1
|
Salvaleda-Mateu M, Rodríguez-Varela C, Labarta E. Do Popular Diets Impact Fertility? Nutrients 2024; 16:1726. [PMID: 38892663 PMCID: PMC11174414 DOI: 10.3390/nu16111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Infertility affects 15% of the population in developed countries, and its prevalence is increasing. Fertility can be influenced by different factors. Although key factors like maternal age cannot be changed, there is growing evidence that other modifiable factors, such as diet, can have an impact on fertility. Diet has become increasingly important in recent years for a number of reasons: the new trend toward a healthy lifestyle, the higher prevalence of certain digestive disorders, a lack of time that leads people to consume more prepared and processed food, and personal choice to not eat meat, among others. To meet these needs, several diets have recently become popular, such as the Mediterranean diet, known as the gold standard of health; the DASH diet, known for preventing hypertension; the Western diet, characterized by processed food; the ketogenic diet, characterized by low carbohydrate intake; and the vegetarian diet, which is the choice for people who do not eat meat or animal by-products. Diets present a unique composition characterized by the presence or absence of specific nutrients, which have also been associated with male and female fertility individually. This review assesses the impact of these diets and of macro- and micronutrients on both female and male fertility.
Collapse
Affiliation(s)
| | | | - Elena Labarta
- Human Reproduction Department, IVI RMA Valencia, 46015 Valencia, Spain; (C.R.-V.); (E.L.)
| |
Collapse
|
2
|
Zou W, Zong K, Zhang Z, Shen L, Wang X, Su X, Wang X, Yin T, Liang C, Liu Y, Liang D, Hu C, Cao Y, Ji D. Novel economical, accurate, sensitive, single-cell analytical method for mitochondrial DNA quantification in mtDNA mutation carriers. J Assist Reprod Genet 2023; 40:2197-2209. [PMID: 37462790 PMCID: PMC10440311 DOI: 10.1007/s10815-023-02878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023] Open
Abstract
PURPOSE Although a variety of analytical methods have been developed to detect mitochondrial DNA (mtDNA) heteroplasmy, there are special requirements of mtDNA heteroplasmy quantification for women carrying mtDNA mutations receiving the preimplantation genetic diagnosis (PGD) and prenatal diagnosis (PD) in clinic. These special requirements include various sample types, large sample number, long-term follow-up, and the need for detection of single-cell from biopsied embryos. Therefore, developing an economical, accurate, high-sensitive, and single-cell analytical method for mtDNA heteroplasmy is necessary. METHODS In this study, we developed the Sanger sequencing combined droplet digital polymerase chain reaction (ddPCR) method for mtDNA quantification and compared the results to next-generation sequencing (NGS). A total of seventeen families with twelve mtDNA mutations were recruited in this study. RESULTS The results showed that both Sanger sequencing and ddPCR could be used to analyze the mtDNA heteroplasmy in single-cell samples. There was no statistically significant difference in heteroplasmy levels in common samples with high heteroplasmy (≥ 5%), low heteroplasmy (< 5%), and single-cell samples, either between Sanger sequencing and NGS methods, or between ddPCR and NGS methods (P > 0.05). However, Sanger sequencing was unable to detect extremely low heteroplasmy accurately. But even in samples with extremely low heteroplasmy (0.40% and 0.92%), ddPCR was always able to quantify them. Compared to NGS, Sanger sequencing combined ddPCR analytical methods greatly reduced the cost of sequencing. CONCLUSIONS In conclusion, this study successfully established an economical, accurate, sensitive, single-cell analytical method based on the Sanger sequencing combined ddPCR methods for mtDNA heteroplasmy quantification in a clinical setting.
