1
|
Jia Y, Zhang K, Cao J, Mao W. Correlation analysis of whole genome sequencing of a pathogenic Escherichia coli strain of Inner Mongolian origin. Sci Rep 2024; 14:15494. [PMID: 38969720 PMCID: PMC11226720 DOI: 10.1038/s41598-024-64256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease.
Collapse
Affiliation(s)
- Yan Jia
- Xuzhou Vocational College of Bioengineering, Jiangsu, 221006, Xuzhou, China
| | - Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, Inner Mongolia, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, 010018, Inner Mongolia, China
| | - Jinshan Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, Inner Mongolia, China.
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, 010018, Inner Mongolia, China.
| | - Wei Mao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, Inner Mongolia, China.
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, 010018, Inner Mongolia, China.
| |
Collapse
|
2
|
Che M, Fresno AH, Calvo-Fernandez C, Hasman H, Kurittu PE, Heikinheimo A, Hansen LT. Comparison of IncK- blaCMY-2 Plasmids in Extended-Spectrum Cephalosporin-Resistant Escherichia coli Isolated from Poultry and Humans in Denmark, Finland, and Germany. Antibiotics (Basel) 2024; 13:349. [PMID: 38667025 PMCID: PMC11047599 DOI: 10.3390/antibiotics13040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli carrying IncK-blaCMY-2 plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-blaCMY-2-positive ESC-resistant E. coli isolates from poultry production systems in Denmark, Finland, and Germany, as well as from Danish human blood infections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates (n = 46) confirmed the presence of the blaCMY-2 gene. Minimum inhibitory concentration (MIC) testing revealed a resistant phenotype to cefotaxime as well as resistance to ≥3 antibiotic classes. Conjugative transfer of the blaCMY-2 gene confirmed the resistance being on mobile plasmids. Pangenome analysis showed only one-third of the genes being in the core with the remainder being in the large accessory gene pool. Single nucleotide polymorphism (SNP) analysis on sequence type (ST) 429 and 1286 isolates showed between 0-60 and 13-90 SNP differences, respectively, indicating vertical transmission of closely related clones in the poultry production, including among Danish, Finnish, and German ST429 isolates. A comparison of 22 ST429 isolates from this study with 80 ST429 isolates in Enterobase revealed the widespread geographical occurrence of related isolates associated with poultry production. Long-read sequencing of a representative subset of isolates (n = 28) allowed further characterization and comparison of the IncK-blaCMY-2 plasmids with publicly available plasmid sequences. This analysis revealed the presence of highly similar plasmids in ESC-resistant E. coli from Denmark, Finland, and Germany pointing to the existence of common sources. Moreover, the analysis presented evidence of global plasmid transmission and evolution. Lastly, our results indicate that IncK-blaCMY-2 plasmids and their carriers had been circulating in the Danish production chain with an associated risk of spreading to humans, as exemplified by the similarity of the clinical ST429 isolate to poultry isolates. Its persistence may be driven by co-selection since most IncK-blaCMY-2 plasmids harbor resistance factors to drugs used in veterinary medicine.
Collapse
Affiliation(s)
- Meiyao Che
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (M.C.); (C.C.-F.)
| | - Ana Herrero Fresno
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Campus Terra, Universidade da Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - Cristina Calvo-Fernandez
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark; (M.C.); (C.C.-F.)
| | - Henrik Hasman
- Reference Laboratory for Antibiotic Resistance, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
| | - Paula E. Kurittu
- Department of Food Health and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (P.E.K.); (A.H.)
| | - Annamari Heikinheimo
- Department of Food Health and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (P.E.K.); (A.H.)
