1
|
Langner T, Otranto D, Bezerra-Santos MA, Franzen J, Johne A, Tonanzi D, Pfeffer M, Birka S. Detection of Spirocerca lupi and an unknown Trichinella-like nematode in raccoon ( Procyon lotor). Int J Parasitol Parasites Wildl 2024; 23:100911. [PMID: 38352914 PMCID: PMC10862008 DOI: 10.1016/j.ijppaw.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The raccoon Procyon lotor (Carnivora: Procyonidae) is an invasive species of growing importance for the introduction of alien pathogens or as additional hosts for autochthonous pathogens in Europe, including zoonotic parasites. As the population is steadily increasing and outcompeting the red fox (Vulpes vulpes) in Germany, the consumption of raccoon meat raises concerns about pathogens they may transmit. Therefore the presence of Trichinella larvae was here investigated in muscle samples (n = 904) of raccoons from northern Germany. No Trichinella larvae were found, thus confirming the general low occurrence of this parasite in Germany. However, Spirocerca lupi (n = 12) and an unidentified Trichinella-like nematode (n = 1) were accidently detected in the examined samples. The first is not a zoonotic parasite but has a high veterinary relevance as it can cause severe diseases in dogs. It is the first documented autochthonous infection of this nematode in Germany. The larvae of an unidentified Trichinella-like nematode were found in high abundance in all examined muscles of one raccoon, though they could not be identified to species level. Histological investigation revealed intramuscular cystic structures. This is the largest study investigating muscular parasites of raccoons in Europe so far, which suggests that this invasive animal species is infected by S. lupi and by a yet unknown Trichinella -like parasite.
Collapse
Affiliation(s)
- Torsten Langner
- Leipzig University, Faculty of Veterinary Medicine, Institute of Food Hygiene, Germany
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. prov. per Casamassima km 3, Valenzano, Bari, 70010, Italy
| | - Marcos Antonio Bezerra-Santos
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. prov. per Casamassima km 3, Valenzano, Bari, 70010, Italy
| | - Jan Franzen
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Annette Johne
- German Federal Institute for Risk Assessment, NRL for Trichinella, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Daniele Tonanzi
- European Union Reference Laboratory for Parasites, Istituto Superiore Di Sanità, Rome, Italy
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Stefan Birka
- Leipzig University, Faculty of Veterinary Medicine, Institute of Food Hygiene, Germany
| |
Collapse
|
2
|
Liu Y, Liu J, Wang N, You X, Yang Y, Ding J, Liu X, Liu M, Li C, Xu N. Quantitative label-free proteomic analysis of excretory-secretory proteins in different developmental stages of Trichinella spiralis. Vet Res 2024; 55:4. [PMID: 38172978 PMCID: PMC10763447 DOI: 10.1186/s13567-023-01258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Trichinella spiralis (T. spiralis) is a zoonotic parasitic nematode with a unique life cycle, as all developmental stages are contained within a single host. Excretory-secretory (ES) proteins are the main targets of the interactions between T. spiralis and the host at different stages of development and are essential for parasite survival. However, the ES protein profiles of T. spiralis at different developmental stages have not been characterized. The proteomes of ES proteins from different developmental stages, namely, muscle larvae (ML), intestinal infective larvae (IIL), preadult (PA) 6 h, PA 30 h, adult (Ad) 3 days post-infection (dpi) and Ad 6 dpi, were characterized via label-free mass spectrometry analysis in combination with bioinformatics. A total of 1217 proteins were identified from 9341 unique peptides in all developmental stages, 590 of which were quantified and differentially expressed. GO classification and KEGG pathway analysis revealed that these proteins were important for the growth of the larvae and involved in energy metabolism. Moreover, the heat shock cognate 71 kDa protein was the centre of protein interactions at different developmental stages. The results of this study provide comprehensive proteomic data on ES proteins and reveal that these ES proteins were differentially expressed at different developmental stages. Differential proteins are associated with parasite survival and the host immune response and may be potential early diagnostic antigen or antiparasitic vaccine candidates.
Collapse
Affiliation(s)
- Yadong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Juncheng Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Nan Wang
- Jilin Agricultural University, Changchun, 130062, China
| | - Xihuo You
- Beijing Agrichina Pharmaceutical Co., Ltd., Wangzhuang Industrial Park, Airport Road, Shahe, Changping District, Beijing, 102206, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, 6 Xiyuan Road, Puer, Yunnan, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chen Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Li C, Li C, Xu F, Wang H, Jin X, Zhang Y, Liu X, Wang R, You X, Liu M, Bai X, Yang Y. Identification of antigens in the Trichinella spiralis extracellular vesicles for serological detection of early stage infection in swine. Parasit Vectors 2023; 16:387. [PMID: 37884927 PMCID: PMC10604534 DOI: 10.1186/s13071-023-06013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Several studies have reported the roles of Trichinella spiralis extracellular vesicles in immune regulation and pathogen diagnosis. Currently, the T. spiralis muscle larvae excretory/secretory product (Ts-ML-ES) is the antigen recommended by the International Commission on Trichinellosis (ICT) for serological diagnosis of trichinellosis. However, it can only be used to detect middle and late stages of infections, and cross-reactions with other parasite detections occur. Therefore, there is a need to identify antigens for specific detection of early stage trichinellosis. METHODS Extracellular vesicles of T. spiralis muscle larvae (Ts-ML-EVs) were isolated by ultracentrifugation and characterized by transmission electron microscopy, nanoparticle tracking analysis, flow cytometry and western blot. Ts-ML-EVs protein profiles were analyzed by LC-MS/MS proteomics for identification of potential antigens (Ts-TTPA). Ts-TTPA were cloned into pMAL-c5X vector and expressed as recombinant proteins for evaluation of potential as detected antigens by western blot and ELISA. RESULTS Isolated Ts-ML-EVs were round or elliptic (with diameters between 110.1 and 307.6 nm), showing a bilayer membrane structure. The specific surface markers on the Ts-ML-EVs were CD81, CD63, enolase and the 14-3-3 protein. A total of 53 proteins were identified by LC-MS/MS, including a variety of molecules that have been reported as potential detection and vaccine candidates. The cDNA of Ts-TTPA selected in this study has a total length of 1152 bp, encoding 384 amino acids with a molecular weight of 44.19 kDa. It contains a trypsin domain and can be recognized by anti-His antibody. It reacted with swine sera infected with 10,000 T. spiralis at 15, 25, 35 and 60 days post-infection (dpi). At 10 μg/ml, this antigen could detect T. spiralis antibodies from the swine sera at 13 dpi. There were no cross-reactions with the swine sera infected with other parasites including Clonorchis sinensis, Toxoplasma gondii, Taenia suis, Ascaris suis and Trichuris suis. CONCLUSIONS This study identifies potential early stage detection antigens and more thoroughly characterizes a serine protease domain-containing protein. Extracellular vesicle proteins may be explored as effective antigens for the early stage detection of trichinellosis.
Collapse
Affiliation(s)
- Chengyao Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chen Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyan Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haolu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruizhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xihuo You
- Beijing Agrichina Pharmaceutical Co., Ltd, Wangzhuang Industrial Park, Airport Road, Shahe, Changping District, Beijing, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Xue Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yong Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- School of Basic Medical Science, Shan Xi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Uakhit R, Mayer-Scholl A, Shin C, Smagulova A, Lider L, Leontyev S, Kiyan V. Genetic identification of Trichinella species found in wild carnivores from the territory of Kazakhstan. Front Vet Sci 2023; 10:1266561. [PMID: 37781287 PMCID: PMC10538997 DOI: 10.3389/fvets.2023.1266561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Trichinellosis, also called trichinosis, is a foodborne parasitic disease caused by eating raw or undercooked meat from animals infected with Trichinella spp. larvae and affects both animals and humans. Although on the territory of Kazakhstan, the species characteristics and prevalence of this helminth were studied back in the 90s, the data have not been updated since then. Given the above, our study was aimed at identifying Trichinella spp. using parasitological and molecular genetics methods. In our work, we studied 160 samples of muscle tissue of wild animals living in the natural zones of steppes and semi-deserts. Of the animals examined, 32 were positive for Trichinella spp., including 1 lynx (Lynx lynx), 17 wolves (Canis lupus), 11 foxes (Vulpes vulpes), 1 jackal (Canis aureus) and 2 corsac foxes (Vulpes corsac). Helminths were extracted using the digestion method. DNA was extracted using a Gene Jet commercial kit (Thermo Fisher Scientific, United Kingdom). For species identification a multiplex PCR, amplification of ESV, ITS1, and ITS2 genes regions was performed. After that, uniplex PCR was performed on the 5S rDNA and ITS1 genes region for sequencing analysis. The resulting sequences were subsequently used to construct a phylogenetic tree and the studied samples were identified as Trichinella nativa and Trichinella britovi. Thus, we can conclude that there is a circulation of two species of Trichinella in Kazakhstan, highlighting that constant control and monitoring of wild animals are necessary to prevent transmission and protect the health of people.
Collapse
Affiliation(s)
- Rabiga Uakhit
- Laboratory of Parasitology, Department of Veterinary Medicine, S. Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Chincher Shin
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Ainura Smagulova
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Lyudmila Lider
- Laboratory of Parasitology, Department of Veterinary Medicine, S. Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Sergey Leontyev
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Vladimir Kiyan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
5
|
Qiao W, Zhang P, Jiang N, Zhang S, Bai H, Xie L, Sun L, Wang X. Albumin nanostructure assisted ABZ anti-parasite immune therapy for T. spiralis muscle infection. BIOMATERIALS ADVANCES 2023; 150:213434. [PMID: 37087912 DOI: 10.1016/j.bioadv.2023.213434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Currently, the treatment of Trichinella spiralis (T. spiralis) intracellular infection by oral administration of albendazole (ABZ) is hampered by its poor aqueous solubility and rapid metabolism. Herein, the nanoparticles with BSA and ABZ (ABZ-BSA Nps) were constructed by a desolvation technique in the study. The anti-parasite activity and pharmacokinetics of ABZ-BSA Nps were evaluated for T. spiralis muscle larvae during the encysted phase. The immune-responsive cytokines of ABZ-BSA Nps were quantitatively analyzed. The results showed that ABZ-BSA Nps could eliminate the muscle larvae by triggering the unbalance of Th1/Th2 immune-response in the infection mice. For ABZ-BSA Nps treatment group, the plasma concentration of ABZSO (ABZ active metabolite) was higher than ABZ and the muscle larvae were reduced by 70.2 %. In conclusion, the study had constructed a successful prospective protein nanoparticle delivery ABZ and evidenced the ABZ could be used for intracellular parasite therapy by triggering the anti-parasite immunity of hosts.