Collapse
Affiliation(s)
- Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kai Zong
- Technical Center of Hefei Customs District, No. 329 Tunxi Road, Hefei, 230022, Anhui, China
| | - Zhikang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lingchao Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Su
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Meng M, Li X, Huo R, Ma N, Chang G, Shen X. A high-concentrate diet induces mitochondrial dysfunction by activating the MAPK signaling pathway in the mammary gland of dairy cows. J Dairy Sci 2023; 106:5775-5787. [PMID: 37296051 DOI: 10.3168/jds.2022-22907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/10/2023] [Indexed: 06/12/2023]
Abstract
Subacute rumen acidosis can lead to mastitis in dairy cows. Mitochondrial dysfunction is closely related to the inflammatory response. This experiment was conducted to investigate the effects of a high-concentrate diet on mammary gland inflammation and mitochondrial damage in dairy cows. Twelve Holstein dairy cows in mid-lactation were randomly divided into 2 groups and fed a 40% concentrate (low concentrate, LC) diet or a 60% concentrate (high concentrate, HC) diet. Cows were fed individually, and the experiment lasted for 3 wk. After the experiment, mammary gland tissue, blood, and rumen fluid were collected. Compared with the LC diet, the HC diet significantly decreased rumen pH; the pH was <5.6 for more than 3 h. The HC diet also increased the concentration of LPS in the blood (7.17 ± 1.25 µg/mL vs. 12.12 ± 1.26 µg/mL), which indicated that feeding the HC diet successfully induced subacute rumen acidosis. The HC diet also increased the concentration of Ca2+ (34.80 ± 4.23 µg/g vs. 46.87 ± 7.24 µg/g) in the mammary gland and upregulated the expression of inflammatory factors IL-6 (1,128.31 ± 147.53 pg/g vs. 1,538.42 ± 241.38 pg/g), IL-1β (69.67 ± 5.86 pg/g vs. 90.13 ± 4.78 pg/g), and tumor necrosis factor-α (91.99 ± 10.43 pg/g vs. 131.75 ± 17.89 pg/g) in mammary venous blood. The HC diet also increased the activity of myeloperoxidase (0.41 ± 0.05 U/g vs. 0.71 ± 0.11 U/g) and decreased the content of ATP (0.47 ± 0.10 µg/mL vs. 0.32 ± 0.11 µg/mL) in the mammary gland. In addition, phosphorylation of JNK (1.00 ± 0.21 vs. 2.84 ± 0.75), ERK (1.00 ± 0.20 vs. 1.53 ± 0.31), and p38 (1.00 ± 0.13 vs. 1.47 ± 0.41) and protein expression of IL-6 (1.00 ± 0.22 vs. 2.21 ± 0.27) and IL-8 (1.00 ± 0.17 vs. 1.96 ± 0.26) were enhanced in cows of the HC group, indicating that the mitogen-activated protein kinase (MAPK) signaling pathway was activated. Compared with the LC diet, the HC diet reduced the protein expression of mitochondrial biogenesis-related proteins PGC-1α (1.00 ± 0.17 vs. 0.55 ± 0.12), NRF1 (1.00 ± 0.17 vs. 0.60 ± 0.10), TFAM (1.00 ± 0.10 vs. 0.73 ± 0.09), and SIRTI (1.00 ± 0.44 vs. 0.40 ± 0.10). The HC diet promoted mitochondrial fission and inhibited mitochondrial fusion by reducing protein expression of MFN1 (1.00 ± 0.31 vs. 0.49 ± 0.09), MFN2 (1.00 ± 0.19 vs. 0.69 ± 0.13), and OPA1 (1.00 ± 0.08 vs. 0.72 ± 0.07), and by increasing that of DRP1 (1.00 ± 0.09 vs. 1.39 ± 0.10), MFF (1.00 ± 0.15 vs. 1.89 ± 0.12), and TTC1/FIS1 (1.00 ± 0.08 vs. 1.76 ± 0.14), leading to mitochondrial dysfunction. The HC diet increased mitochondrial permeability by upregulating the protein expression of VDAC1 (1.00 ± 0.42 vs. 1.90 ± 0.44), ANT (1.00 ± 0.22 vs. 1.27 ± 0.17), and CYPD (1.00 ± 0.41 vs. 1.82 ± 0.43). Taken together, these results indicated that feeding the HC diet induced mitochondrial damage via the MAPK signaling pathway in the mammary gland of dairy cows.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xuerui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| |
Collapse
|
4
|
Tsirka G, Zikopoulos A, Papageorgiou K, Kostoulas C, Tsigkas I, Moustakli E, Kaltsas A, Sarafi E, Michaelidis TM, Georgiou I. The Ratio of cf-mtDNA vs. cf-nDNA in the Follicular Fluid of Women Undergoing IVF Is Positively Correlated with Age. Genes (Basel) 2023; 14:1504. [PMID: 37510407 PMCID: PMC10379089 DOI: 10.3390/genes14071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related mitochondrial markers may facilitate the prognosis of artificial reproductive technology outcomes. In this report, we present our study concerning the ratio of cf-mtDNA/cf-nDNA, namely the amount of cell-free mitochondrial DNA relative to cell-free nuclear DNA, in the follicular fluid (FF) of women undergoing