1
|
Dias JP, Domingues FC, Ferreira S. Linalool Reduces Virulence and Tolerance to Adverse Conditions of Listeria monocytogenes. Antibiotics (Basel) 2024; 13:474. [PMID: 38927141 PMCID: PMC11201053 DOI: 10.3390/antibiotics13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Listeria monocytogenes, a foodborne pathogen causing listeriosis, poses substantial societal, economic, and public health challenges due to its resistance, persistence, and biofilm formation in the food industry. Exploring subinhibitory concentrations of compounds to target virulence inhibition and increase susceptibility to adverse conditions presents a promising strategy to mitigate its impact of L. monocytogenes and unveils new potential applications. Thus, this study aims to explore the effect of linalool on virulence factors of L. monocytogenes and potential use in the reduction in its tolerance to stressful conditions. This action was analysed considering the use of two sub-inhibitory concentrations of linalool, 0.312 and 0.625 mg/mL. We found that even with the lowest tested concentrations, a 65% inhibition of violacein production by Chromobacterium violaceum, 55% inhibition in biofilm formation by L. monocytogenes and 62% reduction on haemolysis caused by this bacterium were observed. In addition to its impact on virulence factors, linalool diminished the tolerance to osmotic stress (up to 4.3 log reduction after 24 h with 12% NaCl), as well as to high (up to 3.8 log reduction after 15 min at 55 °C) and low temperatures (up to 4.6 log reduction after 84 days with 12% NaCl at 4 °C). Thus, this study paves the way to further investigation into the potential utilization of linalool to mitigate the threat posed by L. monocytogenes in the field of food safety and public health.
Collapse
Affiliation(s)
| | | | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.P.D.); (F.C.D.)
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
3
|
Wiktorczyk-Kapischke N, Wałecka-Zacharska E, Korkus J, Grudlewska-Buda K, Budzyńska A, Wnuk K, Gospodarek-Komkowska E, Skowron K. The influence of stress factors on selected phenotypic and genotypic features of Listeria monocytogenes - a pilot study. BMC Microbiol 2023; 23:259. [PMID: 37716959 PMCID: PMC10504795 DOI: 10.1186/s12866-023-03006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Listeria monocytogenes are Gram-positive rods, widespread in the environment due to their wide tolerance to changing conditions. The apilot study aimed to assess the impact of six various stresses (heat, cold, osmotic, acid, alkali, frozen) on phenotypic features: MIC of antibiotics (penicillin, ampicillin, meropenem, erythromycin, co-trimoxazole; gradient stripes), motility, ability to form a biofilm (crystal violet method) and growth rate (OD and quantitative method), expression level of sigB (stress induced regulator of genes), agrA, agrB (associated with biofilm formation) and lmo2230, lmo0596 (acid and alkali stress) (qPCR) for three strains of L. monocytogenes. RESULTS Applied stress conditions contributed to changes in phenotypic features and expression levels of sigB, agrA, agrB, lmo2230 and lmo0596. Stress exposure increased MIC value for penicillin (ATCC 19111 - alkaline stress), ampicillin (472CC - osmotic, acid, alkaline stress), meropenem (strains: 55 C - acid, alkaline, o smotic, frozen stress; 472CC - acid, alkaline stress), erythromycin (strains: 55 C - acid stress; 472CC - acid, alkaline, osmotic stress; ATCC 19111 - osmotic, acid, alkaline, frozen stress), co-trimoxazole (strains: 55 C - acid stress; ATCC 19111 - osmotic, acid, alkaline stress). These changes, however, did not affect antibiotic susceptibility. The strain 472CC (a moderate biofilm former) increased biofilm production after exposure to all stress factors except heat and acid. The ATCC 19111 (a weak producer) formed moderate biofilm under all studied conditions except cold and frozen stress, respectively. The strain 55 C became a strong biofilm producer after exposure to cold and produced a weak biofilm in response to frozen stress. Three tested strains had lower growth rate (compared to the no stress variant) after exposure to heat stress. It has been found that the sigB transcript level increased under alkaline (472CC) stress and the agrB expression increased under cold, osmotic (55 C, 472CC), alkali and frozen (472CC) stress. In contrast, sigB transcript level decreased in response to acid and frozen stress (55 C), lmo2230 transcript level after exposure to acid and alkali stress (ATCC 19111), and lmo0596 transcript level after exposure to acid stress (ATCC 19111). CONCLUSIONS Environmental stress changes the ability to form a biofilm and the MIC values of antibiotics and affect the level of expression of selected genes, which may increase the survival and virulence of L. monocytogenes. Further research on a large L. monocytogenes population is needed to assess the molecular mechanism responsible for the correlation of antibiotic resistance, biofilm formation and resistance to stress factors.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Kacper Wnuk