Collapse
Affiliation(s)
- Weidong Qiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Peng Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Electron Microscope Center, Jilin University, Changchun 130012, PR China
| | - Ning Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shuyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Huifang Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lingfeng Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
6
|
Bai SJ, Han LL, Liu RD, Long SR, Zhang X, Cui J, Wang ZQ. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice. PLoS Negl Trop Dis 2022; 16:e0010929. [PMID: 36445875 PMCID: PMC9707759 DOI: 10.1371/journal.pntd.0010929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Trichinella spiralis is a foodborne parasitic nematode which is a serious risk to meat safety. Development of anti-Trichinella vaccine is needed to control Trichinella infection in food animals. In this study, two novel T. spiralis genes (calreticulin and serine protease 1.1) in combination were used to construct oral DNA vaccines, and their induced protective immunity was evaluated in a murine model. METHODOLOGY/PRINCIPAL FINDINGS TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA were transformed into attenuated Salmonella typhimurium ΔcyaSL1344. Oral vaccination of mice with TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA vaccines elicited a gut local mucosal sIgA response and systemic Th1/Th2 mixed response. Oral vaccination with TsCRT+TsSP1.1 induced obviously higher level of serum specific antibodies, mucosal sIgA and cellular immune response than either of single TsCRT or TsSP1.1 DNA vaccination. Oral vaccination of mice with TsCRT+TsSP1.1 exhibited a 53.4% reduction of enteral adult worms and a 46.05% reduction of muscle larvae, conferred a higher immune protection than either of individual TsCRT (44.28 and 42.46%) or TsSP1.1 DNA vaccine (35.43 and 29.29%) alone. Oral vaccination with TsCRT+TsSP1.1, TsCRT and TsSP1.1 also obviously ameliorated inflammation of intestinal mucosa and skeletal muscles of vaccinated mice after challenge. CONCLUSIONS TsCRT and TsSP1.1 might be regarded the novel potential targets for anti-Trichinella vaccines. Attenuated Salmonella-delivered DNA vaccine provided a prospective approach to control T. spiralis infection in food animals.
Collapse
Affiliation(s)
- Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| |
Collapse
|
7
|
Rayia DA, Othman A, Harras S, Helal D, Dawood L, Soliman S. Bevacizumab: A new take on therapy of muscle phase of Trichinella spiralis infection. Acta Trop 2022; 230:106409. [PMID: 35300938 DOI: 10.1016/j.actatropica.2022.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 11/01/2022]
Abstract
Trichinellosis is a zoonosis that causes health and economic problems worldwide. The available therapy is far from perfect as the conventional drugs used against Trichinella spiralis (T. spiralis) are active against the intestinal adult parasites but much less active against encapsulated larvae in muscles. Therefore, this work aimed to evaluate the effect of the anti-angiogenic agent, bevacizumab, on the muscle larvae of T. spiralis. For this aim, T. spiralis-infected mice were treated by two different doses of bevacizumab, thereafter larval counts as well as biochemical and pathological changes were evaluated in the muscles. The larval burden was reduced in the muscles of treated mice, denoting a detrimental effect of bevacizumab against encapsulated Trichinella larvae. Moreover, there was marked improvement of muscle inflammation with the treatment, evidenced by reduction of the proinflammatory cytokines (IL-6 and TNF-α) and regression of the inflammatory infiltrates in histological sections. Amelioration of oxidative stress in the muscle was also observed in treated animals with reduction of malondialdehyde and carbonic anhydrase III and increase in superoxide dismutase levels. Finally, the treatment induced downregulation of the expression of VEGF and CD31, denoting suppressed angiogenesis. All these beneficial effects were found to be dose dependent. In conclusion, bevacizumab exhibited anthelmintic, anti-inflammatory, antioxidant, and anti-angiogenic activities against Trichinella during the muscular phase of infection. Therefore, bevacizumab could be considered as a useful adjuvant treatment in the late stages of trichinellosis.
Collapse
|
8
|
Xue Y, Zhang B, Wang N, Huang HB, Quan Y, Lu HN, Zhu ZY, Li JY, Pan TX, Tang Y, Jiang YL, Shi CW, Yang GL, Wang CF. Oral Vaccination of Mice With Trichinella spiralis Putative Serine Protease and Murine Interleukin-4 DNA Delivered by Invasive Lactiplantibacillus plantarum Elicits Protective Immunity. Front Microbiol 2022; 13:859243. [PMID: 35591986 PMCID: PMC9113538 DOI: 10.3389/fmicb.2022.859243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Trichinellosis is a serious zoonotic parasitic disease caused by Trichinella spiralis (T. spiralis) that causes considerable economic losses for the global pig breeding and food industries. As such, there is an urgent need for a vaccine that can prevent T. spiralis infection. Previous studies have reported that recombinant invasive Lactococcus lactis (LL) expressing Staphylococcus aureus fibronectin binding protein A (LL-FnBPA+) can transfer DNA vaccines directly to dendritic cells (DCs) across an epithelial cell monolayer, leading to significantly higher amounts of heterologous protein expression compared to non-invasive Lactococcus lactis. In this study, the invasive bacterium Lactiplantibacillus plantarum (L. plantarum) expressing FnBPA was used as a carrier to deliver a novel oral DNA vaccine consisting of T. spiralis adult putative serine protease (Ts-ADpsp) and murine interleukin (IL)-4 DNA to mouse intestinal epithelial cells. Experimental mice were orally immunized 3 times at 10-day intervals. At 10 days after the last vaccination, mice were challenged with 350 T. spiralis infective larvae by oral inoculation. Immunization with invasive L. plantarum harboring pValac-Ts-ADpsp/pSIP409-FnBPA induced the production of anti-Ts-ADpsp-specific IgG of serum, type 1 and 2 helper T cell cytokines of mesenteric lymph node (MLN) and spleen, secreted (s) IgA of intestinal lavage, and decreased T. spiralis burden and intestinal damage compared to immunization with non-invasive L. plantarum expressing Ts-ADpsp (pValac-Ts-ADpsp/pSIP409). Thus, invasive L. plantarum expressing FnBPA and IL-4 stimulates both mucosal and cellular immune response to protect against T. spiralis infection, highlighting its therapeutic potential as an effective DNA vaccine for trichinellosis.
Collapse
Affiliation(s)
- Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Quan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hui-Nan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Zhi-Yu Zhu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yue Tang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Li J, Ding J, Liu XL, Tang B, Bai X, Wang Y, Qiao WD, Liu MY, Wang XL. Upconverting phosphor technology-based lateral flow assay for the rapid and sensitive detection of anti-Trichinella spiralis IgG antibodies in pig serum. Parasit Vectors 2021; 14:487. [PMID: 34551787 PMCID: PMC8456594 DOI: 10.1186/s13071-021-04949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 01/31/2023] Open
Abstract
Background Trichinella spiralis is a zoonotic food-borne parasite. A disease caused by infection with T. spiralis is called trichinellosis in humans. It is important to investigate the epidemic situation and the surveillance of herds and then prevent infection in humans. Therefore, this study is to develop a rapid and sensitive diagnostic method for on-site test in domestic and wild animals. Methods Upconverting phosphor nanoparticles (UCNPs), an excellent optical label, were conjugated with the excretory-secretory (ES) antigens from T. spiralis muscle larvae (ML) or goat anti-rabbit IgG, and a lateral flow (LF) assay based on these probes (UCNPs-ES/goat anti-rabbit IgG) was developed for the rapid and sensitive detection of anti-T. spiralis IgG antibodies in pig serum. The assay is named the UPT-LF-ES assay. In addition, the probes were characterized, and the assay was optimized. A cut-off threshold of the assay was also identified by using 169 known negative pig samples. Performance of the assay to T. spiralis with different infective numbers, cross-reactivity with other parasitic infections, the single-blinded experiment, and coincidence were evaluated with the assay. Results The UPT-LF-ES assay was successfully constructed and optimized based on the probes of UCNPs-ES/goat anti-rabbit IgG. In the pigs infected with 100, 1000, and 10,000 ML, positive results were first presented at 35 days post-infection (dpi), 30 dpi, and 25 dpi, respectively. The assay had no cross-reaction with other parasitic infections. A single-blinded experiment indicated that the sensitivity and specificity of the UPT-LF-ES assay were 100% and 100%, respectively, the area under the receiver operating characteristic (ROC) curve was 1.000. In addition, the value detected by the UPT-LF-ES assay was significantly different between positive and negative samples. Moreover, compared with the “gold standard” magnetic stirrer method, the coincidence rate of the UPT-LF-ES assay was 87.27%, and the kappa (K) coefficient was 0.7454, showing a substantial agreement. Conclusions The UPT-LF-ES assay is a useful point-of-care test (POCT) with T. spiralis in the detection of pig, which contributes to preventing human trichinellosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04949-2.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xiao-Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Wei-Dong Qiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xue-Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China.
| |
Collapse
|
10
|
Li C, Bai X, Liu X, Zhang Y, Liu L, Zhang L, Xu F, Yang Y, Liu M. Disruption of Epithelial Barrier of Caco-2 Cell Monolayers by Excretory Secretory Products of Trichinella spiralis Might Be Related to Serine Protease. Front Microbiol 2021; 12:634185. [PMID: 33815318 PMCID: PMC8013981 DOI: 10.3389/fmicb.2021.634185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
The physical barrier is composed of epithelial cells which are joined together through intercellular connections. It serves to prevent pathogenic microorganisms from departing the intestinal lumen to invade the host. The excretory secretory (ES) products of Trichinella spiralis are critical for invasion. However, whether ES products of T. spiralis can act on the intestinal barrier is still unknown. In this study, the role of ES products of T. spiralis muscle larvae (Ts-ML-ES) in host invasion was studied by establishing an in vitro cell monolayers model. Barrier integrity analysis by a transmembrane resistance test and a paracellular permeability assay revealed that the Ts-ML-ES was able to destroy barrier function. It occurred via a reduction in the expression of tight junction (TJ) proteins, which was induced by serine protease. Furthermore, Western bolt analysis indicated that Ts-ML-ES reduced the expression of TJ proteins via the MAPK signaling pathway. Based on these data, we conclude that serine protease are likely the main factors from Ts-ML-ES that affect host intestinal barrier integrity by reducing the expression of TJs via the P38-MAPK signaling pathway. Serine protease in Ts-ML-ES might be a key invasion factor in T. spiralis.
Collapse
Affiliation(s)
- Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Fengyan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
11
|
Hu CX, Zeng J, Hao HN, Xu YXY, Liu F, Liu RD, Long SR, Wang ZQ, Cui J. Biological properties and roles of a Trichinella spiralis inorganic pyrophosphatase in molting and developmental process of intestinal larval stages. Vet Res 2021; 52:6. [PMID: 33413587 PMCID: PMC7791673 DOI: 10.1186/s13567-020-00877-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Inorganic pyrophosphatase (PPase) participates in energy cycle and plays a vital role in hydrolysis of inorganic pyrophosphate (PPi) into inorganic phosphate (Pi). The aim of this study was to investigate the biological properties of a Trichinella spiralis PPase (TsPPase) and its role in larval molting and developmental process. The predicted TsPPase consisted of 367 amino acids with a molecular mass of 41.48 kDa and a pI of 5.76. Amino acid sequence alignment and phylogenetic analysis showed that the TsPPase gene encodes a functional family I soluble PPase with the same characteristics as prokaryotic, plant and animal/fungal soluble PPase. The rTsPPase was expressed and purified, it has the activity to catalyze the hydrolysis of PPi to Pi, and the activity was dependent on Mg2+, pH and temperature. The enzymatic activity of rTsPPase was significantly inhibited after its metal binding sites mutation. TsPPase was transcribed and expressed in all T. spiralis phases, especially in muscle larvae (ML) and intestinal infective larvae (IIL). Immunofluorescence assay (IFA) revealed that TsPPase was mainly located in cuticle and stichosome. When the ML and IIL were treated with TsPPase-specific siRNA-279, TsPPase expression and enzymatic activity were obviously reduced, the larval molting and development were also impeded. Intestinal IIL as well as AW burden, IIL molting rates from mice infected with siRNA-treated ML were obviously suppressed. The results indicated that rTsPPase possesses the enzymatic activity of native inorganic pyrophosphatase, and TsPPase plays an important role in development and molting process of intestinal T. spiralis larval stages.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Xiu Yue Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Yi N, Yu P, Wu L, Liu Z, Guan J, Liu C, Liu M, Lu Y. RNAi-mediated silencing of Trichinella spiralis serpin-type serine protease inhibitors results in a reduction in larval infectivity. Vet Res 2020; 51:139. [PMID: 33225967 PMCID: PMC7682016 DOI: 10.1186/s13567-020-00860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/22/2020] [Indexed: 01/03/2023] Open
Abstract
Trichinella spiralis serpin-type serine protease inhibitors (TsSPIs) are expressed in adult worms (AW), newborn larvae (NBL) and muscle larvae (ML) of T. spiralis, with the ML stage demonstrating the highest expression level. This study aims to determine TsSPI functions in larval viability and invasion of intestinal epithelial cells in vitro, as well as their development, survival, and fecundity in vivo via RNAi. TsSPI-specific siRNAs and dsRNA were transfected into ML by incubation. The silencing effect of TsSPI transcription and expression was determined using qPCR and western blot, respectively. After incubation in 60 ng/μL dsRNA–TsSPI for 3 days, larval TsSPI mRNA and protein expression levels were reduced by 68.7% and 68.4% (P < 0.05), respectively. dsRNA-mediated silencing of TsSPI significantly impacted larval invasion into intestinal epithelial cells in vitro but did not affect the survival rate of larvae. After challenge with dsRNA–TsSPI-treated ML, mice exhibited a 56.0% reduction in intestinal AW burden and 56.9% reduction in ML burden (P < 0.05), but NBL production of female AW remained the same (P > 0.05). Our results revealed that RNAi-mediated silencing of TsSPI expression in T. spiralis significantly reduced larval infectivity and survival in the host but had no effect on the survival rate and fecundity. Furthermore, TsSPIs have no effect on the growth and reproduction of parasites but may be directly involved in regulating the interaction of T. spiralis and the host. Therefore, TsSPIs are crucial in the process of T. spiralis larval invasion and parasite survival in the host.