IVF, aiming to generate a molecular fingerprint of oocyte quality. The values of this ratio were measured and compared among three groups of women (101 in total): (A) 31 women with polycystic ovary syndrome (PCOS), (B) 34 women younger than 36 years, and (C) 36 women older than 35 years of age. Real-time quantitative PCR (qPCR) was performed to quantify the ratio by using nuclear- and mitochondrial-specific primers and analyzed for potential correlation with age and pregnancy rate. Our analysis showed that the level of FF-cf-mtDNA was lower in the group of advanced-age women than in the groups of PCOS and non-PCOS women. Moreover, a significant positive correlation between FF-cf-mtDNA and the number of mature (MII) oocytes was observed. Collectively, the data show that the relative ratio of cf- mtDNA to cf-nDNA content in human FF can be an effective predictor for assessing the corresponding oocyte's age-related performance in IVF.
Collapse
Affiliation(s)
- Georgia Tsirka
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Kyriaki Papageorgiou
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Tsigkas
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Aris Kaltsas
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria Sarafi
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Theologos M Michaelidis
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
State of the art in assisted reproductive technologies for patients with advanced maternal age. ZYGOTE 2023; 31:149-156. [PMID: 36810125 DOI: 10.1017/s0967199422000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
According to the World Health Organization, the female reproductive age lasts up to 49 years, but problems with the realization of women's reproductive rights may arise much earlier. Significant numbers of factors affect the state of reproductive health: socioeconomic, ecological, lifestyle features, the level of medical literacy, and the state of the organization and medical care quality. Among the reasons for fertility decline in advanced reproductive age are the loss of cellular receptors for gonadotropins, an increase in the threshold of sensitivity of the hypothalamic-pituitary system to the action of hormones and their metabolites, and many others. Furthermore, negative changes accumulate in the oocyte genome, reducing the possibility of fertilization, normal development and implantation of the embryo and healthy offspring birth. Another theory of ageing causing changes in oocytes is the mitochondrial free radical theory of ageing. Taking into account all these age-related changes in gametogenesis, this review considers modern technologies aimed at the preservation and realization of female fertility. Among the existing approaches, two main ones can be distinguished: methods allowing the preservation of reproductive cells at a younger age using ART intervention and cryobanking, as well as methods aimed at improving the basic functional state of advanced-age women's oocytes and embryos.
Collapse
|
6
|
Wang X, Lu H, Li M, Zhang Z, Wei Z, Zhou P, Cao Y, Ji D, Zou W. Research development and the prospect of animal models of mitochondrial DNA-related mitochondrial diseases. Anal Biochem 2023; 669:115122. [PMID: 36948236 DOI: 10.1016/j.ab.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Mitochondrial diseases (MDs) are genetic and clinical heterogeneous diseases caused by mitochondrial oxidative phosphorylation defects. It is not only one of the most common genetic diseases, but also the only genetic disease involving two different genomes in humans. As a result of the complicated genetic condition, the pathogenesis of MDs is not entirely elucidated at present, and there is a lack of effective treatment in the clinic. Establishing the ideal animal models is the critical preclinical platform to explore the pathogenesis of MDs and to verify new therapeutic strategies. However, the development of animal modeling of mitochondrial DNA (mtDNA)-related MDs is time-consuming due to the limitations of physiological structure and technology. A small number of animal models of mtDNA mutations have been constructed using cell hybridization and other methods. However, the diversity of mtDNA mutation sites and clinical phenotypes make establishing relevant animal models tricky. The development of gene editing technology has become a new hope for establishing animal models of mtDNA-related mitochondrial diseases.
