1
|
Alem F, Campos-Obando N, Narayanan A, Bailey CL, Macaya RF. Exogenous Klotho Extends Survival in COVID-19 Model Mice. Pathogens 2023; 12:1404. [PMID: 38133288 PMCID: PMC10746004 DOI: 10.3390/pathogens12121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
A striking feature of COVID-19 disease is the broad spectrum of risk factors associated with case severity, as well as the diversity of clinical manifestations. While no central agent has been able to explain the pathogenesis of SARS-CoV-2 infection, the factors that most robustly correlate with severity are risk factors linked to aging. Low serum levels of Klotho, an anti-aging protein, strongly correlate with the pathogenesis of the same risk factors and manifestations of conditions similar to those expressed in severe COVID-19 cases. The current manuscript presents original research on the effects of the exogenous application of Klotho, an anti-aging protein, in COVID-19 model mice. Klotho supplementation resulted in a statistically significant survival benefit in parametric and non-parametric models. Further research is required to elucidate the mechanistic role Klotho plays in COVID-19 pathogenesis as well as the possible modulation SARS-CoV-2 may have on the biological aging process.
Collapse
Affiliation(s)
- Farhang Alem
- Biomedical Research Laboratory, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA; (F.A.); (A.N.); (C.L.B.)
| | - Natalia Campos-Obando
- Formerly at Caja Costarricense de Seguro Social, San José P.O. Box 10105-1000, Costa Rica;
| | - Aarthi Narayanan
- Biomedical Research Laboratory, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA; (F.A.); (A.N.); (C.L.B.)
| | - Charles L. Bailey
- Biomedical Research Laboratory, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA; (F.A.); (A.N.); (C.L.B.)
| | - Roman F. Macaya
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
2
|
Liu Y, Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes Metab Syndr 2023; 17:102854. [PMID: 37722166 DOI: 10.1016/j.dsx.2023.102854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND AIM Klotho was first identified as a gene associated with aging and longevity in 1997. α-Klotho is an anti-aging protein and its role in energy metabolism, various cardiovascular diseases (CVDs), and metabolic disorders is increasingly being recognized. In this review, we aimed to outline the potential protective role and therapeutic prospects of α-Klotho in energy metabolism and cardiometabolic diseases (CMDs). METHODS We comprehensively reviewed the relevant literature in PubMed using the keywords 'Klotho', 'metabolism', 'cardiovascular', 'diabetes', 'obesity', 'metabolic syndrome', and 'nonalcoholic fatty liver disease'. RESULTS α-Klotho can be divided into membrane-bound Klotho, secreted Klotho, and the most studied circulating soluble Klotho that can act as a hormone. Klotho gene polymorphisms have been implicated in energy metabolism and CMDs. α-Klotho can inhibit insulin/insulin growth factor-1 signaling and its overexpression can lead to a 'healthy insulin resistance' and may exert beneficial effects on the regulation of glycolipid metabolism and central energy homeostasis. α-Klotho, mainly serum Klotho, has been revealed to be protective against CVDs, diabetes and its complications, obesity, and nonalcoholic fatty liver disease. Human recombinant Klotho protein/Klotho gene delivery, multiple drugs, or natural products, and exercise can increase α-Klotho expression. CONCLUSION Overall, α-Klotho has demonstrated its potential as a promising target for modulating energy metabolism and CMDs, and further research is needed to explore its utilization in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
3
|
Wang Y, Li T, Li N, Huang C, Xiong X, Xie X, Wu M, Wang L, Jiang J. 6-O-desulfated heparin attenuates myocardial ischemia/reperfusion injury in mice through the regulation of miR-199a-5p/klotho axis. Glycoconj J 2022; 39:747-758. [PMID: 36107266 DOI: 10.1007/s10719-022-10081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Heparin has been documented to reduce myocardial injury caused by ischemia/reperfusion (I/R), but its clinical application is limited due to its strong intrinsic anticoagulant property. Some desulfated derivatives of heparin display low anticoagulant activity and may have potential value as therapeutic agents for myocardial I/R injury. In this study, we observed that 6-O-desulfated heparin, a desulfated derivative of heparin, shortened the activated partial thromboplastin time and exhibited lower anticoagulant activity compared with heparin or 2-O-desulfated heparin (another desulfated derivative of heparin). Then, we explored whether 6-O-desulfated heparin could protect against myocardial I/R injury, and elucidated its possible mechanisms. Administration of 6-O-desulfated heparin significantly reduced creatine kinase activity, myocardial infarct size and cell apoptosis in mice subjected to 30 min of myocardial ischemia following 2 h of reperfusion, accompanied by a reverse in miR-199a-5p elevation, klotho downregulation and reactive oxygen species (ROS) accumulation. In cultured H9c2 cells, the mechanism of 6-O-desulfated heparin against myocardial I/R injury was further explored. Consistent with the results in vivo, 6-O-desulfated heparin significantly ameliorated hypoxia/reoxygenation-induced injury, upregulated klotho and decreased miR-199a-5p levels and ROS accumulation, and these effects were reversed by miR-199a-5p mimics. In conclusion, these results suggested that 6-O-desulfated heparin with lower anticoagulant activity attenuated myocardial I/R injury through miR-199a-5p/klotho and ROS signaling. Our study may also indicate that 6-O-desulfated heparin, as an excellent heparin derivative, is a potential therapeutic agent for myocardial I/R injury.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