Collapse
Affiliation(s)
- Nana Yi
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Pengcheng Yu
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Lijia Wu
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Zhaokun Liu
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Jingzhe Guan
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Chang Liu
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Mingxu Liu
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yixin Lu
- Laboratory of Animal Common Disease Prevention, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
13
|
Mei X, Ye Z, Chang Y, Huang S, Song J, Lu F. Trichinella spiralis co-infection exacerbates Plasmodium berghei malaria-induced hepatopathy. Parasit Vectors 2020; 13:440. [PMID: 32883347 PMCID: PMC7469358 DOI: 10.1186/s13071-020-04309-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 11/11/2022] Open
Abstract
Background Although Plasmodium parasites and intestinal helminths share common endemic areas, the mechanisms of these co-infections on the host immune response remain not fully understood. Liver involvement in severe Plasmodium falciparum infections is a significant cause of morbidity and mortality. However, the effect of pre-existing Trichinella spiralis infection on the immune response and liver immune-pathogenesis in P. berghei ANKA (PbANKA)-infected mice needs to be elucidated. Methods Outbred Kunming mice were infected with T. spiralis and 9 days later were challenged with P. berghei ANKA (PbANKA), and the investigation occurred at 13 days after co-infection. Results Compared with PbANKA-mono-infected mice, T. spiralis + PbANKA-co-infected mice had similar survival rate but lower PbANKA parasitaemia; however, there were more severe hepatosplenomegaly, increased liver and spleen indexes, and increased liver pathology observed by hematoxylin and eosin staining; higher expression levels of galectin (Gal)-1, Gal-3, CD68+ macrophages, and elastase-positive neutrophils measured by immunohistochemical staining; upregulated mRNA expression levels of Gal-1, Gal-3, cytokines (interferon-gamma (IFNγ) and interleukin (IL)-6), and M1 macrophage polarization marker (inducible nitric oxide synthase (iNOS)) in the liver, and increased expression levels of Gal-1, IFNγ, IL-6, eosinophil cationic protein, eosinophil protein X, and M1 (IL-1β and iNOS) and M2 (Ym1) macrophage polarization markers in the spleen of co-infected mice detected by using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). In vitro study showed that compared with PbANKA-mono-infected mice, there were significantly increased expression levels of Gal-1, Gal-3, IL-6, IL-1β, and iNOS in the peritoneal macrophage isolated from co-infected mice detected by using qRT-PCR. Correlation analysis revealed significant positive correlations between Gal-3 and IL-1β in the peritoneal macrophages isolated from PbANKA-mono-infected mice, between Gal-3 and IFNγ in the spleen of co-infected mice, and between Gal-1 and Ym1 in the peritoneal macrophages isolated from co-infected mice. Conclusions Our data indicate that pre-existing infection of T. spiralis may suppress P. berghei parasitaemia and aggravate malaria-induced liver pathology through stimulating Gal-1 and Gal-3 expression, activating macrophages, neutrophils, and eosinophils, and promoting mediator release and cytokine production.![]()
Collapse
Affiliation(s)
- Xu Mei
- Artemisinin Research Center and Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanhong Ye
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Chang
- Artemisinin Research Center and Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China.
| | - Jianping Song
- Artemisinin Research Center and Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Seroprevalance of Trichinella Spp. in Wild Boars ( Sus Scrofa) from Bihor County, Western Romania. Helminthologia 2020; 57:235-240. [PMID: 32855611 PMCID: PMC7425241 DOI: 10.2478/helm-2020-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
The wild boar (Sus scrofa) has a wide geographical distribution and can be an important source of Trichinella spp. infection in humans in Romania. The objective of this study was to identify the presence of Trichinella spp. in the wild boar population in Bihor County, Romania. Eighty four plasma and diaphragm samples, collected from wild boars, were included in this study. Artificial digestion, ELISA and Western blot were performed on these specimens. All diaphragm samples were negative for Trichinella larvae in artificial digestion, while in ELISA, 54 (64.2 %) plasma samples were positive and 6 (7.1 %) plasma samples were doubtful. Western blot was performed on 26 plasma samples from which only 6 (23.0 %) gave a positive result. Serological evidences indicate the presence of Trichinella spp. in wild boars from western Romania. Therefore, human consumers might be at risk to ingest Trichinella larvae, even in low numbers.
Collapse
|
15
|
Wang N, Bai X, Ding J, Lin J, Zhu H, Luo X, Fu Z, Zhu C, Jia H, Liu M, Liu X. Trichinella infectivity and antibody response in experimentally infected pigs. Vet Parasitol 2020; 297:109111. [PMID: 32334888 DOI: 10.1016/j.vetpar.2020.109111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/26/2022]
Abstract
The objective of the present study was to investigate the infectivity and antibody response of four Trichinella species (Trichinella spiralis, Trichinella britovi, Trichinella pseudospiralis and Trichinella murrelli) in experimentally infected pigs. A total of 120 Large White pigs (30 animals per group) were inoculated with 10,000 muscle larvae (ML) of T. spiralis, T. britovi, T. pseudospiralis, and T. murrelli. The pigs were sacrificed at 12-21 days post-infection (dpi) to examine the viability and infectivity of ML. A total of 54 Large White pigs (6 animals per group) were inoculated with 25, 50, 100, 200, 400, 600, 800, 1000 and 10,000 T. spiralis ML. The pigs were sacrificed, and the average numbers of larvae per gram (lpg) from six different muscle tissues were calculated at 120 dpi. The results showed that the larvae first be detectable for T. spiralis, T. britovi, and T. pseudospiralis at 16 dpi, 17 dpi, and 16 dpi, respectively. Viable larvae and average lpg were significantly increased with time from 17 to 21 dpi. The T. spiralis ML burden was dependent of the inoculation dose with an average lpg of 0.003, 0.005, 0.007, 0.17, 0.82, 2.89, 4.90, 28.30 and 226.18, respectively. The IgG antibody response was dose-dependent to generate and increased throughout the experimental period. And the IgG1 isotype was significantly higher than IgG2a, which meant that T. spiralis infection induced the Th2 immune response. The time of detecting IgM antibodies was significantly earlier than IgG antibody detection. These results provide important information in the primary characterization of pigs infected with Trichinella.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China.
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130000, China.
| |
Collapse
|
16
|
Li J, Ding J, Liu X, Tang B, Bai X, Wang Y, Li S, Wang X. Label-free serum detection of Trichinella spiralis using surface-enhanced Raman spectroscopy combined with multivariate analysis. Acta Trop 2020; 203:105314. [PMID: 31866336 DOI: 10.1016/j.actatropica.2019.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Based on blood serum surface-enhanced Raman spectroscopy (SERS) analysis, this paper proposed a simple and unlabeled non-invasive serum detection for T. spiralis infection. Serum samples were collected and analyzed from 40 rats at 0 days post infection (dpi) (normal rats), 19 uninfected rats, and 16 rats infected with T. spiralis at 28 dpi, using SERS measurements. Multivariate statistical techniques, such as linear discriminant analysis (LDA) and principal components analysis (PCA), were used to analyze and identify the obtained blood serum SERS spectra. The diagnosis algorithms, based on PCA-LDA, achieved a diagnostic sensitivity of 87.5%, a specificity of 94.7%, and an accuracy of 91.4% for separating the samples infected with T. spiralis from the control samples. This exploratory study demonstrated that colloidal Ag NPs-based SERS serum analysis technique combined with PCA-LDA has a great potential in improving the detection of T. spiralis infection and onsite screening.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shicun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
17
|
Hu CX, Jiang P, Yue X, Zeng J, Zhang XZ, Song YY, Liu RD, Zhang X, Wang ZQ, Cui J. Molecular characterization of a Trichinella spiralis elastase-1 and its potential as a diagnostic antigen for trichinellosis. Parasit Vectors 2020; 13:97. [PMID: 32093735 PMCID: PMC7041205 DOI: 10.1186/s13071-020-3981-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichinella spiralis muscle larval (ML) excretion/secretion (ES) antigen is the most widely used diagnostic antigen of trichinellosis, but preparation of ES antigen requires collecting worms from infected animals, and detection of specific IgG against ML ES antigen may result in a false negative at the early stage of infection. The aim of the study was to characterize T. spiralis elastase-1 (TsEla) and to evaluate its potential as diagnostic antigen for trichinellosis. METHODS The complete cDNA sequences of the TsEla gene were cloned and expressed, and recombinant (rTsEla) was purified. TsEla transcription and expression in different T. spiralis life-cycle stages was investigated by qPCR and western blotting, and its location in the nematodes was evaluated using an immunofluorescence assay (IFA). The antigenicity of rTsEla was investigated by western blotting analysis and ELISA. Anti-Trichinella IgG, IgM and IgE of experimentally infected mice and specific IgG antibodies of trichinellosis patients were assayed by rTsEla-ELISA and ES-ELISA. RESULTS The results of the qPCR and western blotting showed that TsEla was expressed in various T. spiralis life stages. Natural TsEla was detected in the soluble proteins and ES proteins of different life stages. IFA revealed that TsEla was identified in the whole nematodes of various stages, especially in the cuticle, stichosome and genital primordium of the parasite. Serum anti-Trichinella IgM, IgG and IgE in infected mice was first detected by rTsEla-ELISA at 6, 10 and 12 days post-infection (dpi), and reached 100% at 8, 14 and 14 dpi, respectively. When rTsEla-ELISA and ES-ELISA were used to detect anti-Trichinella IgG in sera of trichinellosis patients, the sensitivity was 97.37% (37/38) and 89.74% (34/38) (P > 0.05), and the specificity was 99.10% (220/222) and 98.20% (218/222), respectively (P > 0.05). The rTsEla cross-reacted with only one serum sample out of 20 samples from paragonimiasis patients and 7 samples from clonorchiasis patients. CONCLUSIONS rTsEla is valuable to early diagnosis of trichinellosis and could be an alternative diagnostic antigen to the ML ES antigens.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
18
|