- Microbiology Unit, Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | | |
Collapse
|
3
|
Characterization of Escherichia coli and Other Enterobacterales Resistant to Extended-Spectrum Cephalosporins Isolated from Dairy Manure in Ontario, Canada. Appl Environ Microbiol 2023; 89:e0186922. [PMID: 36695602 PMCID: PMC9972979 DOI: 10.1128/aem.01869-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Extended-spectrum cephalosporins (ESCs) resistance genes, such as blaCTX-M, blaCMY, and blaSHV, have been found regularly in bacteria from livestock. However, information on their distribution in dairy cattle in Canada and on the associated genome sequences of ESC-resistant Enterobacterales is sparse. In this study, the diversity and distribution of ESC-resistant Escherichia coli throughout manure treatments in six farms in Southern Ontario were assessed over a one-year period, and their ESC-resistance plasmids were characterized. The manure samples were enriched using selective media. The resulting isolates were screened via polymerase chain reaction for blaCTX-M, blaCMY, and blaSHV. No E. coli carrying blaSHV were detected. Escherichia coli (n = 248) carrying blaCTX-M or blaCMY underwent whole-genome sequencing using an Illumina MiSeq/NextSeq. These isolates were typed using multilocus sequence typing (MLST) and their resistance gene profiles. A subset of E. coli (n = 28) were sequenced using Oxford Nanopore Technologies. Plasmids were assembled using Unicycler and characterized via the resistance genes pattern, replicon type, plasmid MLST, phylogenetic analysis, and Mauve alignments. The recovery of ESC-resistant Enterobacterales (18 species, 8 genera) was drastically reduced in manure outputs. However, multiple treatment stages were needed to attain a significant reduction. 62 sequence types were identified, with ST10, ST46, ST58, ST155, ST190, ST398, ST685, and ST8761 being detected throughout the treatment pipeline. These STs overlapped with those found on multiple farms. The ESC-resistance determinants included CTX-M-1, -14, -15, -17, -24, -32, -55, and CMY-2. The plasmids carrying blaCTX-M were more diverse than were the plasmids carrying blaCMY. Known "epidemic plasmids" were detected for both blaCTX-M and blaCMY. IMPORTANCE The increase in antimicrobial resistance is of concern for human and animal health, especially when resistance is conferred to extended-spectrum cephalosporins, which are used to treat serious infections in both human and veterinary medicine. Bacteria carrying extended-spectrum cephalosporin resistance genes, including blaCTX-M and blaCMY, are frequently found in dairy manure. Manure treatment influences the loads and diversity of bacteria, including those carrying antimicrobial resistance genes, such as Enterobacterales and Escherichia coli. Any bacteria that survive the treatment process are subsequently applied to the environment. Enterobacterales carrying blaCTX-M or blaCMY can contaminate soil and crops consumed by humans and animals, thereby increasing the potential for antimicrobial resistance genes to integrate into the human gut microflora through horizontal gene transfer. This furthers the dissemination of resistance. Therefore, it is imperative to understand the effects manure treatments have on ESC-resistance in environmentally applied manure.
