1
|
Mafizur RM, Sangjin L, Chul PY. Prevalence of Salmonella spp. and Escherichia coli in the feces of free-roaming wildlife throughout South Korea. PLoS One 2024; 19:e0281006. [PMID: 38358989 PMCID: PMC10868816 DOI: 10.1371/journal.pone.0281006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 02/17/2024] Open
Abstract
Wildlife can carry pathogenic organisms, including viruses, bacteria, parasites, and fungi, which can spread to humans and cause mild to serious illnesses and even death. Spreading through animal feces, these pathogens significantly contributes to the global burden of human diseases. Therefore, the present study investigated the prevalence of zoonotic bacterial pathogens, such as Salmonella spp., Escherichia coli, and Shiga toxin-producing E. coli (STEC), in animal feces. Between September 2015 and August 2017, 699 wildlife fecal samples were collected from various agricultural production regions and mountainous areas in South Korea. Fecal samples were collected from wild mammals (85.26%, 596/699) and birds (14.73%, 103/699). Salmonella spp. and E. coli were present in 3% (21/699) and 45.63% (319/699) of the samples, respectively. Moreover, virulence genes stx1 and both stx1 and stx2 were detected in 13.30% (93/699) and 0.72% (5/699) of the samples, respectively. The 21 Salmonella spp. were detected in badgers (n = 5), leopard cats (n = 7), wild boars (n = 2), and magpies (n = 7); STEC was detected in roe deer, water deer, mice, and wild boars. Through phylogenetic and gene-network analyses, the Salmonella spp. isolates (n = 21 laboratory isolates, at least one isolate from each Salmonella-positive animal fecal sample, and n = 6 widely prevalent reference Salmonella serovars) were grouped into two major lineages: S. enterica subsp. enterica and S. enterica subsp. diarizonae. Similarly, 93 E. coli isolates belonged to stx1, including three major lineages (groups 1-3), and stx1 and stx2 detected groups. To the best of our knowledge, this is the first report of a wild leopard cat serving as a reservoir for Salmonella spp. in South Korea. The research findings can help manage the potential risk of wildlife contamination and improve precautionary measures to protect public health.
Collapse
Affiliation(s)
- Rahman M. Mafizur
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Lim Sangjin
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Park Y. Chul
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ. Assessing the genomic relatedness and evolutionary rates of persistent verotoxigenic Escherichia coli serotypes within a closed beef herd in Canada. Microb Genom 2020; 6. [PMID: 32496181 PMCID: PMC7371104 DOI: 10.1099/mgen.0.000376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Verotoxigenic Escherichia coli (VTEC) are food- and water-borne pathogens associated with both sporadic illness and outbreaks of enteric disease. While it is known that cattle are reservoirs of VTEC, little is known about the genomic variation of VTEC in cattle, and whether the variation in genomes reported for human outbreak strains is consistent with individual animal or group/herd sources of infection. A previous study of VTEC prevalence identified serotypes carried persistently by three consecutive cohorts of heifers within a closed herd of cattle. This present study aimed to: (i) determine whether the genomic relatedness of bovine isolates is similar to that reported for human strains associated with single source outbreaks, (ii) estimate the rates of genome change among dominant serotypes over time within a cattle herd, and (iii) identify genomic features of serotypes associated with persistence in cattle. Illumina MiSeq genome sequencing and genotyping based on allelic and single nucleotide variations were completed, while genome change over time was measured using Bayesian evolutionary analysis sampling trees. The accessory genome, including the non-protein-encoding intergenic regions (IGRs), virulence factors, antimicrobial-resistance genes and plasmid gene content of representative persistent and sporadic cattle strains were compared using Fisher’s exact test corrected for multiple comparisons. Herd strains from serotypes O6:H34 (n=22), O22:H8 (n=30), O108:H8 (n=39), O139:H19 (n=44) and O157:H7 (n=106) were readily distinguishable from epidemiologically unrelated strains of the same serotype using a similarity threshold of 10 or fewer allele differences between adjacent nodes. Temporal-cohort clustering within each serotype was supported by date randomization analysis. Substitutions per site per year were consistent with previously reported values for E. coli; however, there was low branch support for these values. Acquisition of the phage-encoded Shiga toxin 2 gene in serotype O22:H8 was observed. Pan-genome analyses identified accessory regions that were more prevalent in persistent serotypes (P≤0.05) than in sporadic serotypes. These results suggest that VTEC serotypes from a specific cattle population are highly clonal with a similar level of relatedness as human single-source outbreak-associated strains, but changes in the genome occur gradually over time. Additionally, elements in the accessory genomes may provide a selective advantage for persistence of VTEC within cattle herds.