Wang N, Bai X, Tang B, Yang Y, Wang X, Zhu H, Luo X, Yan H, Jia H, Liu M, Liu X. Primary characterization of the immune response in pigs infected with Trichinella spiralis. Vet Res 2020; 51:17. [PMID: 32085808 PMCID: PMC7035712 DOI: 10.1186/s13567-020-0741-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Trichinellosis, which is caused by Trichinella spiralis (T. spiralis), is a serious zoonosis. Pigs play an important role in the transmission of human trichinellosis. Characterizing the immune response to T. spiralis infection is key to elucidating host–parasite interactions. However, most studies on the immune response to T. spiralis infection have employed murine models. In this study, we investigated the immune response to T. spiralis infection in pigs. The results showed that the average numbers of larvae per gram (lpg) for the 100-muscle larvae (ML), 1000-ML, and 10 000-ML groups were 1.502, 35.947, and 398.811, respectively. The percentages of CD3+ T cells, B cells, CD4+ T cells, Treg cells, and Th17 cells were elevated in the infection groups compared to the control animals. In contrast, CD8+ T cell percentages were reduced after infection in the low-dose group. The number of neutrophils was increased at 3–17 days post-infection (dpi). Th1 cytokine IL-2 levels were significantly decreased at 7 dpi, and Th2 cytokine IL-4 levels were significantly elevated at 3 dpi. Treg cytokine IL-10 levels were significantly elevated between 7 dpi and 30 dpi. Th17 cytokine IL-17A levels were significantly increased beginning at 11 dpi. These results confirmed that pigs infected with T. spiralis predominantly induced Th2 and Treg immune responses, which suppress the Th1 immune responses. This study provides novel insights into the immune response of pigs infected with T. spiralis.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hongbin Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| |
Collapse
|
19
|
Characterization of a chymotrypsin-like enzyme from Trichinella spiralis and its facilitation of larva penetration into the host's enteral epithelial cells. Res Vet Sci 2020; 128:1-8. [DOI: 10.1016/j.rvsc.2019.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
|
20
|
Hafez EN, El Kholy WA, Amin MM. The potential protective role of gamma-irradiated vaccine versus Punica granatum treatment against murine trichinellosis. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1777659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Cui J, Han Y, Yue X, Liu F, Song YY, Yan SW, Lei JJ, Zhang X, Jiang P, Wang ZQ. Vaccination of mice with a recombinant novel cathepsin B inhibits Trichinella spiralis development, reduces the fecundity and worm burden. Parasit Vectors 2019; 12:581. [PMID: 31829230 PMCID: PMC6907330 DOI: 10.1186/s13071-019-3833-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trichinella spiralis is a major zoonotic tissue-dwelling nematode, which is a public health concern and a serious hazard to animal food safety. It is necessary to exploit an anti-Trichinella vaccine to interrupt the transmission of Trichinella infection among animals and from animals to humans. The purpose of the present study was to characterize the novel T. spiralis cathepsin B (TsCB) and to evaluate the immune protection elicited by immunization with recombinant TsCB (rTsCB). METHODS The complete cDNA sequences of the TsCB gene were cloned, expressed and purified. The antigenicity of rTsCB was investigated by western blot analysis and ELISA. Transcription and expression of TsCB at various T. spiralis life-cycle stages were analyzed by RT-PCR and indirect immunofluorescent assay (IIFA). The mice were subcutaneously immunized with rTsCB, and serum level of TsCB-specific IgG (IgG1 and IgG2a) and IgE antibodies were assayed by ELISA. Immune protection elicited by vaccination with rTsCB was investigated. RESULTS The TsCB was transcribed and expressed in four T. spiralis life-cycle stages (adult worm, AW; newborn larvae, NBL; muscle larvae, ML; and intestinal infective L1 larvae), it was primarily located in the cuticle and stichosome of the parasitic nematode. Vaccination of mice with rTsCB produced a prominent antibody response (high level of specific IgG and IgE) and immune protection, as demonstrated by a 52.81% AW burden reduction of intestines at six days post-infection (dpi) and a 50.90% ML burden reduction of muscles at 35 dpi after oral larva challenge. The TsCB-specific antibody response elicited by immunization with rTsCB also impeded intestinal worm growth and decreased the female fecundity. CONCLUSIONS TsCB might be considered as a novel potential molecular target to develop vaccines against T. spiralis infection.
Collapse
Affiliation(s)
- Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jun Jun Lei
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
22
|
Ren HN, Liu RD, Song YY, Zhuo TX, Guo KX, Zhang Y, Jiang P, Wang ZQ, Cui J. Label-free quantitative proteomic analysis of molting-related proteins of Trichinella spiralis intestinal infective larvae. Vet Res 2019; 50:70. [PMID: 31547875 PMCID: PMC6757440 DOI: 10.1186/s13567-019-0689-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Molting is a key step for body-size expansion and environmental adaptation of parasitic nematodes, and it is extremely important for Trichinella spiralis growth and development, but the molting mechanism is not fully understood. In this work, label-free LC-MS/MS was used to determine the proteome differences between T. spiralis muscle larvae (ML) at the encapsulated stage and intestinal infective larvae (IIL) at the molting stage. The results showed that a total of 2885 T. spiralis proteins were identified, 323 of which were differentially expressed. These proteins were involved in cuticle structural elements, regulation of cuticle synthesis, remodeling and degradation, and hormonal regulation of molting. These differential proteins were also involved in diverse intracellular pathways, such as fatty acid biosynthesis, arachidonic acid metabolism, and mucin type O-glycan biosynthesis. qPCR results showed that five T. spiralis genes (cuticle collagen 14, putative DOMON domain-containing protein, glutamine synthetase, cathepsin F and NADP-dependent isocitrate dehydrogenase) had significantly higher transcriptional levels in 10 h IIL than ML (P < 0.05), which were similar to their protein expression levels, suggesting that they might be T. spiralis molting-related genes. Identification and characterization of T. spiralis molting-related proteins will be helpful for developing vaccines and new drugs against the early enteral stage of T. spiralis.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Tong Xu Zhuo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
23
|
de Souza Rosés T, Andreolla AP, de Figueiredo Soveral L, Vieira MIB, Kich JD, Frandoloso R, Kreutz LC. Synthetic gene as target to assess the sensitivity of PCR to detect Trichinella spp. larvae in meat from a non-endemic region. Trop Anim Health Prod 2019; 52:619-623. [PMID: 31444664 DOI: 10.1007/s11250-019-02049-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022]
Abstract
Trichinellosis is a zoonotic disease exotic in Brazil but commonly found worldwide including South American countries like Argentina. International trading of swine meat needs an official Trichinella-free diagnosis commonly carried out by pepsin-HCl digestion of diaphragm tissue fragments followed by microscopic examination for the presence or absence of Trichinella larvae. The easiness of this diagnostic method allows it to be performed at slaughtering plants but, in contrast, it lacks sensitivity and does not allow species differentiation, which is fundamental for determining geographical and species distribution of different genotypes. In our study, we aimed to evaluate a highly sensitive diagnostic method based on the polymerase chain reaction (PCR) that would allow us to detect and classify different species of Trichinella. Thus, we designed a synthetic gene and selected five sets of primers targeting specific regions of the Trichinella genome. The synthetic gene was cloned into a plasmid and then used to optimize PCR conditions. Using our PCR, we were able to detect 0.001 pg of the synthetic gene, which corresponded to 0.01 larvae. Then, we collected 175 samples of Suidae (domestic and wild boars) diaphragm fragments that were pooled into groups, digested with pepsin-HCl, and had the DNA extracted for analysis by PCR. The clinical samples evaluated were negative by PCR. Our results indicate that the PCR-based method might be a useful diagnostic method complementary to the pepsin-HCl digestion method currently in use, mostly in non-endemic areas.
Collapse
Affiliation(s)
- Thiago de Souza Rosés
- Faculdade de Agronomia e Medicina Veterinária (FAMV), Laboratório de Microbiologia e Imunologia Avançada - Programa de Mestrado em Bioexperimentação, Universidade de Passo Fundo (UPF), Campus I, Bairro São José, BR 285, km 292, Passo Fundo, RS, CEP 99052-900, Brazil
| | - Ana Paula Andreolla
- Faculdade de Agronomia e Medicina Veterinária (FAMV), Laboratório de Microbiologia e Imunologia Avançada - Programa de Mestrado em Bioexperimentação, Universidade de Passo Fundo (UPF), Campus I, Bairro São José, BR 285, km 292, Passo Fundo, RS, CEP 99052-900, Brazil
| | - Lucas de Figueiredo Soveral
- Faculdade de Agronomia e Medicina Veterinária (FAMV), Laboratório de Microbiologia e Imunologia Avançada - Programa de Mestrado em Bioexperimentação, Universidade de Passo Fundo (UPF), Campus I, Bairro São José, BR 285, km 292, Passo Fundo, RS, CEP 99052-900, Brazil
| | | | - Jalusa Deon Kich
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) -Suínos e Aves, Rodovia BR-153, Concórdia, SC, Brazil
| | - Rafael Frandoloso
- Faculdade de Agronomia e Medicina Veterinária (FAMV), Laboratório de Microbiologia e Imunologia Avançada - Programa de Mestrado em Bioexperimentação, Universidade de Passo Fundo (UPF), Campus I, Bairro São José, BR 285, km 292, Passo Fundo, RS, CEP 99052-900, Brazil
| | - Luiz Carlos Kreutz
- Faculdade de Agronomia e Medicina Veterinária (FAMV), Laboratório de Microbiologia e Imunologia Avançada - Programa de Mestrado em Bioexperimentação, Universidade de Passo Fundo (UPF), Campus I, Bairro São José, BR 285, km 292, Passo Fundo, RS, CEP 99052-900, Brazil.
| |
Collapse
|
24
|
In vitro silencing of a serine protease inhibitor suppresses Trichinella spiralis invasion, development, and fecundity. Parasitol Res 2019; 118:2247-2255. [PMID: 31081529 DOI: 10.1007/s00436-019-06344-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
In a previous study, immunoproteomics was used to identify a serine protease inhibitor (TsSPI) of T. spiralis excretory/secretory (ES) proteins that exhibited an inhibitory effect on trypsin enzymatic activity, but the precise role of TsSPI on worm infection and development in its host is not well understood. The objective of the present study was to use RNA interference to ascertain the function of TsSPI in larval invasion and growth. TsSPI-specific small interference RNAs (siRNAs) were delivered to muscle larvae (ML) to silence TsSPI expression by electroporation. Four days after electroporation, the ML transfected with 2 μM siRNA-653 exhibited a 75.75% decrease in TsSPI transcription and a 69.23% decrease in TsSPI expression compared with control ML. Although the silencing of TsSPI expression did not decrease worm viability, it significantly suppressed the larval invasion of intestinal epithelium cells (IEC) (P < 0.01), and the suppression was siRNA dose-dependent (r = 0.981). The infection of mice with siRNA-653-treated ML produced a 63.71% reduction of adult worms and a 72.38% reduction of muscle larvae. In addition, the length of the adults, newborn larvae, and ML and the fecundity of female T. spiralis from mice infected with siRNA-treated ML were obviously reduced relative to those in the control siRNA or PBS groups. These results indicated that the silencing of TsSPI by RNAi suppressed larval invasion and development and decreased female fecundity, further confirming that TsSPI plays a crucial role during the T. spiralis lifecycle and is a promising molecular target for anti-Trichinella vaccines.