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
4
|
Persistence of Listeria monocytogenes ST5 in Ready-to-Eat Food Processing Environment. Foods 2022; 11:foods11172561. [PMID: 36076746 PMCID: PMC9454991 DOI: 10.3390/foods11172561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Most human listeriosis is foodborne, and ready-to-eat (RET) foods contaminated by Listeria monocytogenes during processing are found to be common vehicles. In this study, a total of four L. monocytogens STs (ST5, ST121, ST120, and ST2) have been identified in two RTE food plants from 2019 to 2020 in Shanghai, China. The L. monocytogenes ST5 was predominant in one RTE food processing plant, and it persists in the RTE meat processing plant with continued clone transmission. The genetic features of the four STs isolates were different. ST5 and ST121 had the three genes clpL, mdrL, and lde; however, ST120 and ST2 had two genes except for clpL. SSI-1was present in ST5, ST121, and ST120. Additionally, SSI-2 was present only in the ST121 isolates. ST120 had all six biofilm-forming associated genes (actA, prfA, lmo0673, recO, lmo2504 and luxS). The ST2 isolate had only three biofilm-forming associated genes, which were prfA, lmo0673, and recO. The four ST isolates had different biofilm formation abilities at different stages. The biofilm formation ability of ST120 was significantly higher when grown for one day. However, the biofilm formation ability of ST120 reduced significantly after growing for four days. In contrast, the biofilm formation ability of ST5 and ST121 increased significantly. These results suggested that ST5 and ST121 had stronger ability to adapt to stressful environments. Biofilms formed by all four STs grown over four days can be sanitized entirely by a disinfectant concentration of 500 mg/L. Additionally, only ST5 and ST121 biofilm cells survived in sub-lethal concentrations of chlorine-containing disinfectant. These results suggested that ST5 and ST121 were more resistant to chlorine-containing disinfectants. These results indicated that the biofilm formation ability of L. monocytogenes isolates changed at different stages. Additionally, the persistence in food processing environments might be verified by the biofilm formation, stress resistance, etc. Alternatively, these results underlined that disinfectants should be used at lethal concentrations. More attention should be paid to ST5 and ST121, and stronger surveillance should be taken to prevent and control the clonal spread of L. monocytogenes isolates in food processing plants in Shanghai.
Collapse
|
5
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
6
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
7
|
Cold-shock proteins affect desiccation tolerance, biofilm formation and motility in Listeria monocytogenes. Int J Food Microbiol 2020; 329:108662. [DOI: 10.1016/j.ijfoodmicro.2020.108662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
|
8
|
Yuan L, Wang NI, Sadiq FA, He G. Interspecies Interactions in Dual-Species Biofilms Formed by Psychrotrophic Bacteria and the Tolerance of Sessile Communities to Disinfectants. J Food Prot 2020; 83:951-958. [PMID: 32428932 DOI: 10.4315/0362-028x.jfp-19-396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/14/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Biofilms on the surface of food processing equipment act as potential reservoirs of microbial contamination. Bacterial interactions are believed to play key roles in both biofilm formation and antimicrobial tolerance. In this study, Aeromonas hydrophila, Chryseobacterium oncorhynchi, and Pseudomonas libanensis, which were previously isolated from Chinese raw milk samples, were selected to establish two dual-species biofilm models (P. libanensis plus A. hydrophila and P. libanensis plus C. oncorhynchi) on stainless steel at 7°C. Subsequently, three disinfectants, hydrogen peroxide (100 ppm), peracetic acid (100 ppm), and sodium hypochlorite (100 ppm), were used to treat the developed sessile communities for 10 min. Structural changes after exposure to disinfectants were analyzed with confocal laser scanning microscopy. The cell numbers of both A. hydrophila and C. oncorhynchi recovered from surfaces increased when grown as dual species biofilms with P. libanensis. Dual-species biofilms were more tolerant of disinfectants than were each single-species biofilm. Peracetic acid was the most effective disinfectant for removing biofilms, followed by hydrogen peroxide and sodium hypochlorite. The results expand the knowledge of mixed-species biofilms formed by psychrotrophic bacteria and will be helpful for developing effective strategies to eliminate bacterial mixed-species biofilms. HIGHLIGHTS
Collapse
Affiliation(s)
- Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - N I Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Faizan A Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
9
|
Jaakkonen A, Kivistö R, Aarnio M, Kalekivi J, Hakkinen M. Persistent contamination of raw milk by Campylobacter jejuni ST-883. PLoS One 2020; 15:e0231810. [PMID: 32315369 PMCID: PMC7173850 DOI: 10.1371/journal.pone.0231810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