Collapse
Affiliation(s)
- Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hedong Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Wu Y, Weng X, Liu S, Tan Y, Liang H, Li Y, Wen L, Chen Q, Jing C. Associations of single and multiple organophosphate pesticide exposure with female infertility in the USA: data from the 2015-2018 National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23411-23421. [PMID: 36322354 DOI: 10.1007/s11356-022-23624-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Substantial evidence has shown that organophosphate pesticide (OPP) exposure altered the reproductive system functions, such as prolonged menstrual cycles, sexual hormone imbalance, and changes in ovarian weight. However, the association of OPP exposure with female infertility is unclear. We explored the relationships of four single OPP metabolites and their mixed exposure with self-reported infertility among women aged 20-50 in the USA using the data from two cycles (2015-2016 and 2017-2018) of the National Health and Nutrition Examination Survey (NHANES) by multiple logistic regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (QGC). Eventually, 659 females were included in our study. Among these females, 77 participants were ever infertile. Multiple logistic regression showed that the odds ratios (ORs) in the second and third tertiles of dimethylphosphate (DMP) for female infertility were 2.53 (95% confidence interval (95%CI): 1.20-5.32, P value = 0.016) and 2.96 (95%CI: 1.18-7.47, P value = 0.023) compared to the lowest tertile after adjusting for all covariates (P for trend = 0.022). A significantly positive association between the mixed OPP metabolites and infertility was observed in the BKMR model, in which DMP had the highest posterior inclusion probability (PIP = 0.741). The QGC model showed similar results, in which OPP metabolite mixtures increased the risk of female infertility, with DMP as a significantly positive contributor to the outcome. This study revealed the potential harm of OPP mixtures for female infertility in the USA, and DMP played the most critical role in female infertility risk among all OPP metabolites.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
8
|
Pan C, Chen J, Chen Y, Lu Y, Liang X, Xiong B, Lu Y. Mogroside V ameliorates the oxidative stress-induced meiotic defects in porcine oocytes in vitro. Reprod Toxicol 2022; 111:148-157. [PMID: 35597324 DOI: 10.1016/j.reprotox.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023]
Abstract
It has been reported that environmental factors, such as industrial pollution, environmental toxins, environmental hormones, and global warming contribute to the oxidative stress-induced deterioration of oocyte quality and female fertility. However, the prevention or improvement approaches have not been fully elucidated. Here, we explored the mechanism regarding how Mogroside V (MV), a main extract of Siraitia grosvenorii, improves the oxidative stress-induced meiotic defects in porcine oocytes. Our results showed that MV supplementation restores the defective oocyte maturation and cumulus cell expansion caused by H2O2 treatment. We further found that MV supplementation promoted the oocyte cytoplasmic maturation through preventing cortical granules from the aberrant distribution, and drove the nuclear maturation by maintaining the cytoskeleton structure. Notably, our single-cell RNA sequencing data indicated that H2O2-treated oocytes led to the oxidative stress primarily through two pathways 'meiosis' and 'oxidative phosphorylation'. Lastly, we evaluated the effects of MV supplementation on the mitochondrial distribution pattern and membrane potential in H2O2-treated oocytes, revealing that MV supplementation eliminated the excessive ROS induced by the mitochondrial abnormalities and consequently suppressed the apoptosis. In conclusion, our study demonstrates that MV supplementation is an effective approach to ameliorate the oxidative stress-induced meiotic defects via recovering the mitochondrial integrity in porcine oocytes.