Collapse
|
25
|
Yang Y, Bai X, Li C, Tong M, Zhang P, Cai W, Liu X, Liu M. Molecular Characterization of Fructose-1,6-bisphosphate Aldolase From Trichinella spiralis and Its Potential in Inducing Immune Protection. Front Cell Infect Microbiol 2019; 9:122. [PMID: 31069178 PMCID: PMC6491450 DOI: 10.3389/fcimb.2019.00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Trichinella spiralis is a major food-borne parasite worldwide. Trichinellosis caused by T. spiralis is not only a public health problem, but also an economic hazard in food safety. The development of effective vaccines to prevent Trichinella infection in domestic animals and humans is urgently needed for controlling of this zoonosis. Fructose-1, 6-bisphosphate aldolase (FBPA) is involved in energy production in glycolysis and is also associated with many non-glycolysis functions in the parasite, such as adhesion to host cells, plasminogen binding, and invasion. FBPA has been considered as a potential vaccine candidate or as a target for chemotherapeutic treatment. Here, we report for the first time the characterization of FBPA of T. spiralis and an evaluation of its potential as a vaccine candidate antigen against T. spiralis infection in mice. The results of qPCR and western blot analysis showed that the Ts-FBPA gene was expressed at various developmental stages of T. spiralis and was also detected in excretory–secretory products (ES) of T. spiralis muscle larvae (ML). Immunostaining with anti-Ts-FBPA mouse sera indicated that it localized principally to the surface and embryos of this parasitic nematode. Vaccination of mice with recombinant Ts-FBPA (rTs-FBPA) resulted in a Th1/Th2 mixed humoral and cellular immune response with Th2 predominant, as well as remarkably elevated IgE levels. Moreover, mice vaccinated with rTs-FBPA displayed a 48.7% reduction in adult worm burden and 52.5% reduction in muscle larval burden. These studies indicated that Ts-FBPA is a promising target for developing an effective vaccine to prevent and control Trichinella infection.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Wu Xi Medical School, Jiangnan University, Wuxi, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Peihao Zhang
- Wu Xi Medical School, Jiangnan University, Wuxi, China
| | - Wei Cai
- Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Wuxi, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
26
|
Sun GG, Lei JJ, Ren HN, Zhang Y, Guo KX, Long SR, Liu RD, Jiang P, Wang ZQ, Cui J. Intranasal immunization with recombinant Trichinella spiralis serine protease elicits protective immunity in BALB/c mice. Exp Parasitol 2019; 201:1-10. [PMID: 31004570 DOI: 10.1016/j.exppara.2019.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
The aim of this study was to observe the intestinal mucosal/systemic responses triggered by intranasal vaccination using recombinant Trichinella spiralis serine protease (rTsSP) and its capacity to elicit immune protection against larva challenge in a murine model. rTsSP coupled with cholera toxin B subunit (CTB) was used to vaccinate mice via intranasal route. The results revealed that intranasal vaccination with rTsSP plus CTB elicited significantly intestinal local sIgA response and a TsSP-specific systemic antibody response in vaccinated mice. Furthermore, more goblet cells/acidic mucins and IgA-secreting cells were observed in jejunum from vaccinated mice. Anti-rTsSP immune serum strongly recognized the cuticle of various worm stages (muscle larva, intestinal infective larva and adult worm). The level of IFN-γ, IL-4 and IL-10 of rTsSP-vaccinated mice was significantly elevated relative to CTB and PBS control groups. The vaccinated mice exhibited a 71.10% adult reduction at 9 days pi and a 62.10% muscle larva reduction at 42 days pi following larva challenge. Additionally, vaccination with rTsSP also dampened intestinal T. spiralis development and decreased the female fecundity. Our results showed that intranasal vaccination using rTsSP adjuvanted with CTB triggered significantly local sIgA response and systemic concurrent Th1/Th2 response that induced an obvious protection against Trichinella infection.
Collapse
Affiliation(s)
- Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Jun Jun Lei
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China.
| |
Collapse
|
27
|
Dendritic cells treated by Trichinella spiralis muscle larval excretory/secretory products alleviate TNBS-induced colitis in mice. Int Immunopharmacol 2019; 70:378-386. [PMID: 30852293 DOI: 10.1016/j.intimp.2019.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Therapeutic potential of helminth have been shown to have a protective effect on immune-mediated diseases such as Crohn's disease (CD), which is associated with increased production of T helper cell type 1. However, helminth therapy is unacceptable to patients due to side-effects and the fear of parasites. As helminths regulate the cellular immune responses through innate cells such as dendritic cells (DCs), cellular immunotherapy has been considered a therapeutic option to treat CD. METHODS Bone marrow-dendritic cells were generated, enriched and treated with Trichinella spiralis muscle larval excretory/secretory products (Ts-MLES). DCs maturation was measured by flow cytometry and cytokine production of DCs were measured by ELISA. Colitis was generated by intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) solution. For adoptive transfer, Ts-MLES treated-DCs injected intravenously 24 h prior to TNBS challenge. Disease activity index (DAI) including weight loss, diarrhea, and bloody stool were measured. Colon segments were stained with hematoxylin and eosin (H.E.) and periodic acid schiff (PAS) staining for histological damage scoring. The relative mRNA expression of cytokines in colon was analyzed by RT-PCR. Cytokine production in colon was measured by ELISA. Splenocytes were separated and cytokine profiles including Th1 (IFN-γ), Th2 (IL-4, IL-13), and Treg subsets (IL-10, TGF-β) were analyzed by flow cytometry. RESULTS Ts-MLES regulated the maturation and cytokine production of DCs. Ts-MLES -DC ameliorated the severity of the TNBS-induced colitis. In the colon and the spleen, Ts-MLES-DC decreased IFN-γ (Th1) significantly and increased Th2 (IL-4, IL-13)- and Treg (IL-10, TGF-β)- related cytokines. CONCLUSIONS Ts-MLES-DC ameliorated the severity of the TNBS-induced colitis through decreasing IFN-γ. Ts-MLES-DC skewed the Th1-mediated response toward the Th2 type and regulatory T cell response.
Collapse
|
28
|
Alexander U, Lim CW, Kim B, Hong EJ, Kim HC, Park BK. Morphological and Molecular Characterization of Toxocara tanuki (Nematoda: Ascaridae) from Korean Raccoon Dog, Nyctereutes procyonoides koreensis. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:567-575. [PMID: 30630277 PMCID: PMC6327194 DOI: 10.3347/kjp.2018.56.6.567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/27/2018] [Indexed: 11/23/2022]
Abstract
Present study was performed to describe the morphological and molecular characterization of Toxocara tanuki (Nematoda: Ascaridae) from Korean raccoon dog, Nyctereutes procyonoides koreensis, naturally infected in the Republic of Korea (Korea). Juvenile and adult worms of T. tanuki were recovered in 5 out of 10 raccoon dogs examined and the larval worms were detected in 15 out of 20 muscle samples (75%). Small lateral alae were observed on the cranial end of the body in male and female adults and 2 long spicules (3.0–3.5 mm) were characteristically observed in the posterior end of males. In SEM observation, 18 pairs of proximal precloacal, a precloacal median, a postcloacal median and 5 pairs of postcloacal papillae were uniquely revealed in the posterior portion of males, but the proximal papillae were not shown in the lateral ends of females. Molecular analysis on the 18S rRNA partial DNA sequences was revealed the same finding in both samples, adult worms and muscle larvae, which are closely related to T. tanuki. In conclusion, it was confirmed for the first time that T. tanuki is indigenously distributed, the Korean raccoon dog is acted as the natural definitive host of this nematode in Korea and the morphological characteristics of T. tanuki were shown in specific structure for single postcloacal median papilla in male.
Collapse
Affiliation(s)
- Umanets Alexander
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Chae-Wong Lim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Hyeon-Cheol Kim
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Bae-Keun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
29
|
Ren HN, Guo KX, Zhang Y, Sun GG, Liu RD, Jiang P, Zhang X, Wang L, Cui J, Wang ZQ. Molecular characterization of a 31 kDa protein from Trichinella spiralis and its induced immune protection in BALB/c mice. Parasit Vectors 2018; 11:625. [PMID: 30518426 PMCID: PMC6282284 DOI: 10.1186/s13071-018-3198-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background Trichinella spiralis is an important foodborne zoonotic parasite and it is necessary to develop a vaccine in order to interrupt transmission from animals to humans. A 31 kDa protein from T. spiralis (Ts31) is an antigen targeted by protective antibodies, and Ts31 contains a domain of trypsin-like serine protease that might have the function of serine protease. The purpose of this study was to investigate the molecular characteristics of Ts31 and its induced immune protection. Methods Expression and localization of Ts31 in various T. spiralis phases were investigated using qPCR and immunofluorescent test (IFT). The specific binding between Ts31 and intestinal epithelium cells (IECs) was analyzed by Far-Western blotting, ELISA and IFT, and the cellular localization of binding sites was examined on confocal microscopy. The mice were subcutaneously vaccinated with recombinant Ts31 protein (rTs31), serum specific IgG was determined by ELISA, and immune protection induced by immunization with rTs31 was evaluated. Inhibition of anti-rTs31 IgG on IL1 invasion of IECs and ADCC-mediated killing of newborn larvae (NBL) was also determined. Results Ts31 was expressed at different life-cycle stages and located principally at the stichosome and cuticle of this parasite. rTs31 was capable to specially bond to IECs, and binding site was located in the cytoplasm of IECs. Immunization of mice with rTs31 elicited a significant humoral response and protection, as demonstrated by a 56.93% reduction of adult worms at 6 days post-infection (dpi) and a 53.50% reduction of muscle larvae at 42 dpi after larval challenge. Anti-rTs31 antibodies impeded T. spiralis penetration of enterocytes in a dose-dependent pattern, and participated in the destruction of NBL by an ADCC-mediated manner. Conclusions Ts31 facilitated the T. spiralis penetration of intestinal epithelium, which could make it a vaccine candidate target molecule against Trichinella infection.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Li Wang
- Genetic and Prenatal Diagnostic Center of the First Affiliated Hospital, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
30
|
Qi X, Han Y, Jiang P, Yue X, Ren HN, Sun GG, Long SR, Yu C, Cheng XC, Cui J, Wang ZQ. Oral vaccination with Trichinella spiralis DNase II DNA vaccine delivered by attenuated Salmonella induces a protective immunity in BALB/c mice. Vet Res 2018; 49:119. [PMID: 30518422 PMCID: PMC6280372 DOI: 10.1186/s13567-018-0614-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023] Open
Abstract
Trichinellosis is one of the most serious foodborne parasitic zoonosis with worldwide distribution, and it is necessary to develop a vaccine to interrupt transmission from animals to humans. Trichinella spiralis adult-specific DNase II-1 (TsDNase II) were identified by immunoproteomics in surface or excretory/secretory proteins of adult worms (AW) and intestinal infective larvae (IIL). The aim of this study was to investigate the systemic, mucosal responses and immune protection elicited by oral vaccination with TsDNase II DNA vaccine delivered by attenuated Salmonella typhimurium strain⊿cyaSL1344. Oral vaccination with TsDNase II DNA vaccine triggered an obvious mucosal sIgA response and a systemic IgG response in mice, and IgG1 was predominant. Th1 (IFN-γ) and Th2 (IL-4, 10) cytokines were distinctly increased in the spleen and mesenteric lymph node (MLN) cells of vaccinated mice. An indirect immunofluorescent test revealed that native TsDNase II is present at the cuticle of this nematode after the 2nd molting, further confirming that TsDNase II is adult-specific and expressed at AW and pre-adult stages. Oral immunization of mice with TsDNase II exhibited a 53.85% reduction in AW and a 59.26% reduction in ML after larval challenge. The in vitro NBL production of adult females from TsDNase II-vaccinated mice was also reduced in comparison with pcDNA3.1 or the PBS control group (P < 0.01). Our results show that oral immunization of mice with TsDNase II produced an intestinal and systematic concurrent Th1/Th2 immune response, and a significant immune protection against challenge.