Campylobacter jejuni has caused several campylobacteriosis outbreaks via raw milk consumption. This study reports follow-up of a milk-borne campylobacteriosis outbreak that revealed persistent C. jejuni contamination of bulk tank milk for seven months or longer. Only the outbreak-causing strain, representing sequence type (ST) 883, was isolated from milk, although other C. jejuni STs were also isolated from the farm. We hypothesized that the outbreak strain harbors features that aid its environmental transmission or survival in milk. To identify such phenotypic features, the outbreak strain was characterized for survival in refrigerated raw milk and in aerobic broth culture by plate counting and for biofilm formation on microplates by crystal violet staining and quantification. Furthermore, whole-genome sequences were studied for such genotypic features. For comparison, we characterized isolates representing other STs from the same farm and an ST-883 isolate that persisted on another dairy farm, but was not isolated from bulk tank milk. With high inocula (105 CFU/ml), ST-883 strains survived in refrigerated raw milk longer (4-6 days) than the other strains (≤3 days), but the outbreak strain showed no outperformance among ST-883 strains. This suggests that ST-883 strains may share features that aid their survival in milk, but other mechanisms are required for persistence in milk. No correlation was observed between survival in refrigerated milk and aerotolerance. The outbreak strain formed a biofilm, offering a potential explanation for persistence in milk. Whether biofilm formation was affected by pTet-like genomic element and phase-variable genes encoding capsular methyltransferase and cytochrome C551 peroxidase warrants further study. This study suggests a phenotypic target candidate for interventions and genetic markers for the phenotype, which should be investigated further with the final aim of developing control strategies against C. jejuni infections.
Collapse
Affiliation(s)
- Anniina Jaakkonen
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Aarnio
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| | - Jenni Kalekivi
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| | - Marjaana Hakkinen
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| |
Collapse
|
10
|
Kragh ML, Truelstrup Hansen L. Initial Transcriptomic Response and Adaption of Listeria monocytogenes to Desiccation on Food Grade Stainless Steel. Front Microbiol 2020; 10:3132. [PMID: 32038566 PMCID: PMC6987299 DOI: 10.3389/fmicb.2019.03132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes survives exposure to a variety of stresses including desiccation in the food industry. Strand-specific RNA sequencing was applied to analyze changes in the transcriptomes of two strains of L. monocytogenes (Lm 568 and Lm 08-5578) during desiccation [15°C, 43% relative humidity (RH)] on food grade stainless steel surfaces over 48 h to simulate a weekend with no food production. Both strains showed similar survival during desiccation with a 1.8-2 Log CFU/cm2 reduction after 48 h. Analysis of differentially expressed (DE) genes (>twofold, adjusted p-value <0.05) revealed that the initial response to desiccation was established after 6 h and remained constant with few new genes being DE after 12, 24, and 48 h. A core of 81 up- and 73 down-regulated DE genes were identified as a shared, strain independent response to desiccation. Among common upregulated genes were energy and oxidative stress related genes e.g., qoxABCD (cytochrome aa3) pdhABC (pyruvate dehydrogenase complex) and mntABCH (manganese transporter). Common downregulated genes related to anaerobic growth, proteolysis and the two component systems lmo1172/lmo1173 and cheA/cheY, which are involved in cold growth and flagellin production, respectively. Both strains upregulated additional genes involved in combatting oxidative stress and reactive oxygen species (ROS), including sod (superoxide dismutase), kat (catalase), tpx (thiol peroxidase) and several thioredoxins including trxAB, lmo2390 and lmo2830. Osmotic stress related genes were also upregulated in both strains, including gbuABC (glycine betaine transporter) and several chaperones clpC, cspA, and groE. Significant strain differences were also detected with the food outbreak strain Lm 08-5578 differentially expressing 1.9 × more genes (726) compared to Lm 568 (410). Unique to Lm 08-5578 was a significant upregulation of the expression of the alternative transcription factor σB and its regulon. A number of long antisense transcripts (lasRNA) were upregulated during desiccation including anti0605, anti0936, anti1846, and anti0777, with the latter controlling flagellum biosynthesis and possibly the downregulation of motility genes observed in both strains. This exploration of the transcriptomes of desiccated L. monocytogenes provides further understanding of how this bacterium encounters and survives the stress faced when exposed to dry conditions in the food industry.
