ther 2019; 12:10943-10961. [PMID: 31849497 PMCID: PMC6913766 DOI: 10.2147/ott.s232243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Objective This study investigated the mechanism of RP11-422N16.3 sponging miR-23b-3p in cell proliferation, apoptosis and epithelial-mesenchymal transition (EMT) in liver cancer. Methods Expressions of RP11-422N16.3, miR-23b-3p and dimethylglycine dehydrogenase (DMGDH) were determined in liver cancer tissues, adjacent normal tissues, hepatocellular carcinoma cell lines and normal liver epithelial cell line. Up-regulation of RP11-422N16.3 and down-regulation of miR-23b-3p were conducted in hepatocellular carcinoma cells. Bioinformatics analysis, luciferase reporter assay and RNA-pull down assay were performed to verify the relationship among miR-23b-3p, DMGDH, as well as RP11-422N16.3. Cell proliferation and cell apoptosis were determined by CCK-8 and Flow Cytometry analysis, respectively. Results Expressions of RP11-422N16.3 and DMGDH were down-regulated while that of miR-23b-3p were up-regulated in hepatocellular carcinoma cancer tissues and cells. RP11-422N16.3 localized in cytoplasm and competitively bound to miR-23b-3p. Up-regulation of RP11-422N16.3 and down-regulation of miR-23b-3p contributed to increased expressions of DMGDH and E-cadherin, and decreased expressions of miR-23b-3p, ZEB1, Snail and Vimentin, resulting in inhibiting cell proliferation and promoting cell apoptosis. Inhibition of RP11-422N16.3 or overexpression of miR-23b-3p accelerated cell proliferation and slowed down cell apoptosis. miR-23b-3p inhibited the expression of DMGDH. Conclusion Our data suggested that LncRNA RP11-422N16.3, by competitively binding to miR-23b-3p, promoted DMGDH expression, contributing to inhibit cell proliferation and EMT, and induce cell apoptosis in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yunpeng Sun
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Qingqing Zhou
- Departments of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Junjian Li
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Chang Zhao
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Zhengping Yu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Qiandong Zhu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
25
|
Zhu X, Tian G, Quan J, He P, Liu J. Effects of miR‑340 overexpression and knockdown on the proliferation and metastasis of NSCLC cell lines. Int J Mol Med 2019; 44:643-651. [PMID: 31173161 PMCID: PMC6605470 DOI: 10.3892/ijmm.2019.4213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the potential biological functions of microRNA‑340 (miR‑340) in non‑small cell lung cancer (NSCLC) beyond its role as a critical regulator of tumorigenesis and tumor progression. The expression levels of miR‑340 and RAB27B were analyzed by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the protein expression levels of RAB27A, RAB27B, RAB9A, RAB11A and BRAB21 were determined by western blot analysis. The expression levels of the aforementioned proteins in NSCLC tissues were analyzed by immunohistochemistry. RAB27B, as a potential target of miR‑340 was investigated via a dual‑luciferase reporter assay. The proliferative ability of PC9, A549 and BEAS‑2B cells was detected with a Cell Counting kit‑8 assay, while the migration and invasion of the NSCLC cells were analyzed using a Transwell assay. The results revealed that the expression levels of miR‑340 in the NSCLC cells were significantly decreased compared with those in normal cells (BEAS‑2B cells). RAB27B was proposed as a potential target gene of miR‑340, and its expression was notably increased in the NSCLC cells. miR‑340 overexpression inhibited the migration and invasion of the NSCLC cells by targeting RAB27B, while the knockdown of miR‑340 exerted opposite effects. On the whole, these findings indicate that the miR‑340/RAB27B axis may be actively involved in the occurrence of NSCLC. Thus, miR‑340 and RAB27B may be novel therapeutic targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xidan Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Quan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Peng He
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
26
|
Gene Expression and miRNAs Profiling: Function and Regulation in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11050646. [PMID: 31083383 PMCID: PMC6562440 DOI: 10.3390/cancers11050646] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most common cause of cancer-related deaths among women worldwide. It is a heterogeneous disease with four major molecular subtypes. One of the subtypes, human epidermal growth factor receptor 2 (HER2)-enriched (HER2-positive) is characterized by the absence of estrogen and progesterone receptors and overexpression of HER2 receptor, and accounts for 15–20% of all breast cancers. Despite the anti-HER2 and cytotoxic chemotherapy, HER2 subtype is an aggressive disease with significant mortality. Recent advances in molecular biology techniques, including gene expression profiling, proteomics, and microRNA analysis, have been extensively used to explore the underlying mechanisms behind human breast carcinogenesis and metastasis including HER2-positive breast cancer, paving the way for developing new targeted therapies. This review focuses on recent advances on gene expression and miRNA status in HER2-positive breast cancer.
Collapse
|