Collapse
Affiliation(s)
- Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chuan Yu
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiang Chao Cheng
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Qi X, Yue X, Han Y, Jiang P, Yang F, Lei JJ, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of Two Trichinella spiralis Adult-Specific DNase II and Their Capacity to Induce Protective Immunity. Front Microbiol 2018; 9:2504. [PMID: 30455671 PMCID: PMC6230719 DOI: 10.3389/fmicb.2018.02504] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Deoxyribonuclease II (DNase II) is a widespread endonuclease, which can degrade the DNA. Trichinella spiralis adult-specific DNase II-1 (TsDNase II-1) and DNase II-7 (TsDNase II-7) were identified in excretory-secretory (ES) or surface proteins of adult worm (AW) and intestinal infective larvae (IIL) using immunoproteomics with early infection sera. The aim of this study was to characterize the two T. spiralis DNase II enzymes and to investigate their role as potential vaccine candidate target molecules. The cDNA sequences of the two DNase II enzymes from 3 days old AWs of T. spiralis were cloned and expressed. The sequencing results showed that the complete cDNA sequences of the two DNase II enzymes were 1221 and 1161 bp long, and the predicted open reading frames encoded 347 and 348 amino acids, respectively. On Western blot analysis, natural TsDNase II-1 and TsDNase II-7 in the crude extracts of IIL, AWs, and newborn larvae (NBL) and AW ES proteins were recognized by both anti-rTsDNase II-1 and anti-rTsDNase II-7 sera. Indirect immunofluorescence test and qPCR showed that the two DNase II enzymes were highly expressed at AW and NBL stages and were mainly located at the cuticle and stichosome of the nematode. Vaccination with the two recombinant DNase II enzymes triggered prominent humoral responses that exhibited significant immune protection against T. spiralis larval infection, as demonstrated by the notable reduction in intestinal AW and muscle larva burdens. Specific antibodies to the two molecules evidently inhibited the in vitro parasite invasion of enterocytes and participated in the killing of NBL by an antibody-dependent cell-mediated cytotoxicity (ADCC) mode. The enzymes DNase II-1 and DNase II-7 are the potential target molecules for anti-Trichinella vaccine for blocking both larval invasion and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Q. Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Li JF, Guo KX, Qi X, Lei JJ, Han Y, Yan SW, Jiang P, Yu C, Cheng XC, Wang ZQ, Cui J. Protective immunity against Trichinella spiralis in mice elicited by oral vaccination with attenuated Salmonella-delivered TsSP1.2 DNA. Vet Res 2018; 49:87. [PMID: 30189894 PMCID: PMC6127904 DOI: 10.1186/s13567-018-0582-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Trichinellosis is a worldwide important food-borne zoonosis caused mainly by ingesting raw or undercooked pork infected with Trichinella spiralis larvae. The development of vaccine is needed for preventing swine from Trichinella infection to ensure pork safety. Previous studies showed that T. spiralis serine protease 1.2 (TsSP1.2) is a vaccine candidate against Trichinella infection. In this study, the complete TsSP1.2 cDNA sequences were cloned into pcDNA3.1, and the rTsSP1.2 DNA was transformed into attenuated Salmonella typhimurium strain ΔcyaSL1344. Oral vaccination of mice with Salmonella-delivered rTsSP1.2 DNA vaccine induced an obvious intestinal mucosal IgA response and a systemic Th1/Th2 immune response; the vaccinated mice showed a 33.45% reduction of intestinal adult worms and 71.84% reduction of muscle larvae after T. spiralis larval challenge. The protection might be due to the rTsSP1.2-induced production of specific anti-TsSP1.2 sIgA, IgG, IgG1/IgG2a, and secretion of IFN-γ, IL-4 and IL-10, which protected intestinal mucosa from the parasite invasion, inhibited worm development and reduced female fecundity. The results indicate that the attenuated Salmonella-delivered rTsSP1.2 DNA vaccine offers a prospective strategy for the prevention and control of animal Trichinella infection.
Collapse
Affiliation(s)
- Jie Feng Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Jun Lei
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chuan Yu
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiang Chao Cheng
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
33
|
Song YY, Zhang Y, Ren HN, Sun GG, Qi X, Yang F, Jiang P, Zhang X, Cui J, Wang ZQ. Characterization of a serine protease inhibitor from Trichinella spiralis and its participation in larval invasion of host's intestinal epithelial cells. Parasit Vectors 2018; 11:499. [PMID: 30189888 PMCID: PMC6127903 DOI: 10.1186/s13071-018-3074-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Background Trichinella spiralis serine protease inhibitor (TsSPI) was identified in ES proteins of adult worms (AW), the TsSPI gene was highly expressed at enteral stage worms (AW and newborn larvae), distributed mainly in the cuticle and stichosome of this nematode. Vaccination of mice with rTsSPI exhibited a 62.2% reduction of intestinal AW and a 57.25% reduction of muscle larvae after larval challenge. The aim of this study was to investigate the biological characteristics of TsSPI and its roles in the process of T. spiralis invasion of host’s intestinal epithelium cells (IECs). Methods The rTsSPI inhibition on trypsin enzymatic activity was detected by SDS-PAGE and spectrophotometry. The binding of rTsSPI with intestinal epithelium from normal mice and the primary cultured mouse intestinal epithelium cells (IECs) was examined by indirect immunofluorescent (IIF), the cellular localization of rTsSPI binding to IECs was observed by confocal microscopy. The inhibition of anti-rTsSPI serum on T. spiralis invasion of IECs was determined by an in vitro invasion assay. Anti-rTsSPI antibody cytotoxicity on the newborn larvae (NBL) was also determined. Results The rTsSPI had the inhibitory activity against porcine trypsin. The rTsSPI specifically bound to the intestinal epithelium from normal mice and primary cultured mouse IECs, and the binding sites were located in IEC membrane and cytoplasm. Anti-rTsSPI antibodies depressed the larval invasion of IECs with a dose-dependent mode. Anti-rTsSPI antibodies also participated in the destruction of T. spiralis NBL via an ADCC-mediated manner. Conclusions TsSPI might participate in the T. spiralis larval invasion of IECs and it is likely the potential vaccine target against T. spiralis enteral stages.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Fan Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
34
|
Peng RY, Ren HJ, Zhang CL, Lv P, Wei GH, Ming L. Comparative proteomics analysis of Trichinella spiralis muscle larvae exposed to albendazole sulfoxide stress. Acta Trop 2018; 185:183-192. [PMID: 29287759 DOI: 10.1016/j.actatropica.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/12/2023]
Abstract
The drug albendazole (ABZ) has a positive effect against Trichinella spiralis infection and has been used for the treatment and prevention of trichinellosis in humans and animals. However, the molecular mechanism ofthe effects of ABZ on T. spiralis remains unknown. Albendazole sulfoxide (ABZSO) is the main intermediary metabolic product of ABZ, and it is often used as a substitute for ABZ in metabolism and bioavailability research. Herein, isobaric tagging reagents for relative and absolute quantification (iTRAQ)-based LC-MS/MS analysis was used to identify the effect of ABZSO on the proteome of T. spiralis muscle larvae in vitro. 3795 proteins were quantified from 22974 unique peptides. Comparative proteomics analysis displayed that 417 proteins were remarkably differentially expressed in ABZSO-treated larvae, of which 213 proteins were up-regulated and 204 proteins were down-regulated. Quantitative real-time PCR of ten randomly-selected genes verified the proteomic data. Gene ontology annotation and KEGG pathway analysis showed that most of the differentially expressed proteins were involved in cell apoptosis, signal pathway, amino acid metabolism, protein synthesis/assembly/degradation and other biological processes. This study firstly provided the comprehensive proteomics data of T. spiralis in response to ABZSO, and would help us to deeply understand the molecular mechanism of ABZSO effects on T. spiralis.
Collapse
Affiliation(s)
- Ruo Yu Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Hui Jun Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Chun Li Zhang
- Department of General Surgery, The People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Pin Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Gao Hui Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China.
| |
Collapse
|
35
|
Xu J, Yang F, Yang DQ, Jiang P, Liu RD, Zhang X, Cui J, Wang ZQ. Molecular characterization of Trichinella spiralis galectin and its participation in larval invasion of host's intestinal epithelial cells. Vet Res 2018; 49:79. [PMID: 30068382 PMCID: PMC6071371 DOI: 10.1186/s13567-018-0573-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/11/2018] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to study the molecular characteristics of Trichinella spiralis galectin (Tsgal) and interactions between Tsgal and host's intestinal epithelial cells (IECs). The functional domain of Tsgal was cloned and expressed in an E. coli system. The Tsgal was 97.1% identity to the galectin of T. nativa and 20.8% identity to the galectin-8 of humans. Conserved domain analysis revealed that Tsgal belongs to TR-type galectin and has two carbon recognized domain. The rTsgal with 29.1 kDa could be recognized by T. spiralis-infected mice at 42 days post-infection (dpi). The transcription and expression of Tsgal gene was detected by RT-PCR and Western blotting in all T. spiralis developmental stages (intestinal infective larvae, adult worms, newborn larvae, and muscle larvae). The IFA results revealed that Tsgal was mainly located at the cuticles and stichosomes of T. spiralis larvae (ML, IIL and NBL). The rTsgal had hemagglutinating function for erythrocytes from human, rabbit and mouse. The results of Far Western blot and confocal microscopy indicated there was specific binding between rTsgal and IECs, and the binding was located the membrane and cytoplasm of the IECs. Out of four sugars (sucrose, glucose, lactose and maltose), only lactose was able to inhibit the rTsgal agglutinating role for human type B erythrocytes. Moreover, the rTsgal could promote the larval invasion of IECs, while the anti-rTsgal serum inhibited the larval invasion. These results demonstrated that Tsgal might participate in the T. spiralis invasion of intestinal epithelium in early infection stage.
Collapse
Affiliation(s)
- Jia Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Fan Yang
- School of Life Science, Zhengzhou University, Zhengzhou, 450052 China
| | - Da Qi Yang
- School of Life Science, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
36
|
Sun GG, Ren HN, Liu RD, Song YY, Qi X, Hu CX, Yang F, Jiang P, Zhang X, Wang ZQ, Cui J. Molecular characterization of a putative serine protease from Trichinella spiralis and its elicited immune protection. Vet Res 2018; 49:59. [PMID: 30001738 PMCID: PMC6043985 DOI: 10.1186/s13567-018-0555-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023] Open
Abstract
In our previous work, a Trichinella spiralis putative serine protease (TsSP) was identified from ES products of T. spiralis intestinal infective larvae (IIL) and adult worms (AW) by immunoproteomics: it was highly expressed in IIL compared with muscle larvae (ML). In this study, the TsSP biological characteristics in larval invasion and growth were identified and its potential as a vaccine target against Trichinella infection were investigated. Expression of TsSP at various developmental phases (newborn larvae, ML, IIL, and AW) was detected by qPCR, immunofluorescent test and Western blotting. The rTsSP could specifically bind to the intestinal epithelial cell (IEC) membrane and enter into the cytoplasm. Anti-rTsSP serum suppressed the larval invasion of enterocytes in a dose-dependent mode, and killed newborn and ML of T. spiralis, decreased larval infectivity and development in the host by an ADCC-mediated mechanism. Immunization of mice with rTsSP produced a Th2 predominant immune response, and resulted in a 52.70% reduction of adult worms at 5 days post-infection (dpi) and a 52.10% reduction of muscle larvae at 42 dpi. The results revealed there was an interaction between TsSP and the host’s IEC; TsSP might be a pivotal protein for the invading, growing and parasiting of this nematode in the host. Vaccination of mice with rTsSP elicited immune protection, and TsSP is a potential target molecule for vaccines against enteral Trichinella infection.