Collapse
|
4
|
Andretta M, Call DR, Nero LA. Insights into antibiotic use in Brazilian dairy production. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Milimani Andretta
- InsPOA—Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária Universidade Federal de Viçosa, Campus Universitário Viçosa MG 36570‐900 Brazil
| | - Douglas Ruben Call
- Paul G. Allen School for Global Health Washington State University 240 SE Ott Road Pullman WA 99164 USA
| | - Luís Augusto Nero
- InsPOA—Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária Universidade Federal de Viçosa, Campus Universitário Viçosa MG 36570‐900 Brazil
| |
Collapse
|
5
|
Godijk NG, Bootsma MCJ, Bonten MJM. Transmission routes of antibiotic resistant bacteria: a systematic review. BMC Infect Dis 2022; 22:482. [PMID: 35596134 PMCID: PMC9123679 DOI: 10.1186/s12879-022-07360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quantification of acquisition routes of antibiotic resistant bacteria (ARB) is pivotal for understanding transmission dynamics and designing cost-effective interventions. Different methods have been used to quantify the importance of transmission routes, such as relative risks, odds ratios (OR), genomic comparisons and basic reproduction numbers. We systematically reviewed reported estimates on acquisition routes’ contributions of ARB in humans, animals, water and the environment and assessed the methods used to quantify the importance of transmission routes. Methods PubMed and EMBASE were searched, resulting in 6054 articles published up until January 1st, 2019. Full text screening was performed on 525 articles and 277 are included. Results We extracted 718 estimates with S. aureus (n = 273), E. coli (n = 157) and Enterobacteriaceae (n = 99) being studied most frequently. Most estimates were derived from statistical methods (n = 560), mainly expressed as risks (n = 246) and ORs (n = 239), followed by genetic comparisons (n = 85), modelling (n = 62) and dosage of ARB ingested (n = 17). Transmission routes analysed most frequently were occupational exposure (n = 157), travelling (n = 110) and contacts with carriers (n = 83). Studies were mostly performed in the United States (n = 142), the Netherlands (n = 87) and Germany (n = 60). Comparison of methods was not possible as studies using different methods to estimate the same route were lacking. Due to study heterogeneity not all estimates by the same method could be pooled. Conclusion Despite an abundance of published data the relative importance of transmission routes of ARB has not been accurately quantified. Links between exposure and acquisition are often present, but the frequency of exposure is missing, which disables estimation of transmission routes’ importance. To create effective policies reducing ARB, estimates of transmission should be weighed by the frequency of exposure occurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07360-z.
Collapse
Affiliation(s)
- Noortje G Godijk
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Mathematics, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
7
|
Zhang X, Yi X, Zhuang H, Deng Z, Ma C. Invited Review: Antimicrobial Use and Antimicrobial Resistance in Pathogens Associated with Diarrhea and Pneumonia in Dairy Calves. Animals (Basel) 2022; 12:ani12060771. [PMID: 35327168 PMCID: PMC8944629 DOI: 10.3390/ani12060771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial use (AMU) is the major driver of antimicrobial resistance (AMR) among bacteria in dairy herds. There have been numerous studies on AMU and AMR in dairy cows; however, studies on AMU and AMR in dairy calves are limited. A comprehensive overview of the current state of knowledge of AMU and AMR among pathogens in dairy calves is important for the development of scientifically supported and applicable measures to curb antimicrobial use and the increasing risk of AMR. Therefore, we performed a systematic review of research on AMU and AMR in dairy calves. A total of 75 publications were included, of which 19 studies reported AMU data for dairy calves and 68 described AMR profiles of the four most prevalent bacteria that are associated with calf diarrhea and calf pneumonia. Large variation in AMU was found among herds across different regions. There seems to be a positive association between exposure to antimicrobials and occurrence of resistance. Most AMU was accounted for by treatment of diseases, while a small proportion of AMU was prophylactic. AMU was more common in treating calf diarrhea than in treating pneumonia, and the resistance rates in bacteria associated with diarrhea were higher than those in pathogens related to pneumonia. Organic farms used significantly fewer antimicrobials to treat calf disease; however, the antimicrobial resistance rates of bacteria associated with calf diarrhea and pneumonia on both types of farms were comparable. Feeding waste or pasteurized milk was associated with a higher risk of AMR in pathogens. Altogether, this review summarizes AMU and AMR data for dairy calves and suggests areas for future research, providing evidence for the design of antimicrobial use stewardship programs in dairy calf farming.