Collapse
|
11
|
Quintieri L, Zühlke D, Fanelli F, Caputo L, Liuzzi VC, Logrieco AF, Hirschfeld C, Becher D, Riedel K. Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin. Food Microbiol 2019; 82:177-193. [DOI: 10.1016/j.fm.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022]
|
12
|
Kang S, Meng Y, Cheng X, Tu J, Guo D, Xu Y, Liang S, Xia X, Shi C. Effects of 405-nm LED Treatment on the Resistance of Listeria monocytogenes to Subsequent Environmental Stresses. Front Microbiol 2019; 10:1907. [PMID: 31474971 PMCID: PMC6706791 DOI: 10.3389/fmicb.2019.01907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes can persist under a wide range of stress conditions, contributing to its ubiquitous distribution and unique pathogenic traits. Light from light-emitting diodes (LEDs) has recently been shown to inactivate various pathogens. Thus, the aim of the present study was to evaluate the effects of light treatment using a 405-nm LED on the subsequent resistance of L. monocytogenes to environmental stresses, including oxidative stress, ultraviolet (UV) irradiation, low temperature, osmotic pressure, simulated gastric fluid (SGF), and bile salts. Following 405-nm LED illumination at 4°C for 150 min, the survival of L. monocytogenes was examined after exposure to oxidative stress (0.04% H2O2), UV irradiation (253.7 nm), low temperature (4°C), osmotic pressure (10, 15, or 20% NaCl), SGF (pH 2.5), or bile salts (2%). The mechanisms responsible for changes in stress tolerance were identified by assessing the transcriptional responses and membrane integrity of L. monocytogenes. The 405-nm LED treatment reduced the resistance of L. monocytogenes to all the stresses tested. Reverse transcription quantitative real-time polymerase chain reaction analysis indicated that the transcription of multiple genes associated with stress resistance, including betL, gbuA, oppA, fri, bsh, and arcA, was reduced by 405-nm LED. Confocal laser scanning microscopy revealed that 405-nm LED treatment disrupted the integrity of the L. monocytogenes cell membrane compared with untreated bacteria. Therefore, 405-nm LED illumination appears to reduce the resistance of L. monocytogenes to various stress conditions. These findings suggest that 405-nm LED treatment could be used to effectively prevent and/or control with L. monocytogenes contamination along the entire food-processing chain, from production to consumption.
Collapse
Affiliation(s)
- Shenmin Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yujie Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaomeng Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Junhong Tu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Yuan L, Sadiq FA, Burmølle M, Wang NI, He G. Insights into Psychrotrophic Bacteria in Raw Milk: A Review. J Food Prot 2019; 82:1148-1159. [PMID: 31225978 DOI: 10.4315/0362-028x.jfp-19-032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIGHLIGHTS Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faizan A Sadiq
- 3 School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - N I Wang
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
14
|
Santos T, Viala D, Chambon C, Esbelin J, Hébraud M. Listeria monocytogenes Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics. Front Nutr 2019; 6:89. [PMID: 31259174 PMCID: PMC6587611 DOI: 10.3389/fnut.2019.00089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be caused by consumption of refrigerated ready-to-eat foods. Although initial contamination levels in foods are usually low, the ability of these bacteria to survive and multiply at low temperatures allows it to reach levels high enough to cause disease. This study explores the set of proteins that might have an association with L. monocytogenes adaptation to different temperatures. Cultures were grown in biofilm, the most widespread mode of growth in natural and industrial realms. Protein extractions were performed from three different growth temperatures (10, 25, and 37°C) and two growth phases (early stage and mature biofilm). L. monocytogenes subproteomes were targeted using three extraction methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different subproteomes obtained were separated and analyzed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98 (shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique proteins identified, many are connected to basic cell functions, but some are linked with thermoregulation. We observed some noteworthy protein abundance shifts associated with the major adaptation to cold mechanisms present in L. monocytogenes, namely: the role of ribosomes and the stressosome with a higher abundance of the general stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB), changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine (GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37°C, we observed a significantly higher percentage of proteins associated with transcriptional or translational activity present in higher abundance upon comparison with the colder settings. These contrasts of protein expression throughout several conditions will enrich databases and help to model the regulatory circuitry that drives adaptation of L. monocytogenes to environments.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| |
Collapse
|
15
|
Barroso I, Maia V, Cabrita P, Martínez-Suárez JV, Brito L. The benzalkonium chloride resistant or sensitive phenotype of Listeria monocytogenes planktonic cells did not dictate the susceptibility of its biofilm counterparts. Food Res Int 2019; 123:373-382. [PMID: 31284989 DOI: 10.1016/j.foodres.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Abstract