Collapse
Affiliation(s)
- Lu Ya Ruth Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | | | - Chad R Laing
- National Centre for Animal Disease, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
3
|
Tamminen LM, Söderlund R, Wilkinson DA, Torsein M, Eriksson E, Churakov M, Dicksved J, Keeling LJ, Emanuelson U. Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study combining information from questionnaires, spatial data and molecular analyses. Prev Vet Med 2019; 170:104726. [PMID: 31421496 DOI: 10.1016/j.prevetmed.2019.104726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 01/29/2023]
Abstract
The increasing number of human cases infected with a highly virulent type of verotoxigenic Escherichia coli (VTEC) O157:H7 in Sweden is the result of domestic transmission originating in regional clusters of infected cattle farms. To control the spread of the bacteria a comprehensive picture of infection dynamics, routes of transmission between farms and risk factors for persistence is urgently needed. The aim of the study was to investigate different aspects of the epidemiology of VTEC O157:H7 on the Swedish island of Öland by combining information from environmental sampling of VTEC O157:H7 from 80 farms with information from farmer questionnaires, spatial and molecular analyses. The farms were sampled in the spring and fall of 2014 and on four of them additional samples were collected during summer and winter. The results show a high prevalence of VTEC O157:H7 and a high proportion of strains belonging to the virulent clade 8. Farms that became infected between samplings were all located in an area with high cattle density. The most important risk factors identified are generally associated with biosecurity and indicate that visitors travelling between farms may be important for transmission. In addition, whole genome sequencing of a subset of isolates from the four farms where additional sampling was performed revealed ongoing local transmission that cannot be observed with a lower resolution typing method. Our observations also show that VTEC O157:H7 may persist in the farm environment for extended periods of time, suggesting that specific on-farm measures to reduce environmental prevalence and spread between groups of animals may be required in these cases.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden.
| | | | - David A Wilkinson
- Molecular Epidemiology and Public Health Laboratory (mEpilab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Maria Torsein
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Box 234, SE-53223, Skara, Sweden
| | - Erik Eriksson
- National Veterinary Institute (SVA), SE-75189, Uppsala, Sweden
| | - Mikhail Churakov
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, SE-75007, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, SE-75007, Uppsala, Sweden
| | - Linda J Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Box 7068, SE-75007, Uppsala, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden
| |
Collapse
|
4
|
Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ. Multi-Year Persistence of Verotoxigenic Escherichia coli (VTEC) in a Closed Canadian Beef Herd: A Cohort Study. Front Microbiol 2018; 9:2040. [PMID: 30233526 PMCID: PMC6127291 DOI: 10.3389/fmicb.2018.02040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
In this study, fecal samples were collected from a closed beef herd in Alberta, Canada from 2012 to 2015. To limit serotype bias, which was observed in enrichment broth cultures, Verotoxigenic Escherichia coli (VTEC) were isolated directly from samples using a hydrophobic grid-membrane filter verotoxin immunoblot assay. Overall VTEC isolation rates were similar for three different cohorts of yearling heifers on both an annual (68.5 to 71.8%) and seasonal basis (67.3 to 76.0%). Across all three cohorts, O139:H19 (37.1% of VTEC-positive samples), O22:H8 (15.8%) and O?(O108):H8 (15.4%) were among the most prevalent serotypes. However, isolation rates for serotypes O139:H19, O130:H38, O6:H34, O91:H21, and O113:H21 differed significantly between cohort-years, as did isolation rates for some serotypes within a single heifer cohort. There was a high level of VTEC serotype diversity with an average of 4.3 serotypes isolated per heifer and 65.8% of the heifers classified as "persistent shedders" of VTEC based on the criteria of >50% of samples positive and ≥4 consecutive samples positive. Only 26.8% (90/336) of the VTEC isolates from yearling heifers belonged to the human disease-associated seropathotypes A (O157:H7), B (O26:H11, O111:NM), and C (O22:H8, O91:H21, O113:H21, O137:H41, O2:H6). Conversely, seropathotypes B (O26:NM, O111:NM) and C (O91:H21, O2:H29) strains were dominant (76.0%, 19/25) among VTEC isolates from month-old calves from this herd. Among VTEC from heifers, carriage rates of vt1, vt2, vt1+vt2, eae, and hlyA were 10.7, 20.8, 68.5, 3.9, and 88.7%, respectively. The adhesin gene saa was present in 82.7% of heifer strains but absent from all of 13 eae+ve strains (from serotypes/intimin types O157:H7/γ1, O26:H11/β1, O111:NM/θ, O84:H2/ζ, and O182:H25/ζ). Phylogenetic relationships inferred from wgMLST and pan genome-derived core SNP analysis showed that strains clustered by phylotype and serotype. Further, VTEC strains of the same serotype usually shared the same suite of antibiotic resistance and virulence genes, suggesting the circulation of dominant clones within this distinct herd. This study provides insight into the diverse and dynamic nature of VTEC populations within groups of cattle and points to a broad spectrum of human health risks associated with these E. coli strains.