Collapse
|
8
|
Weber LP, Dreyer S, Heppelmann M, Schaufler K, Homeier-Bachmann T, Bachmann L. Prevalence and Risk Factors for ESBL/AmpC- E. coli in Pre-Weaned Dairy Calves on Dairy Farms in Germany. Microorganisms 2021; 9:2135. [PMID: 34683456 PMCID: PMC8539614 DOI: 10.3390/microorganisms9102135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022] Open
Abstract
The objectives of this study were to ascertain the fecal ESBL/AmpC-E. coli prevalence and to detect risk factors for their occurrence in young pre-weaned calves and their dams on large dairy farms in Germany. From 2018-2019 we investigated 2816 individual fecal samples from pre-weaned dairy calves and their dams, representing seventy-two farms (mean = 667 milking cows) from eight German federal states. To assess possible risk factors associated with ESBL/AmpC-E. coli prevalence in calves and dams, a questionnaire was performed, collecting management data. We observed an ESBL/AmpC-E. coli prevalence of 63.5% (95% CI: 57.4-69.5) among the sampled calves and 18.0% (95% CI: 12.5-23.5) among the dams. On all farms, at least one positive sample was obtained. To date, this is the highest ESBL/AmpC-E. coli prevalence observed in dairy herds in Europe. Feeding with waste milk was identified as a significant risk factor for a high prevalence of ESBL/AmpC-E. coli in calves. Many calves at large dairies in Germany are fed with waste milk due to the large amounts generated as a result of antibiotic dry-off routines and mastitis treatment with antibiotics. Other notable risk factors for high ESBL/AmpC-E. coli in calves were the general fitness/health of dams and calves, and the quality of farm hygiene. Taken together, these findings suggest that new or improved approaches to animal health management, for example, antibiotic dry cow management (selective dry cow therapy) and mastitis treatment (high self-recovery), as well as farm hygiene, should be researched and implemented.
Collapse
Affiliation(s)
- Laura Patricia Weber
- Alta Deutschland GmbH, 29525 Uelzen, Germany;
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
- Research-Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sylvia Dreyer
- Friedrich-Loeffler-Institut, Institute of International Animal Health/One Health, Greifswald—Insel Riems, 17493 Greifswald, Germany;
| | - Maike Heppelmann
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Katharina Schaufler
- Institute of Pharmacy, Universität Greifswald, 17475 Greifwald, Germany;
- Institute of Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, 24118 Kiel, Germany
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald—Insel Riems, 17493 Greifswald, Germany;
| | - Lisa Bachmann
- Alta Deutschland GmbH, 29525 Uelzen, Germany;
- Research-Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Brodaer Str. 2, 17033 Neubrandenburg, Germany
| |
Collapse
|
9
|
Yang F, Tian X, Han B, Zhao R, Li J, Zhang K. Tracking high-risk β-lactamase gene (bla gene) transfers in two Chinese intensive dairy farms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116593. [PMID: 33548670 DOI: 10.1016/j.envpol.2021.116593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Extended-spectrum β-lactam antibiotics are critically important antibiotics for humans, but their use in food-animals poses a potential threat for public health. This paper addressed the occurrence of high-risk β-lactamase genes (bla genes) in intensive dairy farms, and assessed the effects of different waste treatment technologies at dairies on the propagation and dissemination of bla genes. Results showed that ESBL genes (blaTEM-1, blaOXA-1), ampC β-lactamase genes (blaampC) and carbapenemase genes (blaGES-1, blaNDM) were prevalent in dairy cow waste, and even prevailed through each processing stage of solid manure and dairy wastewater. Significant levels of bla genes were present in the final lagoon (from 104 to 106 copies/mL, representing from 10% to 151%, of raw influent levels), raising the possibility of dissemination to the receiving environment. This concern was validated by the investigation on farmland that had long-term undergone wastewater irrigation, where causing an increase in bla gene levels in soils (approximately 1-3 orders of magnitude). More troublesomely, considerable levels of certain bla genes were still observed in the bedding material (up to 105 and 107 copies/g), which would directly threaten the dairy cow health. Otherwise, correlation analysis showed that both bacterial community and environmental factors played important roles in the bla genes abundances in dairy farms. This study demonstrated the prevalence of high-risk bla genes in dairy farms, and also underscored that dairy waste was a non-ignored great source of multidrug resistance for their surroundings.