- Department of Pharmacy, People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Ting Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Niansheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Chuyi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoming Xiong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Xie
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, Byrd Alzheimer's Research Institute, University of South Florida, FL, 33613, Tampa, USA
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
4
|
Gutiérrez-Pérez ME, Urraza-Robledo AI, Miranda-Pérez AA, Molina-Flores CA, Ruíz-Flores P, Delgadillo-Guzmán D, López-Márquez FC. Role of β-Klotho and Malondialdehyde in Metabolic Disorders, HIV Infection, and Antiretroviral Therapy. DNA Cell Biol 2022; 41:691-698. [PMID: 35793534 DOI: 10.1089/dna.2021.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic alterations, resulting from factors such as obesity or infections (HIV), generate inflammation in the body, affecting the immune system and causing oxidative stress. Prolonged exposure to antiretroviral therapy (ART) conditions the appearance of alterations considered risk factors for metabolic syndrome (MetS), affecting the quality of life in people living with HIV/AIDS (PLWHA). β-klotho is a protein that can counteract levels of oxidative stress. The aim was to determine the relation of β-klotho and oxidative stress with metabolic alterations in PLWHA. We hypothesized that levels of β-klotho and malondialdehyde (MDA) are related in PLWHA on ART with overweight/obesity. As a result of comparing cases versus controls, significant differences were obtained in levels of β-klotho (p = 0.011), MDA (p < 0.0001), body mass index (p = 0.001), and weight (p < 0.0001). The presence of MetS in PLWHA was 21.2% and 10.6% according to the World Health Organization and ATP III (National Cholesterol Education Program Adult Treatment Panel III) criteria, respectively. The founded correlations were of β-klotho (r = 0.019) and MDA (r = 0.0001), both with CD4+ cells in PLWHA. In controls, β-klotho was correlated with very low-density lipoprotein (r = 0.035) and atherogenic index (AI; r = 0.037), MDA with AI (r = 0.039), cholesterol, and low-density lipoprotein (r = 0.002). The increase of inflammation in the organism, owing to HIV infection and/or the presence of obesity, conditions metabolic disruption or depletion of elements needed for homeostasis in the human body.
Collapse
Affiliation(s)
- Maria Elena Gutiérrez-Pérez
- Department of Molecular Immunobiology, Faculty of Medicine, Biomedical Research Center, Autonomous University of Coahuila, Torreon, Mexico
| | - Arguiñe Ivonne Urraza-Robledo
- Department of Molecular Immunobiology, Faculty of Medicine, Biomedical Research Center, Autonomous University of Coahuila, Torreon, Mexico.,High Specialty Medical Unit (UMAE), Mexican Social Security Institute (IMSS), Department of Diagnostic Aids Division, Torreon, Mexico
| | - Alberto Alejandro Miranda-Pérez
- Department of Molecular Immunobiology, Faculty of Medicine, Biomedical Research Center, Autonomous University of Coahuila, Torreon, Mexico
| | - Cinthia Analí Molina-Flores
- Department of Molecular Immunobiology, Faculty of Medicine, Biomedical Research Center, Autonomous University of Coahuila, Torreon, Mexico
| | - Pablo Ruíz-Flores
- Department of Molecular Medicine and Genetics, and Faculty of Medicine, Biomedical Research Center, Autonomous University of Coahuila, Torreon, Mexico
| | - Dealmy Delgadillo-Guzmán
- Department of Pharmacology, Faculty of Medicine, Biomedical Research Center, Autonomous University of Coahuila, Torreon, Mexico
| | - Francisco Carlos López-Márquez
- Department of Molecular Immunobiology, Faculty of Medicine, Biomedical Research Center, Autonomous University of Coahuila, Torreon, Mexico
| |
Collapse
|
5
|
Wen X, Li S, Zhang Y, Zhu L, Xi X, Zhang S, Li Y. Recombinant human klotho protects against hydrogen peroxide-mediated injury in human retinal pigment epithelial cells via the PI3K/Akt-Nrf2/HO-1 signaling pathway. Bioengineered 2022; 13:11767-11781. [PMID: 35543385 PMCID: PMC9275962 DOI: 10.1080/21655979.2022.2071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Globally, age-related macular degeneration (AMD) is a common irreversible ophthalmopathy. Oxidative stress of retinal pigment epithelial cells is involved in AMD occurrence and development. Klotho is an anti-aging protein with antioxidant properties. We investigated the protective properties of Klotho on hydrogen peroxide (H2O2)-induced injury of retinal pigment epithelial cells (ARPE-19 cells) and its associated pathomechanisms. We found that Klotho pretreatment for 24 h could up-regulate Bcl-2 levels, decrease the cleaved-caspase-3 and Bax levels, inhibit H2O2-induced ARPE-19 cell apoptosis, and promote cell proliferation. Klotho pretreatment inhibited the H2O2-mediated elevations of reactive oxygen species (ROS) in ARPE-19 cells. It enhanced antioxidant activities of the cells and restored the glutathione peroxidase (GPX), superoxide dismutase (SOD2), catalase (CAT), as well as malondialdehyde (MDA) levels to close to the normal level. N-acetylcysteine (NAC), a reactive oxygen scavenger, could reverse the harmful effects of H2O2 on proliferation, apoptosis, and oxidative stress of ARPE-19 cells. Further, Klotho pretreatment enhanced Akt phosphorylation and expression as well as nuclear translocation of Nrf2 in H2O2-treated ARPE-19 cells. This indicates that Klotho protects cells from oxidative stress by activating phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)-nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway. Klotho is, therefore, a potential preventive or treatment option for AMD.
Collapse
Affiliation(s)
- Xuewei Wen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Song Li
- Department of Sport Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Liang Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuyuan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|