Collapse
Affiliation(s)
- Chen Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jingyue Chen
- State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
9
|
Kumar K, Venturas M, Needleman DJ, Racowsky C, Wells D. Extensive analysis of mitochondrial DNA quantity and sequence variation in human cumulus cells and assisted reproduction outcomes. Hum Reprod 2021; 37:66-79. [PMID: 34755183 PMCID: PMC8730313 DOI: 10.1093/humrep/deab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Are relative mitochondrial DNA (mtDNA) content and mitochondrial genome (mtGenome) variants in human cumulus cells (CCs) associated with oocyte reproductive potential and assisted reproductive technology (ART) outcomes? SUMMARY ANSWER Neither the CC mtDNA quantity nor the presence of specific mtDNA genetic variants was associated with ART outcomes, although associations with patient body mass index (BMI) were detected, and the total number of oocytes retrieved differed between major mitochondrial haplogroups. WHAT IS KNOWN ALREADY CCs fulfil a vital role in the support of oocyte developmental competence. As with other cell types, appropriate cellular function is likely to rely upon adequate energy production, which in turn depends on the quantity and genetic competence of the mitochondria. mtDNA mutations can be inherited or they can accumulate in somatic cells over time, potentially contributing to aging. Such mutations may be homoplasmic (affecting all mtDNA in a cell) or they may display varying levels of heteroplasmy (affecting a proportion of the mtDNA). Currently, little is known concerning variation in CC mitochondrial genetics and how this might influence the reproductive potential of the associated oocyte. STUDY DESIGN, SIZE, DURATION This was a prospective observational study involving human CCs collected with 541 oocytes from 177 IVF patients. mtDNA quantity was measured in all the samples with a validated quantitative PCR method and the entire mtGenome was sequenced in a subset of 138 samples using a high-depth massively parallel sequencing approach. Associations between relative mtDNA quantity and mtGenome variants in CCs and patient age, BMI (kg/m2), infertility diagnosis and ART outcomes were investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS Massively parallel sequencing permitted not only the accurate detection of mutations but also the precise quantification of levels of mutations in cases of heteroplasmy. Sequence variants in the mtDNA were evaluated using Mitomaster and HmtVar to predict their potential impact. MAIN RESULTS AND THE ROLE OF CHANCE The relative mtDNA CC content was significantly associated with BMI. No significant associations were observed between CC mtDNA quantity and patient age, female infertility diagnosis or any ART outcome variable. mtGenome sequencing revealed 4181 genetic variants with respect to a reference genome. The COXI locus contained the least number of coding sequence variants, whereas ATPase8 had the most. The number of variants predicted to affect the ATP production differed significantly between mitochondrial macrohaplogroups. The total number of retrieved oocytes was different between the H-V and J-T as well as the U-K and J-T macrohaplogroups. There was a non-significant increase in mtDNA levels in CCs with heteroplasmic mitochondrial mutations. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although a large number of samples were analysed in this study, it was not possible to analyse all the CCs from every patient. Also, the results obtained with respect to specific clinical outcomes and macrohaplogroups should be interpreted with caution due to the smaller sample sizes when subdividing the dataset. WIDER IMPLICATIONS OF THE FINDINGS These findings suggest that the analysis of mtDNA in CCs is unlikely to provide an advantage in terms of improved embryo selection during assisted reproduction cycles. Nonetheless, our data raise interesting biological questions, particularly regarding the interplay of metabolism and BMI and the association of mtDNA haplogroup with oocyte yield in ovarian stimulation cycles. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by National Institutes of Health grant 5R01HD092550-02. D.J.N. and C.R. co-hold patent US20150346100A1 and D.J.N. holds US20170039415A1, both for metabolic imaging methods. D.W. receives support from the NIHR Oxford Biomedical Research Centre. The remaining authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Kishlay Kumar
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Marta Venturas
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Daniel J Needleman
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Catherine Racowsky
- Department of Obstetrics and Gynecology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hospital Foch, Suresnes, France
| | - Dagan Wells
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Juno Genetics Ltd, Oxford, UK
| |
Collapse
|
10
|
Krassovskaia PM, Chaves AB, Houmard JA, Broskey NT. Exercise during Pregnancy: Developmental Programming Effects and Future Directions in Humans. Int J Sports Med 2021; 43:107-118. [PMID: 34344043 DOI: 10.1055/a-1524-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered in utero. This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases. However, how lifestyle interventions such as physical activity directly affect human offspring metabolism and the potential mechanisms involved in regulating metabolic balance at the cellular level are not known. The purpose of this review is to highlight the effects of exercise during pregnancy on offspring metabolic health and emphasize gaps in the current human literature and suggestions for future research.