Collapse
Affiliation(s)
- Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Run Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiajia Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
10
|
Plassard V, Gisbert P, Granier SA, Millemann Y. Surveillance of Extended-Spectrum β-Lactamase-, Cephalosporinase- and Carbapenemase-Producing Gram-Negative Bacteria in Raw Milk Filters and Healthy Dairy Cattle in Three Farms in Île-de-France, France. Front Vet Sci 2021; 8:633598. [PMID: 33644154 PMCID: PMC7902890 DOI: 10.3389/fvets.2021.633598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to test a surveillance protocol able to detect extended-spectrum β-lactamase (ESBL)-, cephalosporinase (AmpC)- and carbapenemase (CP)-producing gram-negative bacteria in three conveniently chosen dairy farms with known prior occurrences of ESBL- and CP-producing strains. The protocol was applied monthly for a year. At each visit, 10 healthy lactating dairy cows were rectally swabbed, and raw milk filters (RMFs) were sampled in two of the three farms. Bacterial isolation was based on a first screening step with MacConkey agar supplemented with 1 mg/L cefotaxime and commercial carbapenem-supplemented media. We failed to detect CP-producing strains but showed that ESBL-Escherichia strains, found in one farm only (13 strains), were closely associated with multi-drug resistance (12 out of 13). The limited number of conveniently selected farms and the fact that RMFs could not be retrieved from one of them limit the validity of our findings. Still, our results illustrate that ESBL-status changes monthly based on fecal swabs and negative herds should be qualified as “unsuspected” as proposed by previous authors. Although surveillance of farm statuses based on RMF analysis could theoretically allow for a better sensitivity than individual swabs, we failed to illustrate it as both farms where RMFs could be retrieved were constantly negative. Determination of CP herd-level status based on RMFs and our surveillance protocol was hindered by the presence of intrinsically resistant bacteria or strains cumulating multiple non-CP resistance mechanisms which means our protocol is not specific enough for routine monitoring of CP in dairy farms.
Collapse
Affiliation(s)
| | | | - Sophie A Granier
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Fougères, France
| | - Yves Millemann
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.,Laboratoire de Sécurité des Aliments de l'ANSES, Maisons-Alfort, France
| |
Collapse
|
11
|
The Effects of Feeding Waste Milk Containing Antimicrobial Residues on Dairy Calf Health. Pathogens 2021; 10:pathogens10020112. [PMID: 33499385 PMCID: PMC7911522 DOI: 10.3390/pathogens10020112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
A number of studies have reported that there is a high prevalence of antimicrobial-resistant faecal bacteria excreted by dairy calves. Although faecal shedding is influenced by a variety of factors, such as the environment and calf age, feeding milk with antimicrobial residues contributes significantly to an increased prevalence of antimicrobial-resistant (AMR) bacteria, such as extended spectrum beta-lactamase (ESBL)-producing E. coli. As a follow-up to the European Food Safety Authority (EFSA) Scientific Opinion on the risk of AMR development in dairy calves published in January 2017, this review aims to illustrate more recent research in this area, focusing on the period 2016 to 2020. A total of 19 papers are reviewed here. The vast majority assess the commensal faecal bacteria, E. coli, isolated from dairy calves, in particular its antimicrobial-resistant forms such as ESBL-producing E. coli and AmpC-producing E. coli. The effect of waste milk feeding on the prevalence of pathogens such as Salmonella spp. has also been investigated. Current research findings include positive effects on daily liveweight gain and other advantages for calf health from feeding waste milk compared to milk replacer. However, the negative effects, such as the demonstrable selection for antimicrobial-resistant bacteria, the shift in the intestinal microbiome and the possible negative consequences that these could have on global public health, should always be taken into consideration.