The main goal of this work was to approach food industry conditions in the comparison of the susceptibility of biofilms of Listeria monocytogenes to the biocides benzalkonium chloride (BAC) and peracetic acid (PAA). Twelve isolates of L. monocytogenes, including nine well characterized BAC resistant strains were used. Biofilms were produced on stainless steel coupons (SSC), at 11 °C (refrigeration temperature) or at 25 °C (room temperature), in culture media simulating clean (nutrient limiting) or soiled (nutrient rich) growth conditions. Neither different nutrient availability nor growth temperature showed significant effect (p > .05) on biofilm formation. PAA confirmed to be more effective than BAC in biofilm elimination. Biofilms formed under nutritional stress tended to differentiate more the response to BAC of the resistant or sensitive strains, but the resistant or sensitive phenotype of the planktonic cells did not dictate biofilm susceptibility.
Collapse
Affiliation(s)
- I Barroso
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - V Maia
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - P Cabrita
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - J V Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - L Brito
- LEAF - Linking Landscape, Environment, Agriculture and Food, DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal.
| |
Collapse
|
16
|
Nwabor OF, Vongkamjan K, Voravuthikunchai SP. Antioxidant Properties and Antibacterial Effects of Eucalyptus camaldulensis Ethanolic Leaf Extract on Biofilm Formation, Motility, Hemolysin Production, and Cell Membrane of the Foodborne Pathogen Listeria monocytogenes. Foodborne Pathog Dis 2019; 16:581-589. [PMID: 30998111 DOI: 10.1089/fpd.2019.2620] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Consumer concerns toward chemical preservatives have resulted in increased search for healthy green alternative. In this study, the antioxidant activity and antibacterial effects of Eucalyptus camaldulensis ethanolic leaf extract against Listeria monocytogenes, a serious foodborne pathogen, was evaluated. Total phenolic and flavonoid contents of the extract were 11.10 mg garlic acid equivalent/mg extract and 15.05 mg quercetin equivalent/mg extract, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of the extract was 64-128 μg/mL and 256-512 μg/mL, respectively. Time-kill assay revealed growth inhibitory effects after 4-h treatment of the bacteria with the extract. A reduction of ≈2-3 log colony-forming units per milliliter was observed against the tested food and environmental isolates after challenging the pathogens with the extract at MIC for 6 h. Sub-MICs of the extract significantly inhibited motility and listeriolysin O production up to 80%, with 60% inhibition of biofilm formation (p < 0.05). Antioxidant assay revealed free radical scavenging activity with 50% inhibitory concentration (IC50) of 57.07 μg/mL for 2,2-diphenyl-1-picrylhydrazyl and 29.01 μg/mL for ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] assay. Ferric reducing antioxidant power assay further showed a total antioxidant power equivalent to 92.93 μM ascorbic acid equivalent/mg extract. As the extract exhibited profound antilisterial activity and good radical scavenging ability, it might serve as a potential alternative source of biopreservative agent against L. monocytogenes.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- 1Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand
| | - Kitiya Vongkamjan
- 2Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- 1Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
17
|
Quesille-Villalobos AM, Parra A, Maza F, Navarrete P, González M, Latorre M, Toro M, Reyes-Jara A. The Combined Effect of Cold and Copper Stresses on the Proliferation and Transcriptional Response of Listeria monocytogenes. Front Microbiol 2019; 10:612. [PMID: 30984140 PMCID: PMC6447683 DOI: 10.3389/fmicb.2019.00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause severe disease in susceptible humans. This microorganism has the ability to adapt to hostile environmental conditions such as the low temperatures used by the food industry for controlling microorganisms. Bacteria are able to adjust their transcriptional response to adapt to stressful conditions in order to maintain cell homeostasis. Understanding the transcriptional response of L. monocytogenes to stressing conditions could be relevant to develop new strategies to control the pathogen. A possible alternative for controlling microorganisms in the food industry could be to use copper as an antimicrobial agent. The present study characterized three L. monocytogenes strains (List2-2, Apa13-2, and Al152-2A) adapted to low temperature and challenged with different copper concentrations. Similar MIC-Cu values were observed among studied strains, but growth kinetic parameters revealed that strain List2-2 was the least affected by the presence of copper at 8°C. This strain was selected for a global transcriptional response study after a 1 h exposition to 0.5 mM of CuSO4 × 5H2O at 8 and 37°C. The results showed that L. monocytogenes apparently decreases its metabolism in response to copper, and this reduction is greater at 8°C than at 37°C. The most affected metabolic pathways were carbohydrates, lipids and nucleotides synthesis. Finally, 15 genes were selected to evaluate the conservation of the transcriptional response in the other two strains. Results indicated that only genes related to copper homeostasis showed a high degree of conservation between the strains studied, suggesting that a low number of genes is implicated in the response to copper stress in L. monocytogenes. These results contribute to the understanding of the molecular mechanisms used by bacteria to overcome a combination of stresses. This study concluded that the application of copper in low concentrations in cold environments may help to control foodborne pathogens as L. monocytogenes in the industry.