Collapse
Affiliation(s)
- Lu Ya Ruth Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB, Canada
| | | | - Chad R Laing
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Thiry D, De Rauw K, Takaki S, Duprez JN, Iguchi A, Piérard D, Korsak N, Mainil JG. Low prevalence of the 'gang of seven' and absence of the O80:H2 serotypes among Shigatoxigenic and enteropathogenic Escherichia coli (STEC and EPEC) in intestinal contents of healthy cattle at two slaughterhouses in Belgium in 2014. J Appl Microbiol 2018; 124:867-873. [PMID: 29280544 DOI: 10.1111/jam.13677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
AIMS The purpose of this survey was to estimate the respective prevalence of the 'gang of seven' and 'non-gang of seven' serotypes of Shigatoxigenic and enteropathogenic Escherichia coli and to identify the O80:H2 serotype in 245 intestinal contents collected at two slaughterhouses in Belgium in 2014. METHODS AND RESULTS After overnight enrichment growth, the 69 intestinal contents testing positive with PCR targeting the eae, stx1 and stx2 genes were inoculated onto four agar media. Of the 2542 colonies picked up, 677 from 59 samples were PCR confirmed. The most frequent virulotypes were eae+ in 47 (80%) samples, stx2+ in 20 (34%) samples and eae+ stx1+ in 16 (27%) samples. PCR-positive colonies belonged to different virulotypes in 36 samples. No colony was O80-positive, whereas two eae+ colonies from two samples were O26:H11, 50 eae+ stx1+ and eae+ from eight samples were O103:H2 and two eae+ stx1+ stx2+ colonies from one sample were O157:H7. CONCLUSIONS The 'non-gang of seven' serotypes are more frequent than the 'gang of seven' serotypes and the O80:H2 serotype was not detected among Shigatoxigenic and enteropathogenic Escherichia coli in the intestines of cattle at these two slaughterhouses. SIGNIFICANCE AND IMPACT OF THE STUDY Although the identification protocols of Shigatoxigenic Escherichia coli focus on the 'gang of seven' serotypes, several other serotypes can be present with possible importance in public health. Innovative selective identification procedures should be designed.
Collapse
Affiliation(s)
- D Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - K De Rauw
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Belgian National Reference Centre for STEC/ VTEC, Brussels, Belgium
| | - S Takaki
- Bacteriology, Department of Infectious and Parasitic Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - J-N Duprez
- Bacteriology, Department of Infectious and Parasitic Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - A Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki (UoM), Miyazaki, Japan
| | - D Piérard
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Belgian National Reference Centre for STEC/ VTEC, Brussels, Belgium
| | - N Korsak
- Food Inspection, Department of Food Science, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - J G Mainil
- Bacteriology, Department of Infectious and Parasitic Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Worley JN, Flores KA, Yang X, Chase JA, Cao G, Tang S, Meng J, Atwill ER. Prevalence and Genomic Characterization of Escherichia coli O157:H7 in Cow-Calf Herds throughout California. Appl Environ Microbiol 2017; 83:e00734-17. [PMID: 28550057 PMCID: PMC5541215 DOI: 10.1128/aem.00734-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli serotype O157:H7 is a zoonotic food- and waterborne bacterial pathogen that causes a high hospitalization rate and can cause life-threatening complications. Increasingly, E. coli O157:H7 infections appear to originate from fresh produce. Ruminants, such as cattle, are a prominent reservoir of E. coli O157:H7 in the United States. California is one of the most agriculturally productive regions in the world for fresh produce, beef, and milk. The close proximity of fresh produce and cattle presents food safety challenges on a uniquely large scale. We performed a survey of E. coli O157:H7 on 20 farms in California to observe the regional diversity and prevalence of E. coli O157:H7. Isolates were obtained from enrichment cultures of cow feces. Some farms were sampled on two dates. Genomes from isolates were sequenced to determine their relatedness and pathogenic potential. E. coli O157:H7 was isolated from approximately half of the farms. The point prevalence of E. coli O157:H7 on farms was highly variable, ranging from zero to nearly 90%. Within farms, generally one or a few lineages were found, even when the rate of isolation was high. On farms with high isolation rates, a single clonal lineage accounted for most of the isolates. Farms that were visited months after the first visit might have had the same lineages of E. coli O157:H7. Strains of E. coli O157:H7 may be persistent for months on farms.IMPORTANCE This survey of 20 cow-calf operations from different regions of California provides an in depth look at resident Escherichia coli O157:H7 populations at the molecular level. E. coli O157:H7 is found to have a highly variable prevalence, and with whole-genome sequencing, high prevalences in herds were found to be due to a single lineage shed from multiple cows. Few repeat lineages were found between farms in this area; therefore, we predict that E. coli O157:H7 has significant diversity in this area beyond what is detected in this survey. All isolates from this study were found to have pathogenic potential based on the presence of key virulence gene sequences. This represents a novel insight into pathogen diversity within a single subtype and will inform future attempts to survey regional pathogen populations.
