1
|
Wang F, Zhou L, Eliaz A, Hu C, Qiang X, Ke L, Chertow G, Eliaz I, Peng Z. The potential roles of galectin-3 in AKI and CKD. Front Physiol 2023; 14:1090724. [PMID: 36909244 PMCID: PMC9995706 DOI: 10.3389/fphys.2023.1090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Acute kidney injury (AKI) is a common condition with high morbidity and mortality, and is associated with the development and progression of chronic kidney disease (CKD). The beta-galactoside binding protein galectin-3 (Gal3), with its proinflammatory and profibrotic properties, has been implicated in the development of both AKI and CKD. Serum Gal3 levels are elevated in patients with AKI and CKD, and elevated Gal3 is associated with progression of CKD. In addition, Gal3 is associated with the incidence of AKI among critically ill patients, and blocking Gal3 in murine models of sepsis and ischemia-reperfusion injury results in significantly lower AKI incidence and mortality. Here we review the role of Gal3 in the pathophysiology of AKI and CKD, as well as the therapeutic potential of targeting Gal3.
Collapse
Affiliation(s)
- Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lixin Zhou
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Amity Eliaz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xinhua Qiang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Li Ke
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Glenn Chertow
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Isaac Eliaz
- Amitabha Medical Center, Santa Rosa, CA, United States
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|
3
|
Liu X, Gu Y, Liu Y, Zhang M, Wang Y, Hu L. Ticagrelor attenuates myocardial ischaemia-reperfusion injury possibly through downregulating galectin-3 expression in the infarct area of rats. Br J Clin Pharmacol 2018; 84:1180-1186. [PMID: 29381821 PMCID: PMC5980592 DOI: 10.1111/bcp.13536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/22/2022] Open
Abstract
AIMS The full benefits of myocardial revascularization strategies applied to acute myocardial infarction patients might be reduced by myocardial ischaemia and reperfusion (I/R) injury. It is known that inflammation plays an important role in the pathogenesis of I/R injury and galectin-3, a known inflammatory factor, is actively involved in ischaemia-induced inflammation and fibrosis of various organs. Previous studies demonstrated that anti-platelets therapy with ticagrelor, a new P2Y12 receptor antagonist, could effectively attenuate myocardial I/R injury and I/R injury-related inflammatory responses. It remains unknown whether the cardioprotective effects of ticagrelor are also mediated by modulating myocardial galectin-3 expression. METHODS We determined the ratio of infarct area (IA)/area at risk (AAR), expression of galectin-3, TNF-α and IL-6 in infarct area of rats treated with placebo (equal volume saline per gastric gavage immediately after LAD ligation, then once daily till study end) or ticagrelor (150 mg kg-1 dissolved in saline per gastric gavage immediately after LAD ligation, then once daily till study end) at 24 h, 3 and 7 days post I (45 min)/R injury. Sham-operated rats served as control. RESULTS Our results showed that ticagrelor treatment significantly reduced IA/AAR ratio at 3 and 7 days post I/R, downregulated mRNA and protein expression of galectin-3, as well as mRNA expression of TNF-α and IL-6 in infarct area at 24 h, 3 and 7 days post I/R. CONCLUSIONS Our results suggest that the cardioprotective effects of ticagrelor might partly be mediated by downregulating galectin-3 expression in infarct area in this rat model of myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaogang Liu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Ye Gu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Yufeng Liu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Mingjing Zhang
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Yuting Wang
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| | - Liqun Hu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, 430033, Wuhan, China
| |
Collapse
|
4
|
Cline JM, Dugan G, Bourland JD, Perry DL, Stitzel JD, Weaver AA, Jiang C, Tovmasyan A, Owzar K, Spasojevic I, Batinic-Haberle I, Vujaskovic Z. Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP 5+, Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation. Antioxidants (Basel) 2018. [PMID: 29518913 PMCID: PMC5874526 DOI: 10.3390/antiox7030040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiation injury to the lung is the result of acute and chronic free radical formation, and there are currently few effective means of mitigating such injury. Studies in rodents indicate that superoxide dismutase mimetics may be effective in this regard; however, studies in humans or large animals are lacking. We hypothesized that post-exposure treatment with the lipophilic mitochondrial superoxide dismutase mimetic, MnTnHex-2-PyP5+ (hexyl), would reduce radiation-induced pneumonitis and fibrosis in the lungs of nonhuman primates. Rhesus monkeys (Macaca mulatta) received 10 Gy whole thorax irradiation, 10 Gy + hexyl treatment, sham irradiation, or sham irradiation + hexyl. Hexyl was given twice daily, subcutaneously, at 0.05 mg/kg, for 2 months. Animals were monitored daily, and respiratory rates, pulse oximetry, hematology and serum chemistry panels were performed weekly. Computed tomography scans were performed at 0, 2, and 4 months after irradiation. Supportive fluid therapy, corticosteroids, analgesics, and antibiotics were given as needed. All animals were humanely euthanized 4.5 months after irradiation, and pathologic assessments were made. Multifocal, progressive lung lesions were seen at 2 and 4 months in both irradiated groups. Hexyl treatment delayed the onset of radiation-induced lung lesions, reduced elevations of respiratory rate, and reduced pathologic increases in lung weight. No adverse effects of hexyl treatment were found. These results demonstrate (1) development of a nonhuman primate model of radiation-induced lung injury, (2) a significant mitigating effect of hexyl treatment on lung pathology in this model, and (3) no evidence for toxicity of hexyl at the dose studied.
