1
|
Voshagh Q, Anoshiravani A, Karimpour A, Goodarzi G, Tehrani SS, Tabatabaei‐Malazy O, Panahi G. Investigating the association between the tissue expression of miRNA-101, JAK2/STAT3 with TNF-α, IL-6, IL-1β, and IL-10 cytokines in the ulcerative colitis patients. Immun Inflamm Dis 2024; 12:e1224. [PMID: 38517042 PMCID: PMC10958669 DOI: 10.1002/iid3.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by numerous factors, such as immune system dysfunction and genetic factors. MicroRNAs (miRNAs) play a crucial role in UC pathogenesis, particularly via the JAK-STAT pathway. Our aim was to investigate the association between miRNA-101 and JAK2-STAT3 signaling pathway with inflammatory cytokines in UC patients. METHODS We enrolled 35 UC patients and 35 healthy individuals as the control group, referred to Shariati Hospital, Tehran, Iran. Patients were diagnosed based on clinical, laboratory, histological, and colonoscopy criteria. RNA and protein extracted from tissue samples. Real-time PCR was used to assess the expression levels of miRNA-101, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-10 genes, while western blot was employed to measure levels of P-STAT3, total STAT3, and JAK2 proteins. RESULTS Expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 significantly increased, while the expression of IL-10 significantly decreased in the case group versus controls. Additionally, miRNA-101 expression was significantly higher in UC patients. A significant correlation between miRNA-101 and IL-6 expression was observed, indicating their relationship and possible impact on cell signaling pathways, JAK2-STAT3. No significant changes were observed in phosphorylated and total STAT3 and JAK2 protein expression. CONCLUSION This study provides evidence of increased miRNA-101 expression in UC tissue, suggesting a potential correlation between miRNA-101 and IL-6 expression and their involvement in the JAK2-STAT3 pathway. The study confirms alterations in UC patients' pro-inflammatory cytokines and anti-inflammatory IL-10. However, further investigations are needed to understand the exact role of miRNA-101 in UC pathogenesis fully.
Collapse
Affiliation(s)
- Qazaleh Voshagh
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Anoshiravani
- Digestive Disease Research Center, Digestive Disease Research InstituteTehran University of Medical SciencesTehranIran
| | - Amin Karimpour
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| | - Golnaz Goodarzi
- Department of Pathobiology and Laboratory Sciences, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and MetabolismIran University of Medical ScienceTehranIran
| | - Ozra Tabatabaei‐Malazy
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Liu Y, Wu J, Chen L, Zou J, Yang Q, Tian H, Zheng D, Ji Z, Cai J, Li Z, Chen Y. ncRNAs-mediated overexpression of TET3 predicts unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer. Heliyon 2024; 10:e24855. [PMID: 38318018 PMCID: PMC10838756 DOI: 10.1016/j.heliyon.2024.e24855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Breast cancer is the most frequent form of cancer in women and the primary cause of cancer-related deaths globally. DNA methylation and demethylation are important processes in human tumorigenesis. Ten-eleven translocation 3 (TET3) is a DNA demethylase. Prior research has demonstrated that TET3 is highly expressed in various human malignant tumors. However, the exact function and mechanism of TET3 in breast cancer remain unclear. In this study, we investigated TET3 expression in breast cancer and its correlation with clinicopathological characteristics of breast cancer patients. The results presented that TET3 expression was significantly increased in breast cancer and associated with the PAM50 subtype. Subsequently, we performed receiver operating characteristic, survival, and Cox hazard regression analyses. These results suggest that TET3 expression is associated with a poor prognosis and may be an indirect independent prognostic indicator in breast cancer. We also established a protein-protein interaction (PPI) network of TET3 and executed enrichment analyses of TET3 co-expressed genes, revealing their primary association with the cell cycle. Moreover, we identified noncoding RNAs (ncRNAs) contributing to TET3 overexpression using expression, correlation, and survival analyses. We identified the LINC01521/hsa-miR-29a-3p axis as the primary TET3 upstream ncRNA-related pathway in breast cancer. Furthermore, TET3 expression was positively associated with immune cell infiltration, immune cell biomarkers, and eight immune checkpoint gene expressions in breast cancer. TET3 expression also correlated with patient responses to immunotherapy. Finally, we conducted subcellular localization and immunohistochemical staining analysis of TET3 in breast cancer. We found that TET3 localized to the nucleoplasm, vesicles, and cytosol in the MCF-7 cell line, and TET3 expression was significantly upregulated in breast cancer tissues compared to para-tumor tissues. Our findings indicate that ncRNA-mediated overexpression of TET3 predicts an unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Juan Zou
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qiuping Yang
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huiting Tian
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Daitian Zheng
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zeqi Ji
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiehui Cai
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Yan L, Gu C, Gao S, Wei B. Epigenetic regulation and therapeutic strategies in ulcerative colitis. Front Genet 2023; 14:1302886. [PMID: 38169708 PMCID: PMC10758477 DOI: 10.3389/fgene.2023.1302886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease, and is characterized by the diffuse inflammation and ulceration in the colon and rectum mucosa, even extending to the caecum. Epigenetic modifications, including DNA methylations, histone modifications and non-coding RNAs, are implicated in the differentiation, maturation, and functional modulation of multiple immune and non-immune cell types, and are influenced and altered in various chronic inflammatory diseases, including UC. Here we review the relevant studies revealing the differential epigenetic features in UC, and summarize the current knowledge about the immunopathogenesis of UC through epigenetic regulation and inflammatory signaling networks, regarding DNA methylation, histone modification, miRNAs and lncRNAs. We also discuss the epigenetic-associated therapeutic strategies for the alleviation and treatment of UC, which will provide insights to intervene in the immunopathological process of UC in view of epigenetic regulation.