Collapse
Affiliation(s)
- Jay N Worley
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, USA
| | - Kristopher A Flores
- Western Center for Food Safety, University of California, Davis, Davis, California, USA
| | - Xun Yang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Jennifer A Chase
- Western Center for Food Safety, University of California, Davis, Davis, California, USA
| | - Guojie Cao
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, USA
| | - Shuai Tang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, USA
| | - Edward R Atwill
- Western Center for Food Safety, University of California, Davis, Davis, California, USA
| |
Collapse
|
7
|
Jones M, Octavia S, Lammers G, Heller J, Lan R. Population and evolutionary dynamics of Shiga-toxin producing Escherichia coli O157 in a beef herd: A longitudinal study. Environ Microbiol 2017; 19:1836-1844. [PMID: 28127846 DOI: 10.1111/1462-2920.13679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022]
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC O157) is naturally found in the gastrointestinal tract of cattle and can cause severe disease in humans. There is limited understanding of the population dynamics and microevolution of STEC O157 at herd level. In this study, isolates from a closed beef herd of 23 cows were used to examine the population turnover in the herd. Of the nine STEC O157 clades previously described, clade 7 was found in 162 of the 169 isolates typed. Multiple locus variable number tandem repeat analysis (MLVA) differentiated 169 isolates into 33 unique MLVA types. Five predominant MLVA types were evident with most of the remaining types containing only a single isolate. MLVA data suggest that over time clonal replacement occurred within the herd. Genome sequencing of 18 selected isolates found that the isolates were divided into four lineages, representing four different 'clones' in the herd. Genome data confirmed clonal replacement over time and provided evidence of cross transmission of strains between cows. The findings enhanced our understanding of the population dynamics of STEC O157 in its natural host that will help developing effective control measures to prevent the spread of the pathogen to the human population.
Collapse
Affiliation(s)
- Meghan Jones
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Geraldine Lammers
- School of Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Jane Heller
- School of Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Kieckens E, Rybarczyk J, Li RW, Vanrompay D, Cox E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genomics 2016; 17:1049. [PMID: 28003017 PMCID: PMC5178093 DOI: 10.1186/s12864-016-3374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. RESULTS In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. CONCLUSIONS Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx-) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function.
Collapse
Affiliation(s)
- E. Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Rybarczyk
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R. W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD USA
| | - D. Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E. Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
9
|
Widgren S, Söderlund R, Eriksson E, Fasth C, Aspan A, Emanuelson U, Alenius S, Lindberg A. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle herds. Prev Vet Med 2015; 121:343-52. [PMID: 26321656 DOI: 10.1016/j.prevetmed.2015.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Verotoxigenic Escherichia coli O157:H7 (VTEC O157:H7) is an important zoonotic pathogen capable of causing infections in humans, sometimes with severe symptoms such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). It has been reported that a subgroup of VTEC O157:H7, referred to as clade 8, is overrepresented among HUS cases. Cattle are considered to be the main reservoir of VTEC O157:H7 and infected animals shed the bacteria in feces without showing clinical signs of disease. The aims of the present study were: (1) to better understand how the presence of VTEC O157:H7 in the farm environment changes over an extended period of time, (2) to investigate potential risk factors for the presence of the bacteria, and (3) describe the distribution of MLVA types and specifically the occurrence of the hypervirulent strains (clade 8 strains) of VTEC O157:H7. The farm environment of 126 cattle herds in Sweden were sampled from October 2009 to December 2012 (38 months) using pooled pat and overshoe sampling. Each herd was sampled, on average, on 17 occasions (range=1-20; median=19), at intervals of 64 days (range=7-205; median=58). Verotoxigenic E. coli O157:H7 were detected on one or more occasions in 53% of the herds (n=67). In these herds, the percentage of positive sampling occasions ranged from 6% to 72% (mean=19%; median=17%). Multi-locus variable number tandem repeat analysis (MLVA) typing was performed on isolates from infected herds to identify hypervirulent strains (clade 8). Clustering of MLVA profiles yielded 35 clusters and hypervirulent strains were found in 18 herds; the same cluster was often identified on consecutive samplings and in nearby farms. Using generalized estimating equations, an association was found between the probability of detecting VTEC O157:H7 and status at the preceding sampling, season, herd size, infected neighboring farms and recent introduction of animals. This study showed that the bacteria VTEC O157:H7 were spontaneously cleared from the farm environment in most infected herds over time, and key factors were identified to prevent the spread of VTEC O157:H7 between cattle herds.