Collapse
Affiliation(s)
- John Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | - Greg Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | - John Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | - Donna L Perry
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA.
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Biotech Place, 575 N. Patterson Ave., Winston-Salem, NC 21701, USA.
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Biotech Place, 575 N. Patterson Ave., Winston-Salem, NC 21701, USA.
| | - Chen Jiang
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27708, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA.
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27708, USA.
| | - Ivan Spasojevic
- Department of Medicine Duke University Medical Center, Durham, NC 27708, USA.
- Duke Cancer Institute, Pharmaceutical Research Shared Resource, PK/PD Core Laboratory, Duke University Medical Center, Durham, NC 27708, USA.
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA.
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA.
- Department of Radiation Oncology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
5
|
Damasceno-Ferreira JA, Abreu LAS, Bechara GR, Costa WS, Pereira-Sampaio MA, Sampaio FJB, De Souza DB. Mannitol reduces nephron loss after warm renal ischemia in a porcine model. BMC Urol 2018; 18:16. [PMID: 29510690 PMCID: PMC5840788 DOI: 10.1186/s12894-018-0328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mannitol has been employed to ameliorate renal warm ischemia damage during partial nephrectomy, however, there is limited scientific evidence to support the use of mannitol during partial nephrectomy. The objective of the present study was to investigate the glomerular number after renal warm ischemia, with and without the use of mannitol in a Pig Model. METHODS Twenty-four male pigs were assigned into three groups. Eight animals were allocated to the sham group that was subjected to laparoscopic dissection of the left renal hilum, without renal ischemia. Eight animals were allocated to the ischemia group that had the left renal hilum clamped for 30 min through laparoscopic access. Eight animals received mannitol (250 mg/kg) before the occlusion of renal hilum for 30 min. The kidneys were collected after the euthanasia of the pigs 21 days post surgery. The right kidney was utilized as a self-control for each animal. Serum creatinine, urea levels, the weight and volume of the kidneys were measured. Glomerular volumetric density, volume-weighted glomerular volume, and cortical volume were quantified through stereological methods and employed to determine the number of nephrons per kidney. Student's t test and ANOVA were used for statistical analysis. RESULTS In the ischemia group, the left kidney recorded a reduction of 24.6% (290, 000 glomeruli) in the number of glomeruli in comparison to the right kidney. Kidneys subjected to ischemia also displayed decreased weight and volume in comparison to the sham and mannitol groups. No difference was observed between the left and right kidneys from the sham and mannitol groups. Further, no distinction in serum creatinine and urea among the groups was observed. CONCLUSION The use of mannitol significantly reduces nephron loss during warm ischemia in pigs.
Collapse
Affiliation(s)
- José A Damasceno-Ferreira
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.,Department of Veterinary Clinical Pathology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Leonardo A S Abreu
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.,Faculty of Medicine, Estacio de Sá University, Rio de Janeiro, RJ, Brazil
| | - Gustavo R Bechara
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Waldemar S Costa
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Marco A Pereira-Sampaio
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.,Department of Morphology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Francisco J B Sampaio
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Diogo B De Souza
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2950503. [PMID: 27313826 PMCID: PMC4894993 DOI: 10.1155/2016/2950503] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/28/2016] [Indexed: 02/03/2023]
Abstract
Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.