Collapse
Affiliation(s)
- Ana María Quesille-Villalobos
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Angel Parra
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Felipe Maza
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation (CGR), Santiago, Chile
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation (CGR), Santiago, Chile
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Magaly Toro
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Lanciotti R, Braschi G, Patrignani F, Gobbetti M, De Angelis M. How Listeria monocytogenes Shapes Its Proteome in Response to Natural Antimicrobial Compounds. Front Microbiol 2019; 10:437. [PMID: 30930865 PMCID: PMC6423498 DOI: 10.3389/fmicb.2019.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The goal of this study was to investigate the adaptation of L. monocytogenes Scott A cells to treatments with sublethal doses of antimicrobials (ethanol, citral, carvacrol, E-2-hexenal and thyme essential oil). The survival of L. monocytogenes cells was not affected by the antimicrobials at the concentrations assayed, with the exception of ethanol (1% v/v) and thyme essential oil (100 mg/L), which decreased cell viability from 8.53 ± 0.36 to 7.20 ± 0.22 log CFU/mL (P = 0.04). We subsequently evaluated how L. monocytogenes regulates and shapes its proteome in response to antimicrobial compounds. Compared to the control cells grown under optimal conditions, L. monocytogenes treated for 1 h with the antimicrobial compounds showed increased or decreased (≥ or ≤2-fold, respectively, P < 0.05) levels of protein synthesis for 223 protein spots. As shown multivariate clustering analysis, the proteome profiles differed between treatments. Adaptation and shaping of proteomes mainly concerned cell cycle control, cell division, chromosome, motility and regulatory related proteins, carbohydrate, pyruvate, nucleotide and nitrogen metabolism, cofactors and vitamins and stress response with contrasting responses for different stresses. Ethanol, citral (85 mg/l) or (E)-2-hexenal (150 mg/L) adapted cells increased survival during acid stress imposed under model (BHI) and food-like systems.
Collapse
Affiliation(s)
- Rosalba Lanciotti
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | - Giacomo Braschi
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | - Francesca Patrignani
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | | | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Braschi G, Serrazanetti DI, Siroli L, Patrignani F, De Angelis M, Lanciotti R. Gene expression responses of Listeria monocytogenes Scott A exposed to sub-lethal concentrations of natural antimicrobials. Int J Food Microbiol 2018; 286:170-178. [DOI: 10.1016/j.ijfoodmicro.2018.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
|
20
|
Wu S, Yu PL, Wheeler D, Flint S. Transcriptomic study on persistence and survival of Listeria monocytogenes following lethal treatment with nisin. J Glob Antimicrob Resist 2018; 15:25-31. [PMID: 29933119 DOI: 10.1016/j.jgar.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The aim of this study was to determine gene expression associated with the persistence of a Listeria monocytogenes stationary-phase population when facing lethal nisin treatment. METHODS RNA-Seq analysis was used for gene expression profiling of persister cells in nutrient-rich medium (persister TN) compared with untreated cells (non-persister). The results were confirmed using reverse transcription quantitative PCR (RT-qPCR). RESULTS Functional genes associated with the persister population were identified in multiple systems, such as heat-shock-related stress response, cell wall synthesis, ATP-binding cassette (ABC) transport system, phosphotransferase system (PTS) and SOS/DNA repair. CONCLUSIONS This study pointed to genetic regulation of persister cells exposed to lethal nisin concentrations and provides some insight into possible mechanisms of impeding bacterial persistence.