Collapse
|
12
|
Wang J, Xia YB, Huang XY, Wang Y, Lv LC, Lin QQ, Yi MY, Lu PL, Liu JH, Zeng ZL. Emergence of blaNDM-5 in Enterobacteriaceae Isolates from Companion Animals in Guangzhou, China. Microb Drug Resist 2020; 27:809-815. [PMID: 33216688 DOI: 10.1089/mdr.2020.0210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The occurrence and characterization of carbapenemase-producing Enterobacteriaceae from companion animals in Guangzhou, China, are investigated. Six isolates (2.3%, 6/257) were positive for blaNDM-5, that is, one Enterobacter cloacae, one Citrobacter freundii, and four Escherichia coli. Three E. coli isolates obtained from the same animal hospital were ST410 and showed identical pulse field gel electrophoresis pattern, resistance profiles, and resistance genes. blaNDM-5 was located on IncX3 (n = 5) and IncK2 (n = 1) plasmid, respectively. The presence of carbapenemase-producing Enterobacteriaceae among companion animals needs continued surveillance.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ying-Bi Xia
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin-Yi Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yan Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lu-Chao Lv
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qing-Qing Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meng-Ying Yi
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Pei-Lan Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
13
|
Merida-Vieyra J, De Colsa-Ranero A, Calderón-Castañeda Y, Aquino-Andrade A. Detection of CMY-type beta-lactamases in Escherichia coli isolates from paediatric patients in a tertiary care hospital in Mexico. Antimicrob Resist Infect Control 2020; 9:168. [PMID: 33121527 PMCID: PMC7596940 DOI: 10.1186/s13756-020-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background The aim of this study was to detect CMY-type beta-lactamases in E. coli isolates obtained from paediatric patients.
Methods In total, 404 infection-causing E. coli isolates resistant to third and fourth generation cephalosporins (3GC, 4GC) were collected from paediatric patients over a 2 years period. The identification and susceptibility profiles were determined with an automated microbiology system. Typing of blaCMY and other beta-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaVIM, blaIMP, blaKPC, blaNDM, blaOXA and blaGES) was realized by PCR and sequencing. Phenotypic detection of AmpC-type enzymes was performed using boronic acid (20 mg/mL) and cloxacillin (20 mg/mL) as inhibitors, and the production of extended-spectrum beta-lactamases was determined with the double-disk diffusion test with cefotaxime (CTX) and ceftazidime (CAZ) discs alone and in combination with clavulanic acid. The CarbaNP test and modified carbapenem inhibition method (mCIM) were used for isolates with decreased susceptibility to carbapenems. The clonal origin of the isolates was established by pulsed-field gel electrophoresis (PFGE), phylotyping method and multilocus sequence typing.
Results CMY-type beta-lactamases were detected in 18 isolates (4.5%). The allelic variants found were CMY-2 (n = 14) and CMY-42 (n = 4). Of the E. coli strains with CMY, the AmpC phenotypic production test was positive in 11 isolates with cloxacillin and in 15 with boronic acid. ESBL production was detected in 13 isolates. Coexistence with other beta-lactamases was observed such as CTX-M-15 ESBL and original spectrum beta-lactamases TEM-1 and TEM-190. In one isolate, the CarbaNP test was negative, the mCIM was positive, and OXA-48 carbapenemase was detected. Phylogroup A was the most frequent (n = 9) followed by B2, E and F (n = 2, respectively), and through PFGE, no clonal relationship was observed. Eleven different sequence types (ST) were found, with ST10 high-risk clone being the most frequent (n = 4). Seventy-two percent of the isolates were from health care-associated infections; the mortality rate was 11.1%.
Conclusions This is the first report in Mexico of E. coli producing CMY isolated from paediatric patients, demonstrating a frequency of 4.5%. In addition, this is the first finding of E. coli ST10 with CMY-2 and OXA-48.