Collapse
Affiliation(s)
- Liwei Yan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Departments of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Gu
- Departments of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shanyu Gao
- Departments of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Peng S, Shen L, Yu X, Wu J, Zha L, Xia Y, Luo H. miR-200a attenuated oxidative stress, inflammation, and apoptosis in dextran sulfate sodium-induced colitis through activation of Nrf2. Front Immunol 2023; 14:1196065. [PMID: 37646040 PMCID: PMC10461398 DOI: 10.3389/fimmu.2023.1196065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Oxidative stress and inflammatory responses are critical factors in ulcerative colitis disease pathogenesis. Nuclear factor erythroid 2-related factor 2 (Nrf2) modulates oxidative stress and suppresses inflammatory responses, and the protective benefits of Nrf2 activation have been associated with the therapy of ulcerative colitis. MicroRNA-200a (miR-200a) could target Kelch-like ECH-associated protein 1 (Keap1) and activate the Nrf2-regulated antioxidant pathway. Nevertheless, whether miR-200a modulates the Keap1/Nrf2 pathway in dextran sulfate sodium (DSS)-induced colonic damage is unknown. Here, our research intends to examine the impact of miR-200a in the model of DSS-induced colitis. Methods Prior to DSS intervention, we overexpressed miR-200a in mice for four weeks using an adeno-associated viral (AAV) vector to address this problem. ELISA detected the concentration of inflammation-related cytokines. The genes involved in inflammatory reactions and oxidative stress were identified using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot, and immunofluorescence. Moreover, we applied siRNAs to weakened Nrf2 expression to confirm the hypothesis that miR-200a provided protection via Nrf2. Results The present study discovered miR-200a down-regulation, excessive inflammatory activation, enterocyte apoptosis, colonic dysfunction, and Keap1/Nrf2 antioxidant pathway inactivation in mouse colitis and NCM460 cells under DSS induction. However, our data demonstrated that miR-200a overexpression represses Keap1 and activates the Nrf2 antioxidant pathway, thereby alleviating these adverse alterations in animal and cellular models. Significantly, following Nrf2 deficiency, we failed to observe the protective benefits of miR-200a against colonic damage. Discussion Taken together, through activating the Keap1/Nrf2 signaling pathway, miR-200a protected against DSS-induced colonic damage. These studies offer an innovative therapeutic approach for ulcerative colitis.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lanlan Zha
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| |
Collapse
|
5
|
Unkovič A, Boštjančič E, Belič A, Perše M. Selection and Evaluation of mRNA and miRNA Reference Genes for Expression Studies (qPCR) in Archived Formalin-Fixed and Paraffin-Embedded (FFPE) Colon Samples of DSS-Induced Colitis Mouse Model. BIOLOGY 2023; 12:190. [PMID: 36829468 PMCID: PMC9952917 DOI: 10.3390/biology12020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
The choice of appropriate reference genes is essential for correctly interpreting qPCR data and results. However, the majority of animal studies use a single reference gene without any prior evaluation. Therefore, many qPCR results from rodent studies can be misleading, affecting not only reproducibility but also translatability. In this study, the expression stability of reference genes for mRNA and miRNA in archived FFPE samples of 117 C57BL/6JOlaHsd mice (males and females) from 9 colitis experiments (dextran sulfate sodium; DSS) were evaluated and their expression analysis was performed. In addition, we investigated whether normalization reduced/neutralized the influence of inter/intra-experimental factors which we systematically included in the study. Two statistical algorithms (NormFinder and Bestkeeper) were used to determine the stability of reference genes. Multivariate analysis was made to evaluate the influence of normalization with different reference genes on target gene expression in regard to inter/intra-experimental factors. Results show that archived FFPE samples are a reliable source of RNA and imply that the FFPE procedure does not change the ranking of stability of reference genes obtained in fresh tissues. Multivariate analysis showed that the histological picture is an important factor affecting the expression levels of target genes.