Collapse
Affiliation(s)
- Shuyan Wu
- Massey Institute of Food Science and Technology, Massey University, Riddet Road, 4442 Palmerston North, New Zealand
| | - Pak-Lam Yu
- School of Engineering & Advanced Technology, Massey University, Riddet Road, 4442 Palmerston North, New Zealand
| | - Dave Wheeler
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Steve Flint
- Massey Institute of Food Science and Technology, Massey University, Riddet Road, 4442 Palmerston North, New Zealand.
| |
Collapse
|
21
|
Araujo V, Neves E, Silva AC, Martins APL, Brito LC. Listeria monocytogenes cells under nutrient deprivation showed reduced ability to infect the human intestinal cell line HT-29. J Med Microbiol 2017; 67:110-117. [PMID: 29185940 DOI: 10.1099/jmm.0.000648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study aimed to evaluate the effect of two types of stress, cold and nutritional, on the viability and the in vitro virulence of the foodborne pathogenic bacteria Listeria monocytogenes. METHODOLOGY Ten diverse isolates were kept in phosphate-buffered saline (PBS) at optimal (37 °C) or at refrigeration temperature (7 °C), for 1 and 7 days. The viability of the cells [log colony-forming units (c.f.u.)/ml] and their in vitro virulence, before and after storage in these conditions, were investigated. In vitro virulence (log PFA) was evaluated using the human intestinal epithelial cell line HT-29 in plaque-forming assays (PFAs).Results/Key findings. In general, when compared with the conditions at 37 °C, the exposure at 7 °C for 7 days seemed to increase the resistance of the isolates to nutritional stress. Nutritional stress per se acted significantly to decrease the in vitro virulence of the isolates. After 7 days of nutrient deprivation, whether at optimal or at refrigeration temperature, the majority of the isolates assumed a low-virulence phenotype. CONCLUSION Our results suggest that when L. monocytogenes are in refrigerated post-processing environments that are unable to support their growth they may increase their resistance to nutritional stress and may decrease their virulence. This should be considered when performing risk assessments for refrigerated ready-to-eat (RTE) foods.
Collapse
Affiliation(s)
- Vânia Araujo
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Elsa Neves
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal.,Escola Superior de Tecnologia e Gestão Jean Piaget do Litoral Alentejano, Bairro das Flores, Apartado 38, 7500-999 Vila Nova de Santo André, Portugal
| | - Ana Carla Silva
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - António P L Martins
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal.,DCEB - Departamento de Ciências e Engenharia de Biossistemas, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Luisa Castro Brito
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|
22
|
Ximenes E, Hoagland L, Ku S, Li X, Ladisch M. Human pathogens in plant biofilms: Formation, physiology, and detection. Biotechnol Bioeng 2017; 114:1403-1418. [PMID: 28067424 DOI: 10.1002/bit.26247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Ximenes
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Lori Hoagland
- Horticulture and Landscape Architecture; Purdue University; West Lafayette Indiana
| | - Seockmo Ku
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Xuan Li
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
| | - Michael Ladisch
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette Indiana
| |
Collapse
|
23
|
Puga C, SanJose C, Orgaz B. Biofilm development at low temperatures enhances Listeria monocytogenes resistance to chitosan. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Cordero N, Maza F, Navea-Perez H, Aravena A, Marquez-Fontt B, Navarrete P, Figueroa G, González M, Latorre M, Reyes-Jara A. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature. Front Microbiol 2016; 7:229. [PMID: 26973610 PMCID: PMC4772535 DOI: 10.3389/fmicb.2016.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/12/2016] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature.