Collapse
|
7
|
Mn Porphyrin-Based Redox-Active Therapeutics. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015; 5:43-65. [PMID: 25827425 PMCID: PMC4392060 DOI: 10.1016/j.redox.2015.01.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA; PK/PD BioAnalytical Duke Cancer Institute Shared Resource, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
9
|
Mir MC, Ercole C, Takagi T, Zhang Z, Velet L, Remer EM, Demirjian S, Campbell SC. Decline in renal function after partial nephrectomy: etiology and prevention. J Urol 2015; 193:1889-98. [PMID: 25637858 DOI: 10.1016/j.juro.2015.01.093] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Partial nephrectomy is the reference standard for the management of small renal tumors and is commonly used for localized kidney cancer. A primary goal of partial nephrectomy is to preserve as much renal function as possible. New baseline glomerular filtration rate after partial nephrectomy can have prognostic significance with respect to long-term outcomes. Recent studies provide an increased understanding of the factors that determine functional outcomes after partial nephrectomy as well as preventive measures to minimize functional decline. We review these advances, highlight ongoing controversies and stimulate further research. MATERIALS AND METHODS A comprehensive literature review consistent with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria was performed from January 2006 to April 2014 using PubMed®, Cochrane and Ovid Medline. Key words included partial nephrectomy, renal function, warm ischemia, hypothermia, nephron mass, parenchymal volume, surgical approaches to partial nephrectomy, preoperative and intraoperative imaging, enucleation, hemostatic agents and energy based resection. Relevant reviews were also examined as well as their cited references. An additional Google Scholar search was conducted to broaden the scope of the review. Only English language articles were included in the analysis. The primary outcomes of interest were the new baseline level of function after early postoperative recovery, percent decline in function, potential etiologies and preventive measures. RESULTS Decline in function after partial nephrectomy averages approximately 20% in the operated kidney, and can be due to incomplete recovery from the ischemic insult or loss of nephron mass related to parenchymal excision or collateral damage during reconstruction. Compensatory hypertrophy in the contralateral kidney after partial nephrectomy in adults is marginal and decline in global renal function for patients with 2 kidneys averages about 10%, although there is some variance based on tumor size and location. Irreversible ischemic injury can be minimized by pharmacological intervention or surgical approaches such as hypothermia, limited warm ischemia, or zero or segmental ischemia. Excessive loss of nephron mass can be minimized by improved preoperative or intraoperative imaging, use of a bloodless field, enucleation and vascular microdissection. Hemostatic agents or energy based resection that minimizes the need for parenchymal and capsular suturing can also optimize preservation of the vascularized nephron mass. CONCLUSIONS Our understanding of the decline in renal function after partial nephrectomy has advanced considerably, including better appreciation of its magnitude and impact in various settings, possible etiologies and potential preventive measures. Many controversies persist and this remains an important area of investigation.
Collapse
Affiliation(s)
- Maria C Mir
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio; Department of Urology, University of Miami, Miami, Florida
| | - Cesar Ercole
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Toshio Takagi
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio; Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Zhiling Zhang
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lily Velet
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Erick M Remer
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio; Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sevag Demirjian
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Steven C Campbell
- Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
10
|
Celic T, Španjol J, Bobinac M, Tovmasyan A, Vukelic I, Reboucas JS, Batinic-Haberle I, Bobinac D. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways. Free Radic Res 2014; 48:1426-42. [PMID: 25185063 DOI: 10.3109/10715762.2014.960865] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.