Collapse
Affiliation(s)
- Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Fan Yang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
37
|
Song YY, Zhang Y, Yang D, Ren HN, Sun GG, Jiang P, Liu RD, Zhang X, Cui J, Wang ZQ. The Immune Protection Induced by a Serine Protease Inhibitor From the Foodborne Parasite Trichinella spiralis. Front Microbiol 2018; 9:1544. [PMID: 30050521 PMCID: PMC6050375 DOI: 10.3389/fmicb.2018.01544] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Serine protease inhibitors (SPI) are a superfamily of the proteins able to suppress serine protease activity, and may exert the major biological function in complement activation, inflammation, and fibrinolysis. A SPI was identified from Trichinella spiralis adult worms (AW) by immunoproteomics with early infection sera. The aim of this study was to investigate the protective immune elicited by TsSPI. The complete TsSPI cDNA sequence was cloned into pQE-80 L and then expressed in Escherichia coli BL21. The rTsSPI was purified and its antigenicity was determined by Western blotting analysis. By using anti-rTsSPI serum the native TsSPI was identified in somatic and ES proteins from muscle larvae (ML). The results of qPCR and immunofluorescence assay (IFA) revealed that the expression of the TsSPI gene was observed throughout all developmental stages of T. spiralis (ML, intestinal infective larvale, 3- and 6-days AW, and newborn larvae, NBL), located principally in cuticles, stichosome, and embryos of this parasitic nematode. Vaccination of mice with rTsSPI triggered high level of anti-TsSPI IgG response, and showed a 62.2 and 57.25% worm burden reduction in the recovery of intestinal AW at 6 days post-infection (dpi) and ML at 35 dpi, respectively. The TsSPI might be a novel potential target for anti-Trichinella vaccine.
Collapse
Affiliation(s)
- Yan Y Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Daqi Yang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Hua N Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ge G Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo D Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Q Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Song YY, Wang LA, Na Ren H, Qi X, Sun GG, Liu RD, Jiang P, Zhang X, Cui J, Wang ZQ. Cloning, expression and characterisation of a cysteine protease from Trichinella spiralis. Folia Parasitol (Praha) 2018; 65. [PMID: 29905572 DOI: 10.14411/fp.2018.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/19/2018] [Indexed: 01/07/2023]
Abstract
Cysteine protease is a superfamily of widespread proteolytic enzymes and plays a major role in larval invasion, migration, exsheathing, survival and immune evasion in parasites. In the present study, the gene coding cysteine proteinase of the nematode Trichinella spiralis (Owen, 1835) was cloned into pQE-80L and subsequently expressed in E. coli JM109. The rTsCP was purified and its antigenicity was identified by Western blot and ELISA. Using anti-rTsCP serum the native TsCP was identified in muscle larval crude proteins. The results of quantitative real-time PCR and immunofluorescence test demonstrated that the TsCP was expressed in all stages of T. spiralis and located mainly in cuticle, stichosome and reproductive organs. The immunisation of mice with rTsCP elicited Th2-predominant immune responses. Anti-rTsCP antibodies could partially inhibit the in vitro larval invasion of intestinal epithelial cells and kill the newborn larvae by an antibody-dependent cell-mediated dose-dependent cytotoxicity. The vaccinated mice exhibited a 54% reduction of adults and a 33% reduction of muscle larvae following challenge infection. The results suggested that the TsCP might be an indispensable protein in Trichinella invasion, development and survival of T. spiralis in hosts, and could be a potential vaccine target against infection.
Collapse
Affiliation(s)
| | | | - Hua Na Ren
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, PR China
| |
Collapse
|
39
|
Liu CY, Ren HN, Song YY, Sun GG, Liu RD, Jiang P, Long SR, Zhang X, Wang ZQ, Cui J. Characterization of a putative glutathione S-transferase of the parasitic nematode Trichinella spiralis. Exp Parasitol 2018; 187:59-66. [PMID: 29496524 DOI: 10.1016/j.exppara.2018.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/31/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to identify the biological characteristics and functions of a putative Trichinella spiralis glutathione S-transferase (TspGST). The results of real-time PCR and immunofluorescent test (IFT) showed that the TspGST gene was expressed at all of T. spiralis different developmental stages (muscle larvae, intestinal infective larvae, adult worms and newborn larvae). When anti-rTspGST serum, mouse infection serum, and pre-immune serum were added to the medium, the inhibition rate of the larvae penetrated into the intestinal epithelial cells (IECs) was 25.72%, 49.55%, and 4.51%, respectively (P < 0.01). The inhibition of anti-rTspGST serum on larval invasion of IECs was dose-dependent (P < 0.05). Anti-rTspGST antibodies killed T. spiralis newborn larvae by an ADCC-mediated mechanism. Our results showed that the TspGST seemed to be an indispensable protein for T. spiralis invasion, growth and survival in host.
Collapse
Affiliation(s)
- Chun Ying Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Hua Na Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| |
Collapse
|
40
|
Liu CY, Song YY, Ren HN, Sun GG, Liu RD, Jiang P, Long SR, Zhang X, Wang ZQ, Cui J. Cloning and expression of a Trichinella spiralis putative glutathione S-transferase and its elicited protective immunity against challenge infections. Parasit Vectors 2017; 10:448. [PMID: 28962639 PMCID: PMC5622431 DOI: 10.1186/s13071-017-2384-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/17/2017] [Indexed: 01/25/2023] Open
Abstract
Background Glutathione-S-transferase (GST) is a widespread multigene family of detoxification enzymes. The vaccination of mice with recombinant GST of 24 kDa from Trichinella spiralis elicited a low immune protection against challenge infection. The objective of this study was to characterize the T. spiralis putative GST gene (TspGST) encoding a 30.8 kDa protein and to evaluate its potential as a candidate antigen for anti-Trichinella vaccine. Methods The full-length cDNA sequence of TspGST from T. spiralis muscle larvae (ML) was expressed in E. coli. The enzymatic activity and antigenicity of the rTspGST were identified by spectrophotometry, Western blot, and ELISA. The expression of TspGST at T. spiralis various stages was investigated by RT-PCR and indirect immunofluorescent test (IIFT). Serum level of total IgG, IgG1, and IgG2a antibodies against rTspGST were measured by ELISA. The immune protection produced by vaccination with rTspGST against T. spiralis was evaluated. Results The sequencing results showed that the cDNA of TspGST was 840 bp, and encoded a protein of 279 amino acids, which had a molecular size of 30.8 kDa and a pI of 5.21. Its amino acid sequence shares 37% similarity with TsGST. The rTspGST protein had enzymatic activity of GST. On Western blot and ELISA analysis, the native TspGST protein with 30.8 kDa in crude antigens derived from adult worms (AW), newborn larvae (NBL), infective intestinal larvae (IIL) and ML was recognized by anti-rTspGST sera, but the ML ES antigens could be not recognized by anti-rTspGST sera. Expression of TspGST was found in all of T. spiralis various stages (AW, NBL, ML, and IIL). An immunolocalization analysis identified TspGST in different stages (mainly in cuticles) of the nematode. The mice vaccinated with the rTspGST elicited Th2-predominant immune responses, showed a 34.38% reduction of adult worms and a 43.70% reduction of muscle larvae. Conclusions Immunization with rTspGST produced a partial immune protection, and the rTspGST could be regarded as a potential candidate target for an anti-Trichinella vaccine.
Collapse
Affiliation(s)
- Chun Ying Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Na Ren
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Ge Sun
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
41
|
Wang ZQ, Liu RD, Sun GG, Song YY, Jiang P, Zhang X, Cui J. Proteomic Analysis of Trichinella spiralis Adult Worm Excretory-Secretory Proteins Recognized by Sera of Patients with Early Trichinellosis. Front Microbiol 2017; 8:986. [PMID: 28620363 PMCID: PMC5449722 DOI: 10.3389/fmicb.2017.00986] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/16/2017] [Indexed: 11/28/2022] Open
Abstract
The most commonly used serodiagnostic antigens for trichinellosis are the excretory-secretory (ES) antigens from T. spiralis muscle larvae (ML), but the specific antibodies against the ML ES antigens are usually negative during early stage of Trichinella infection. The recent studies demonstrated that T. spiralis adult worm (AW) antigens were recognized by mouse or swine infection sera on Western blot as early as 7–15 days post-infection (dpi), the AW antigens might contain the early diagnostic markers for trichinellosis. The purpose of this study was to screen early diagnostic antigens in T. spiralis AW ES proteins recognized by sera of early patients with trichinellosis. T. spiralis AW were collected at 72 h post-infection (hpi), and their ES antigens were analyzed by SDS-PAGE and Western blot. Our results showed that 5 protein bands (55, 48–50, 45, 44, and 36 kDa) were recognized by sera of early patients with trichinellosis collected at 19 dpi, and were subjected to shotgun LC–MS/MS and bioinformatics analyses. A total of 185 proteins were identified from T. spiralis protein database, of which 116 (67.2%) proteins had molecular weights of 30∼60 kDa, and 125 (67.6%) proteins with pI 4–7. Bioinformatic analyses showed that the identified proteins have a wide diversity of biological functions (binding of nucleotides, proteins, ions, carbohydrates, and lipids; hydrolase, transferase, and oxidoreductase, etc.). Several enzymes (e.g., adult-specific DNase II, serine protease and serine protease inhibitor) could be the invasion-related proteins and early diagnostic markers for trichinellosis. Moreover, recombinant T. spiralis serine protease (rTsSP-ZH68) was expressed in E. coli and its antigenicity was analyzed by Western blot with the early infection sera. The rTsSP-ZH68 was recognized by sera of infected mice at 8–10 dpi and sera of early patients with trichinellosis at 19 dpi. T. spiralis AW proteins identified in this study, especially serine protease, are the promising early diagnostic antigens and vaccine candidates for trichinellosis.
Collapse
Affiliation(s)
- Zhong Q Wang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Ruo D Liu
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Ge G Sun
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Yan Y Song
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
42
|
Xu J, Bai X, Wang LB, Shi HN, van der Giessen JWB, Boireau P, Liu MY, Liu XL. Influence of adjuvant formulation on inducing immune response in mice immunized with a recombinant serpin from Trichinella spiralis. Parasite Immunol 2017; 39. [PMID: 28445612 DOI: 10.1111/pim.12437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/20/2017] [Indexed: 11/29/2022]
Abstract
Nematodes of the genus Trichinella are one of the most widespread zoonotic pathogens on the world, and they can still cause major public health problems in many parts of the world. Vaccination against the helminth nematode Trichinella could be a good strategy to reduce the risk of human and animal infection. It was our aim to evaluate three adjuvants, which could be used as an efficient vaccine for animals in combination with rTs-Serpin antigen. In this study, BALB/c mice were vaccinated by an intramuscular route with rTs-Serpin antigen from the parasite Trichinella spiralis in combination with three different adjuvant formulations: Montanide ISA201, Montanide IMS 1313 N PR VG and Freund's complete adjuvant/Freund's incomplete adjuvant (FCA/FIA). The dynamics of IgG, IgM, IgE and cytokine production from spleen cells and worm reduction rate of the vaccinated mice were analysed. The results showed that rTs-serpin can induce partial protection against Trichinella larvae challenge in mice, when compared to the FCA-/FIA-formulated vaccination, the IMS1313 plus rTs-serpin mixture showed higher humoral immunity and similar levels of cellular immunity and worm reduction rate. The study suggested that Montanide IMS nanoparticles 1313 are as effective as FCA but less toxic; thus, Montanide IMS nanoparticles 1313 can be used as a good candidate of adjuvant for developing vaccine against Trichinella spiralis.