Collapse
Affiliation(s)
- Ninoska Cordero
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Felipe Maza
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Helen Navea-Perez
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Andrés Aravena
- Department of Molecular Biology and Genetics, Istanbul University Istanbul, Turkey
| | - Bárbara Marquez-Fontt
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Guillermo Figueroa
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de ChileSantiago, Chile
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de ChileSantiago, Chile; Mathomics, Center for Mathematical Modeling, Universidad de ChileSantiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile
| |
Collapse
|
25
|
Abee T, Koomen J, Metselaar K, Zwietering M, den Besten H. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annu Rev Food Sci Technol 2016; 7:439-56. [DOI: 10.1146/annurev-food-041715-033128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Abee
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - J. Koomen
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - K.I. Metselaar
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - M.H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - H.M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
26
|
Padilla-Frausto JJ, Cepeda-Marquez LG, Salgado LM, Iturriaga MH, Arvizu-Medrano SM. Detection and Genotyping of Leuconostoc spp. in a Sausage Processing Plant. J Food Prot 2015; 78:2170-6. [PMID: 26613911 DOI: 10.4315/0362-028x.jfp-15-192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Some Leuconostoc spp. have the ability to produce slime and undesirable compounds in cooked sausage. The objectives of this research were to identify Leuconostoc sources in a Vienna-type sausage processing plant and to evaluate the genetic diversity of the isolated strains. Three hundred and two samples of sausage batter, sausages during processing, spoiled sausage, equipment surfaces, chilling brine, workers' gloves and aprons, and used casings were collected (March to November 2008 and February to April 2010) from a sausage processing plant. Lactic acid bacteria (LAB) were quantified, and Leuconostoc were detected using PCR. Strains were isolated and identified in Leuconostoc-positive samples. Leuconostoc strains were genotyped using randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. LAB content of nonspoiled and spoiled sausage ranged from <0.8 to 4.4 log CFU/g and from 4.9 to 8.3 log CFU/g, respectively. LAB levels on equipment surfaces ranged from <1.3 to 4.8 log CFU/100 cm(2). Leuconostoc was detected in 35% of the samples, and 88 Leuconostoc spp. strains were isolated and genotyped. The main Leuconostoc spp. isolated were L. mesenteroides (37 genotypes), L. fallax (29 genotypes), and L. lactis (6 genotypes). Some strains of Leuconostoc isolated from equipment surfaces and sausages showed the same genotype. One L. lactis genotype included strains isolated from spoiled sausages analyzed in April 2008 and March to April 2010. Equipment and conveyor belts constitute Leuconostoc contamination sources. Leuconostoc persistence in the sausage processing environment and in the final product suggests the existence of microbial reservoirs, possibly on equipment surfaces.
Collapse
Affiliation(s)
- J J Padilla-Frausto
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán Jalisco, México, CP 47820
| | - L G Cepeda-Marquez
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Col. las Campanas, Querétaro, Querétaro, México, CP 76010
| | - L M Salgado
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Poliécnico Nacional (CICATA-IPN), Cerro Blanco 141, Col. Colinas, Querétaro, Querétaro, México, CP 76090
| | - M H Iturriaga
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Col. las Campanas, Querétaro, Querétaro, México, CP 76010
| | - S M Arvizu-Medrano
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Col. las Campanas, Querétaro, Querétaro, México, CP 76010.
| |
Collapse
|
27
|
The Connection between Persistent, Disinfectant-Resistant Listeria monocytogenes Strains from Two Geographically Separate Iberian Pork Processing Plants: Evidence from Comparative Genome Analysis. Appl Environ Microbiol 2015; 82:308-17. [PMID: 26497458 DOI: 10.1128/aem.02824-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/17/2015] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the basis of the putative persistence of Listeria monocytogenes in a new industrial facility dedicated to the processing of ready-to-eat (RTE) Iberian pork products. Quaternary ammonium compounds, which included benzalkonium chloride (BAC), were repeatedly used as surface disinfectants in the processing plant. Clean and disinfected surfaces were sampled to evaluate if resistance to disinfectants was associated with persistence. Of the 14 isolates obtained from product contact and non-product contact surfaces, only five different pulsed-field gel electrophoresis (PFGE) types were identified during the 27-month study period. Two of these PFGE types (S1 and S10-1) were previously identified to be persistent and BAC-resistant (BAC(r)) strains in a geographically separate slaughterhouse belonging to the same company. The remaining three PFGE types, which were first identified in this study, were also BAC(r). Whole-genome sequencing and in silico multilocus sequence typing (MLST) analysis of five BAC(r) isolates of the different PFGE types identified in this study showed that the isolate of the S1 PFGE type belonged to MLST sequence type 31 (ST31), a low-virulence type characterized by mutations in the inlA and prfA genes. The isolates of the remaining four PFGE types were found to belong to MLST ST121, a persistent type that has been isolated in several countries. The ST121 strains contained the BAC resistance transposon Tn6188. The disinfection-resistant L. monocytogenes population in this RTE pork product plant comprised two distinct genotypes with different multidrug resistance phenotypes. This work offers insight into the L. monocytogenes subtypes associated with persistence in food processing environments.
Collapse
|