Collapse
Affiliation(s)
- T Celic
- Department of Anatomy, Faculty of Medicine, University of Rijeka , Rijeka , Croatia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Batinic-Haberle I, Tovmasyan A, Roberts ERH, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014; 20:2372-415. [PMID: 23875805 PMCID: PMC4005498 DOI: 10.1089/ars.2012.5147] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Emily R. H. Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
12
|
Evans MK, Tovmasyan A, Batinic-Haberle I, Devi GR. Mn porphyrin in combination with ascorbate acts as a pro-oxidant and mediates caspase-independent cancer cell death. Free Radic Biol Med 2014; 68:302-14. [PMID: 24334253 PMCID: PMC4404036 DOI: 10.1016/j.freeradbiomed.2013.11.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/13/2023]
Abstract
Resistance to therapy-mediated apoptosis in inflammatory breast cancer, an aggressive and distinct subtype of breast cancer, was recently attributed to increased superoxide dismutase (SOD) expression, glutathione (GSH) content, and decreased accumulation of reactive species. In this study, we demonstrate the unique ability of two Mn(III) N-substituted pyridylporphyrin (MnP)-based SOD mimics (MnTE-2-PyP(5+) and MnTnBuOE-2-PyP(5+)) to catalyze oxidation of ascorbate, leading to the production of excessive levels of peroxide, and in turn cell death. The accumulation of peroxide, as a consequence of MnP+ascorbate treatment, was fully reversed by the administration of exogenous catalase, showing that hydrogen peroxide is essential for cell death. Cell death as a consequence of the action of MnP+ascorbate corresponded to decreases in GSH levels, prosurvival signaling (p-NF-κB, p-ERK1/2), and in expression of X-linked inhibitor of apoptosis protein, the most potent caspase inhibitor. Although markers of classical apoptosis were observed, including PARP cleavage and annexin V staining, administration of a pan-caspase inhibitor, Q-VD-OPh, did not reverse the observed cytotoxicity. MnP+ascorbate-treated cells showed nuclear translocation of apoptosis-inducing factor, suggesting the possibility of a mechanism of caspase-independent cell death. Pharmacological ascorbate has already shown promise in recently completed phase I clinical trials, in which its oxidation and subsequent peroxide formation was catalyzed by endogenous metalloproteins. The catalysis of ascorbate oxidation by an optimized metal-based catalyst (such as MnP) carries a large therapeutic potential as an anticancer agent by itself or in combination with other modalities such as radio- and chemotherapy.
Collapse
Affiliation(s)
- Myron K Evans
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Gayathri R Devi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Ali DK, Oriowo M, Tovmasyan A, Batinic-Haberle I, Benov L. Late administration of Mn porphyrin-based SOD mimic enhances diabetic complications. Redox Biol 2013; 1:457-66. [PMID: 24191241 PMCID: PMC3815015 DOI: 10.1016/j.redox.2013.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/12/2023] Open
Abstract
Mn(III) N-alkylpyridylporphyrins (MnPs) have demonstrated protection in various conditions where increased production of reactive oxygen/reactive nitrogen species (ROS/RNS), is a key pathological factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81–8, 2005) that when the treatment started at the onset of diabetes, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin, MnTM-2-PyP5+ suppressed diabetes-induced oxidative stress. Diabetes, however, is rarely diagnosed at its onset. The aim of this study was to investigate if MnTM-2-PyP5+ can suppress oxidative damage and prevent diabetic complications when administered more than a week after the onset of diabetes. Diabetes was induced by streptozotocin. The MnP-based treatment started 8 days after the onset of diabetes and continued for 2 months. The effect of the treatment on activities of glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and glyoxalases I and II as well as malondialdehyde and GSH/GSSG ratio were determined in kidneys. Kidney function was assessed by measuring lysozyme and total protein in urine and blood urea nitrogen. Vascular damage was evaluated by assessing vascular reactivity. Our data showed that delayed administration of MnTM-2-PyP5+ did not protect against oxidative damage and did not prevent diabetic complications. Moreover, MnTM-2-PyP5+ contributed to the kidney damage, which seems to be a consequence of its pro-oxidative action. Such outcome can be explained by advanced oxidative damage which already existed at the moment the therapy with MnP started. The data support the concept that the overall biological effect of a redox-active MnP is determined by (i) the relative concentrations of oxidants and reductants, i.e. the cellular redox environment and (ii) MnP biodistribution. Mn porphyrins (MnP) are among the most potent SOD mimics. MnP suppressed diabetes-induced oxidative stress if applied at the onset of diabetes. Delayed administration of MnP augmented oxidative stress and diabetic complications. The overall in vivo effect of MnP depends on its redox environment.
Collapse
Affiliation(s)
- Dana K. Ali
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mabayoje Oriowo
- Department of Pharmacology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence to: Department of Radiation Oncology, Duke University Medical Center, Research Drive, 281b/285, MSRB I, Box 3455, Durham, NC 27710, USA. Tel.: +1 919 684 2101; fax: +1 919 684 8718.
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Corresponding author. Tel.: +965 2531 9489; fax: +965 2533 8908.
| |
Collapse
|
14
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/irm-2013-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|