Collapse
Affiliation(s)
| | | | - Erik Eriksson
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Anna Aspan
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | | | - Ann Lindberg
- National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
10
|
Ceuppens S, Johannessen GS, Allende A, Tondo EC, El-Tahan F, Sampers I, Jacxsens L, Uyttendaele M. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9809-31. [PMID: 26295251 PMCID: PMC4555313 DOI: 10.3390/ijerph120809809] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023]
Abstract
The microbiological sanitary quality and safety of leafy greens and strawberries were assessed in the primary production in Belgium, Brazil, Egypt, Norway and Spain by enumeration of Escherichia coli and detection of Salmonella, Shiga toxin-producing E. coli (STEC) and Campylobacter. Water samples were more prone to containing pathogens (54 positives out of 950 analyses) than soil (16/1186) and produce on the field (18/977 for leafy greens and 5/402 for strawberries). The prevalence of pathogens also varied markedly according to the sampling region. Flooding of fields increased the risk considerably, with odds ratio (OR) 10.9 for Salmonella and 7.0 for STEC. A significant association between elevated numbers of generic E. coli and detection of pathogens (OR of 2.3 for STEC and 2.7 for Salmonella) was established. Generic E. coli was found to be a suitable index organism for Salmonella and STEC, but to a lesser extent for Campylobacter. Guidelines on frequency of sampling and threshold values for E. coli in irrigation water may differ from region to region.
Collapse
Affiliation(s)
- Siele Ceuppens
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | - Gro S Johannessen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Eduardo César Tondo
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, Campus do Vale, Agronomia, Cep. 91501-970 Porto Alegre/RS, Brazil.
| | - Fouad El-Tahan
- Royal International Inspection Laboratories (RIIL), Suez 43111, Egypt.
| | - Imca Sampers
- Laboratory of Food Microbiology & Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk 8500, Belgium.
| | - Liesbeth Jacxsens
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
11
|
Microbial safety and sanitary quality of strawberry primary production in Belgium: risk factors for Salmonella and Shiga toxin-producing Escherichia coli contamination. Appl Environ Microbiol 2015; 81:2562-70. [PMID: 25636845 DOI: 10.1128/aem.03930-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strawberries are an important fruit in Belgium in both production and consumption, but little information is available about the presence of Salmonella and Shiga toxin-producing Escherichia coli (STEC) in these berries, the risk factors in agricultural production, and possible specific mitigation options. In 2012, a survey was undertaken of three soil and three soilless cultivation systems in Belgium. No Salmonella spp. were isolated. No STEC was detected in the strawberry samples (0 of 72), but STEC was detected by PCR in 11 of 78 irrigation water and 2 of 24 substrate samples. Culture isolates were obtained for 2 of 11 PCR-positive irrigation water samples and 2 of 2 substrate samples. Multivariable logistic regression analysis revealed elevated generic E. coli numbers (the odds ratio [OR] for a 1 log increase being 4.6) as the most important risk factor for STEC, together with the berry-picking season (elevated risk in summer). The presence of generic E. coli in the irrigation water (≥1 CFU per 100 ml) was mainly influenced by the type of irrigation water (collected rainfall water stored in ponds was more often contaminated than groundwater pumped from boreholes [OR = 5.8]) and the lack of prior treatment (untreated water versus water subjected to sand filtration prior to use [OR = 19.2]). The follow-up study in 2013 at one of the producer locations indicated cattle to be the most likely source of STEC contamination of the irrigation water.
Collapse
|
12
|
Diverse virulence gene content of Shiga toxin-producing Escherichia coli from finishing swine. Appl Environ Microbiol 2014; 80:6395-402. [PMID: 25107960 DOI: 10.1128/aem.01761-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n = 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n = 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n = 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn.
Collapse
|