Collapse
Affiliation(s)
- Polina M Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Alec B Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Joseph A Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Nicholas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| |
Collapse
|
11
|
Masciangelo R, Chiti MC, Camboni A, Amorim CA, Donnez J, Dolmans MM. Mitochondrial content, activity, and morphology in prepubertal and adult human ovaries. J Assist Reprod Genet 2021; 38:2581-2590. [PMID: 34331619 DOI: 10.1007/s10815-021-02282-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To investigate whether mitochondrial content, activity, and morphology differ in prepubertal versus adult ovarian follicles. METHODS Ovarian tissue was collected from 7 prepubertal girls (age 1-10 years) and 6 adult women (age 20-35 years). Primordial and primary follicles were isolated from frozen-thawed prepubertal and adult ovarian tissue and their viability was assessed. Mitochondrial content was investigated by TOMM20 immunostaining of prepubertal and adult ovarian tissue, while mitochondrial activity in isolated follicles was analyzed by MitoTracker CM-H2XRos and JC-1. Frozen-thawed ovarian tissue from the same patients was also evaluated by transmission electron microscopy to examine mitochondrial morphology. RESULTS Higher TOMM20 staining was detected in prepubertal follicles compared to their adult counterparts, indicating the presence of more mitochondria in prepubertal follicles. Analysis of mitochondrial activity by MitoTracker showed higher fluorescence intensity in prepubertal follicles, suggesting that follicles in this group are more active than adult follicles. JC-1 analysis did not reveal any statistically significant difference in the inactive/active ratio between the two groups. Moreover, ultrastructural analysis by TEM detected morphological differences in the shape and cristae of prepubertal mitochondria, probably suggesting a mechanism of response to autophagy. CONCLUSION Differences in the number, activity, and morphology of mitochondria were reported, suggesting that consequential modifications might occur during puberty, which could be the window of opportunity required by mitochondria to undergo changes needed to reach maturity, and hence the capacity for ovulation and fertilization.
Collapse
Affiliation(s)
- Rossella Masciangelo
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Maria Costanza Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Alessandra Camboni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche Pour L'Infertilité, Avenue Grandchamp 143, 1150, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium.
- Département de Gynécologie, Cliniques Universitaires St. Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| |
Collapse
|
12
|
Tang Z, Tang X, Xue L, Guan M. [A non-invasive method for detecting mitochondrial tRNA Thr15927G>A mutation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:151-156. [PMID: 33509769 DOI: 10.12122/j.issn.1673-4254.2021.01.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the feasibility of detecting maternal hereditary mitochondrial tRNAThr15927G>A (m.15927G>A) mutation using buccal swabs. METHODS We performed sequence analysis of mitochondrial DNA in blood samples from 2070 cases of maternal hereditary mitochondrial disease in the First Affiliated Hospital of Wenzhou Medical University, and identified 3 patients with m.15927G>A mutation.Buccal swabs and blood samples were obtained from the 3 patients (mutation group) and 3 normal volunteers (control group).After extracting whole genomic DNA from all the samples, the DNA concentration and purity were analyzed.The PCR products were subjected to dot blot hybridization, Southern blot hybridization, and DNA sequencing analysis to verify the feasibility of detecting m.15927G>A mutation using buccal swabs. RESULTS There was no significant difference in DNA concentration extracted from buccal swabs and blood samples in either the mutation group or the control group (P > 0.05), but the purity of manually extracted oral mucosa DNA was significantly lower than that of whole blood and oral mucosa DNA extracted using commercial kits (P < 0.05).Dot blot hybridization and Southern blot hybridization both yielded positive results in the control group but negative results in the mutation group.DNA sequencing identified m.15927G>A mutation in all the samples from the mutation group. CONCLUSIONS Buccal swabs collection accurate is an accurate and sensitive method for the detection of m.15927G>A mutation.
Collapse
Affiliation(s)
- Zhining Tang
- School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaowen Tang
- School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Ling Xue
- School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Minxin Guan
- School of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|