Collapse
Affiliation(s)
- Ana Unkovič
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Belič
- Statistics and Modelling, Technical Development Biologics, Novartis Technical Research & Development, Lek Pharmaceuticals d.d., 1000 Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Cai L, Lai D, Gao J, Wu H, Shi B, Ji H, Tou J. The role and mechanisms of miRNA in neonatal necrotizing enterocolitis. Front Pediatr 2022; 10:1053965. [PMID: 36518784 PMCID: PMC9742607 DOI: 10.3389/fped.2022.1053965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Neonatal necrotizing enterocolitis (NEC), the most significant causes of neonatal mortality, is a disease of acute intestinal inflammation. At present, it is not clear exactly how the disease is caused, but it has been suggested that this disorder is a result of a complex interaction among prematurity, enteral feeding and inappropriate pro-inflammation response and bacterial infection of the intestine. A microRNA (miRNA) is a class of endogenous non-coding single-stranded RNA that is about 23 nucleotides long engaging in the regulation of the gene expression. Recently, numerous studies have determined that abnormal miRNA expression plays important roles in various diseases, including NEC. Here, we summarized the role of miRNAs in NEC. We introduce the biosynthetic and function of miRNAs and then describe the possible mechanisms of miRNAs in the initiation and development of NEC, including their influence on the intestinal epithelial barrier's function and regulation of the inflammatory process. Finally, this review aids in a comprehensive understanding of the current miRNA to accurately predict the diagnosis of NEC and provide ideas to find potential therapeutic targets of miRNA for NEC. In conclusion, our aims are to highlight the close relationship between miRNAs and NEC and to summarize the practical value of developing diagnostic biomarkers and potential therapeutic targets of NEC.
Collapse
Affiliation(s)
- Linghao Cai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiafang Gao
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wu
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Bo Shi
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haosen Ji
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinfa Tou
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
7
|
Liu X, Yang P, Han L, Zhou Q, Qu Q, Shi X. The ncRNA-Mediated Overexpression of Ferroptosis-Related Gene EMC2 Correlates With Poor Prognosis and Tumor Immune Infiltration in Breast Cancer. Front Oncol 2021; 11:777037. [PMID: 34956895 PMCID: PMC8692298 DOI: 10.3389/fonc.2021.777037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death process. Although ferroptosis inducers hold promising potential in the treatment of breast cancer, the specific role and mechanism of the ferroptosis-related gene EMC2 in breast cancer have not been entirely determined. The potential roles of EMC2 in different tumors were explored based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Tumor Immune Estimation Resource (TIMER), Shiny Methylation Analysis Resource Tool (SMART), starBase, and cBioPortal for cancer genomics (cBioPortal) datasets. The expression difference, mutation, survival, pathological stage, DNA methylation, non-coding RNAs (ncRNAs), and immune cell infiltration related to EMC2 were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify the differences in biological processes and functions among different related genes. The expression levels of core prognostic genes were then verified in breast invasive carcinoma samples using immunohistochemistry and breast invasive carcinoma cell lines using real-time polymerase chain reaction. High expression levels of EMC2 were observed in most cancer types. EMC2 expression in breast cancer tissue samples correlated with poor overall survival. EMC2 was mutated and methylated in a variety of tumors and affected survival. The LINC00665-miR-410-3p axis was identified as the most potential upstream ncRNA-related pathway of EMC2 in breast cancer. EMC2 levels were significantly positively correlated with tumor immune cell infiltration, immune cell biomarkers, and immune checkpoint expression. Our study offers a comprehensive understanding of the oncogenic roles of EMC2 across different tumors. The upregulation of EMC2 expression mediated by ncRNAs is related to poor prognosis and tumor immune infiltration in breast cancer.
Collapse
Affiliation(s)
- Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Hyun TK. A recent overview on ginsenosides as microRNA modulators in the treatment of human diseases. EXCLI JOURNAL 2021; 20:1453-1457. [PMID: 34737687 PMCID: PMC8564905 DOI: 10.17179/excli2021-4200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
9
|
Huang Y, Yang Y, Wang J, Yao S, Yao T, Xu Y, Chen Z, Yuan P, Gao J, Shen S, Ma J. miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem 2021; 296:100617. [PMID: 33811860 PMCID: PMC8095171 DOI: 10.1016/j.jbc.2021.100617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis results from an imbalance between bone formation and bone resorption. Traditional drugs for treating osteoporosis are associated with serious side effects, and thus, new treatment methods are required. This study investigated the role of differentially expressed microRNAs during osteoclast differentiation and osteoclast activity during osteoarthritis as well as the associated underlying mechanisms. We used a microarray to screen microRNAs that decreased in the process of osteoclast differentiation and verified miR-21-5p to decrease significantly using RT-qPCR. In follow-up experiments, we found that miR-21-5p targets SKP2 to regulate osteoclast differentiation. In vivo, ovariectomized mice were used to simulate perimenopausal osteoporosis induced by estrogen deficiency, and miR-21-5p treatment inhibited bone resorption and maintained bone cortex and trabecular structure. These results suggest that miR-21-5p is a new therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yute Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yining Xu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Zizheng Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|