Collapse
Affiliation(s)
- J Xu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| | - X Bai
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| | - L B Wang
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| | - H N Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, Boston, MA, USA
| | - J W B van der Giessen
- Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment, Amsterdam, The Netherlands
| | - P Boireau
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China.,Laboratory for Animal Health, Maisons Alfort, ANSES, INRA, ENVA, Universite Paris Est, Paris, France
| | - M Y Liu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR, China
| | - X L Liu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| |
Collapse
|
43
|
Early detection of Trichinella spiralis DNA in the feces of experimentally infected mice by using PCR. Acta Trop 2017; 166:351-355. [PMID: 27983972 DOI: 10.1016/j.actatropica.2016.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/20/2022]
Abstract
The aim of this study was to detect Trichinella spiralis DNA in mouse feces during the early stages of infection using PCR. The target gene fragment, a 1.6kb repetitive sequence of T. spiralis genome, was amplified by PCR from feces of mice infected with 100 or 300 larvae at 3-24h post infection (hpi) and 2-28dpi. The sensitivity of PCR was 0.016 larvae in feces. The primers used were highly specific for T. spiralis. No cross-reactivity was observed with the DNA of other intestinal helminths. T. spiralis DNA was detected in 100% (12/12) of feces of mice infected with 100 or 300 larvae as early as 3hpi, with the peak detection lasting to 12-24hpi, and then fluctuating before declining gradually. By 28dpi, the detection rate of T. spiralis DNA in feces of the two groups of infected mice decreased to 8.33% and 25%, respectively. PCR detection of T. spiralis DNA in feces is simple and specific; it might be useful for the early diagnosis of Trichinella infection.
Collapse
|
44
|
Immune responses in mice vaccinated with a DNA vaccine expressing serine protease-like protein from the new-born larval stage of Trichinella spiralis. Parasitology 2017; 144:712-719. [PMID: 28069101 PMCID: PMC5426336 DOI: 10.1017/s0031182016002493] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trichinella spiralis is a parasitic helminth that can infect almost all mammals, including humans. Trichinella spiralis infection elicits a typical type 2 immune responses, while suppresses type 1 immune responses, which is in favour of their parasitism. DNA vaccines have been shown to be capable of eliciting balanced CD4+ and CD8+ T cell responses as well as humoral immune responses in small-animal models, which will be advantage to induce protective immune response against helminth infection. In this study, serine protease (Ts-NBLsp) was encoded by a cDNA fragment of new-born T. spiralis larvae, and was inserted after CMV promoter to construct a DNA vaccine [pcDNA3·1(+)-Ts-NBLsp]. Ts-NBLsp expression was demonstrated by immunofluorescence. Sera samples were obtained from vaccinated mice, and they showed strong anti-Ts-NBLsp-specific IgG response. Mice immunized with the pcDNA3·1(+)-Ts-NBLsp DNA vaccine showed a 77·93% reduction in muscle larvae (ML) following challenge with T. spiralis ML. Our results demonstrate that the vaccination with pcDNA3·1(+)-Ts-NBLsp plasmid promoted the balance of type 1 and 2 immune responses and produced a significant protection against T. spiralis infection in mice.
Collapse
|
45
|
Ming L, Peng RY, Zhang L, Zhang CL, Lv P, Wang ZQ, Cui J, Ren HJ. Invasion by Trichinella spiralis infective larvae affects the levels of inflammatory cytokines in intestinal epithelial cells in vitro. Exp Parasitol 2016; 170:220-226. [PMID: 27717772 DOI: 10.1016/j.exppara.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
As we all know, invasion of host intestinal epithelium is very important for T. spiralis to complete successfully their life cycle. However, the mechanisms that the intestinal infective larvae (IIL) invade and migrate in the intestinal epithailial cells (IECs) remain unclear until now. The related researches have been hindered since a readily operable in vitro normal model. In our earlier study, an in vitro normal IEC invasion model was established for the first time, and the abilities of the normal IECs to initiate mucosal inflammatory responses to invasion by the IIL in vitro were evaluated in this study. When the IIL were overlaid on the normal mouse IEC monolayers, they quickly within seconds invaded the monolayers and move within the IECs, leaving trails of damaged cells. Then the larvae were found to have started their molting at 12 h, and the complete cuticle was found at 24 h. The percentage of the first molt in the larvae was about 62.3%, and the percentage of the 2nd-4th molt was about 38.2% at 36 h. Real-time PCR showed that the mRNA levels of interleukin-1β (IL-1β), IL-8, epithelial neutrophil-activating peptide 78 (ENA-78), inducible nitric oxide synthase (iNOS), and monocyte chemotactic protein 2 (MCP-2) were elevated in the IECs after 7 h of infection after invasion by the IIL, and their levels were enhanced with the increase of larvae number. No changes in tumor necrosis factor-α (TNF-α) mRNA were observed after the IIL invasion. Secretion increases of IL-1β and IL-8 from the IEC monolayers invaded by T. spiralis were also detected by ELISA. Secretion increases of proinflammatory cytokines and inflammatory mediators in normal IECs can launch the acute inflammatory in response to the IIL invasion. This study would be helpful in further investigating the relationship between the host and T. spiralis, and the immune escape mechanisms of the niche established by T. spiralis.
Collapse
Affiliation(s)
- Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Ruo Yu Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Lei Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Chun Li Zhang
- Department of General Surgery, The People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Pin Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Jun Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China.
| |
Collapse
|
46
|
Jiang P, Zhang X, Wang LA, Han LH, Yang M, Duan JY, Sun GG, Qi X, Liu RD, Wang ZQ, Cui J. Survey of Trichinella infection from domestic pigs in the historical endemic areas of Henan province, central China. Parasitol Res 2016; 115:4707-4709. [PMID: 27601238 DOI: 10.1007/s00436-016-5240-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
The aim of this work was to investigate the current situation of Trichinella infection from domestic pigs in the historical endemic areas of Henan province, central China. A total of 823 diaphragm samples from the indoor-raised pigs were collected in five cities of Henan during 2014-2015 and examined by artificial digestion method. The overall prevalence of Trichinella infection in pigs was 0.61 % (5/823). Trichinella larvae were detected in 0.91 % (5/550) of pigs from Nanyang city of Henan. The larval burden in infected animals was 0.03 larvae per gram (lpg) of muscles with a range from 0.02 to 0.05 lpg. The larvae were identified as Trichinella spiralis by multiple PCR. Our study confirms the existence of swine trichinellosis in Henan, but the infection level was under the minimum level for defining infectious sources for humans. However, the prevalence of swine Trichinella infection in Henan need to be further evaluated with a large scale of pork samples for ensuring meat food safety.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Li Ang Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Lu Hong Han
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Mei Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Jiang Yang Duan
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
47
|
Zhang SB, Jiang P, Wang ZQ, Long SR, Liu RD, Zhang X, Yang W, Ren HJ, Cui J. DsRNA-mediated silencing of Nudix hydrolase in Trichinella spiralis inhibits the larval invasion and survival in mice. Exp Parasitol 2016; 162:35-42. [PMID: 26778819 DOI: 10.1016/j.exppara.2016.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/13/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the functions of Trichinella spiralis Nudix hydrolase (TsNd) during the larval invasion of intestinal epithelial cells (IECs), development and survival in host by RNAi. The TsNd-specific double-stranded RNA (dsRNA) was designed to silence the expression of TsNd in T. spiralis larvae. DsRNA were delivered to the larvae by soaking incubation or electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of larvae treated with dsRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. After being soaked with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 65.8% and 56.4%, respectively. After being electroporated with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 74.2% and 58.2%, respectively. Silencing TsNd expression by both soaking and electroporation inhibited significantly the larval invasion of IECs in a dose-dependent manner (r1 = -0.96798, r2 = -0.98707). Compared with the mice inoculated with untreated larvae, mice inoculated with larvae soaked with TsNd dsRNA displayed a 49.9% reduction in adult worms and 39.9% reduction in muscle larvae, while mice inoculated with larvae electroporated with TsNd dsRNA displayed a 83.4% reduction in adult worms and 69.5% reduction in muscle larvae, indicating that electroporation has a higher efficiency than soaking in inhibiting the larval development and survival in mice. Our results showed that silencing TsNd expression in T. spiralis inhibited significantly the larval invasion and survival in host.
Collapse
Affiliation(s)
- Shuai Bing Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Wei Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Hui Jun Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| |
Collapse
|
48
|
Long SR, Wang ZQ, Jiang P, Liu RD, Qi X, Liu P, Ren HJ, Shi HN, Cui J. Characterization and functional analysis of Trichinella spiralis Nudix hydrolase. Exp Parasitol 2015; 159:264-73. [PMID: 26545353 DOI: 10.1016/j.exppara.2015.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/27/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022]
Abstract
Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM min(-1) μg(-1), 370 μM, and 144 s(-1) M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host.
Collapse
Affiliation(s)
- Shao Rong Long
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Peng Jiang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xin Qi
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China
| | - Pei Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China
| | - Hui Jun Ren
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China
| | - Hai Ning Shi
- Department of Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Cui
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
49
|
Liu RD, Jiang P, Wen H, Duan JY, Wang LA, Li JF, Liu CY, Sun GG, Wang ZQ, Cui J. Screening and characterization of early diagnostic antigens in excretory–secretory proteins from Trichinella spiralis intestinal infective larvae by immunoproteomics. Parasitol Res 2015; 115:615-22. [DOI: 10.1007/s00436-015-4779-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/06/2015] [Indexed: 01/03/2023]
|
50
|
Liu RD, Cui J, Liu XL, Jiang P, Sun GG, Zhang X, Long SR, Wang L, Wang ZQ. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae. Acta Trop 2015; 150:79-86. [PMID: 26184560 DOI: 10.1016/j.actatropica.2015.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/14/2015] [Accepted: 07/04/2015] [Indexed: 12/11/2022]
Abstract
The critical step for Trichinella spiralis infection is that muscle larvae (ML) are activated to intestinal infective larvae (IIL) and invade intestinal epithelium to further develop. The IIL is its first invasive stage, surface proteins are directly exposed to host environment and are crucial for larval invasion and development. In this study, shotgun LC-MS/MS was used to analyze surface protein profiles of ML and IIL. Totally, 41 proteins common to both larvae, and 85 ML biased and 113 IIL biased proteins. Some proteins (e.g., putative scavenger receptor cysteine-rich domain protein and putative onchocystatin) were involved in host-parasite interactions. Gene ontology analysis revealed that proteins involved in generation of precursor metabolites and energy; and nucleobase, nucleoside, nucleotide and nucleic acid metabolic process were enriched in IIL at level 4. Some IIL biased proteins might play important role in larval invasion and development. qPCR results confirmed the high expression of some genes in IIL. Our study provides new insights into larval invasion, host-Trichinella interaction and for screening vaccine candidate antigens.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Xiao Lin Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Li Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|