Collapse
Affiliation(s)
- Jocelin Merida-Vieyra
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico
| | - Agustín De Colsa-Ranero
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico.,Department of Paediatric Infectious Diseases, Instituto Nacional de Pediatria, Mexico City, Mexico
| | | | - Alejandra Aquino-Andrade
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico.
| |
Collapse
|
14
|
Apostolakos I, Feudi C, Eichhorn I, Palmieri N, Fasolato L, Schwarz S, Piccirillo A. High-resolution characterisation of ESBL/pAmpC-producing Escherichia coli isolated from the broiler production pyramid. Sci Rep 2020; 10:11123. [PMID: 32636426 PMCID: PMC7341882 DOI: 10.1038/s41598-020-68036-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
The presence of extended-spectrum β-lactamase (ESBL) or plasmid-mediated AmpC β-lactamase (pAmpC)-producing Escherichia coli (ESBL/pAmpC-EC) in livestock is a public health risk given the likelihood of their transmission to humans via the food chain. We conducted whole genome sequencing on 100 ESBL/pAmpC-EC isolated from the broiler production to explore their resistance and virulence gene repertoire, characterise their plasmids and identify transmission events derived from their phylogeny. Sequenced isolates carried resistance genes to four antimicrobial classes in addition to cephalosporins. Virulence gene analysis assigned the majority of ESBL/pAmpC-EC to defined pathotypes. In the complex genetic background of ESBL/pAmpC-EC, clusters of closely related isolates from various production stages were identified and indicated clonal transmission. Phylogenetic comparison with publicly available genomes suggested that previously uncommon ESBL/pAmpC-EC lineages could emerge in poultry, while others might contribute to the maintenance and dissemination of ESBL/pAmpC genes in broilers. The majority of isolates from diverse E. coli lineages shared four dominant plasmids (IncK2, IncI1, IncX3 and IncFIB/FII) with identical ESBL/pAmpC gene insertion sites. These plasmids have been previously reported in diverse hosts, including humans. Our findings underline the importance of specific plasmid groups in the dissemination of cephalosporin resistance genes within the broiler industry and across different reservoirs.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy
| | - Claudia Feudi
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Nicola Palmieri
- Department for Farm Animals and Veterinary Public Health, University Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy.
| |
Collapse
|
15
|
Zelendova M, Dolejska M, Masarikova M, Jamborova I, Vasek J, Smola J, Manga I, Cizek A. CTX-M-producing Escherichia coli in pigs from a Czech farm during production cycle. Lett Appl Microbiol 2020; 71:369-376. [PMID: 32452042 DOI: 10.1111/lam.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
We evaluated the prevalence and epidemiology of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in pigs during production cycle on a Czech farm with the history of previous use of ceftiofur. ESBL-producing E. coli isolates were obtained from rectal swabs from pigs of different age groups (suckling piglets, weaned piglets, growers and sows). Collected samples were directly cultivated on MacConkey agar with cefotaxime (2 mg l-1 ), whereas intestinal swabs of slaughtered pigs and surface swabs from pig carcasses were also pre-enriched in buffered peptone water without antimicrobials before the cultivation. Clonal relationship of selected isolates was determined by XbaI pulse-field gel electrophoresis and multi-locus sequence typing. The transferability of plasmids carrying blaCTX-M genes was tested by conjugation experiments. From all examined samples, 141 (43·7%, n = 323) were positive for ESBL-producing E. coli. All ESBL-producing isolates showed resistance to multiple antimicrobials and were positive for blaCTX-M genes. The blaCTX-M-1 was carried by conjugative IncN/ST1 plasmids (c. 40-45 kb) while the blaCTX-M-15 was located on conjugative F plasmids with F:18:A5:B1 formula (c. 165 kb). This study demonstrated the persistence of CTX-M-positive E. coli isolates 2 months after banner of ceftiofur usage and indicated possible risk of transmission of these isolates to humans via the food chain.
Collapse
Affiliation(s)
- M Zelendova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Dolejska
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Masarikova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Jamborova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - J Vasek
- Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - J Smola
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Manga
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - A Cizek
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|