1
|
Alwehaidah MS, Alsabbagh M, Al-Kafaji G. Comprehensive analysis of mitochondrial DNA variants, mitochondrial DNA copy number and oxidative damage in psoriatic arthritis. Biomed Rep 2023; 19:85. [PMID: 37881602 PMCID: PMC10594069 DOI: 10.3892/br.2023.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Growing evidence suggests that abnormalities in mitochondrial DNA (mtDNA) are involved in the pathogenesis of various inflammatory and immuno-mediated diseases. The present study analysed the entire mitochondrial genome by next-generation sequencing (NGS) in 23 patients with psoriatic arthritis (PsA) and 20 healthy controls to identify PsA-related variants. Changes in mtDNA copy number (mtDNAcn) were also evaluated by quantitative polymerase chain reaction (qPCR) and mtDNA oxidative damage was measured using an 8-hydroxy-2'-deoxyguanosine assay. NGS analysis revealed a total of 435 variants including 187 in patients with PsA only and 122 in controls only. Additionally, 126 common variants were found, of which 2 variants differed significantly in their frequencies among patients and controls (P<0.05), and may be associated with susceptibility to PsA. A total of 33 missense variants in mtDNA-encoded genes for complexes I, III, IV and V were identified only in patients with PsA. Of them, 25 variants were predicted to be deleterious by affecting the functions and structures of encoded proteins, and 13 variants were predicted to affect protein's stability. mtDNAcn analysis revealed decreased mtDNA content in patients with PsA compared with controls (P=0.0001) but the decrease in mtDNAcn was not correlated with patients' age or inflammatory biomarkers (P>0.05). Moreover, a higher level of oxidative damage was observed in patients with PsA compared with controls (P=0.03). The results of the present comprehensive analysis of mtDNA in PsA revealed that certain mtDNA variants may be implicated in the predisposition/pathogenesis of PsA, highlighting the importance of NGS in the identification of mtDNA variants in PsA. The current results also demonstrated that decreased mtDNAcn in PsA may be a consequence of increased oxidative stress. These data provide valuable insights into the contribution of mtDNA defects to the pathogenesis of PsA. Additional studies in larger cohorts are needed to elucidate the role of mtDNA defects in PsA.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, City of Kuwait 31470, State of Kuwait
| | - Manhel Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
2
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Li C, Li X, Lin J, Cui Y, Shang H. Psoriasis and Progression of Parkinson’s Disease: a Mendelian Randomization Study. J Eur Acad Dermatol Venereol 2022; 36:2401-2405. [PMID: 35870136 DOI: 10.1111/jdv.18459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| | - Xiaoxue Li
- Department of Dermatology and Venerology, National Clinical Research Center for Geriatrics West China Hospital of Sichuan University Chengdu Sichuan China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
4
|
Alwehaidah MS, Al-Kafaji G, Bakhiet M, Alfadhli S. Next-generation sequencing of the whole mitochondrial genome identifies novel and common variants in patients with psoriasis, type 2 diabetes mellitus and psoriasis with comorbid type 2 diabetes mellitus. Biomed Rep 2021; 14:41. [PMID: 33728047 PMCID: PMC7953201 DOI: 10.3892/br.2021.1417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies have shown the role of mitochondrial DNA (mtDNA) variants in the pathogenesis of both psoriasis (Ps) and type 2 diabetes (T2D) amongst different ethnicities. However, no studies have investigated the mtDNA variants present in patients with Ps, T2D, and both Ps and T2D (Ps-T2D) in the Arab population. The entire mitochondrial genomes of Kuwaiti subjects with Ps, T2D, Ps-T2D and healthy controls were sequenced using Ion Torrent next-generation sequencing. A total of 36 novel mutations and 51 previously reported mutations were identified in the patient groups that were absent in the controls. Amongst the novel mutations, eight were non-synonymous and exhibited amino acid changes. Of these, two missense mutations (G5262A and A12397G) in the ND genes were detected in the Ps group and a C15735T missense mutation in the CYB gene was detected in Ps-T2D. Other known sequence variations were seen more frequently in all or certain patient groups compared with the controls (P<0.05). Additionally, the A8701G missense mutation in the ATPase 6 gene missense mutation was also observed in a higher frequency in the Ps group compared with the control. The present study is the first to perform a complete mitochondrial genome sequence analysis of Kuwaiti subjects with Ps, T2D and Ps-T2D, and both novel and known mtDNA variants were discovered. The patient-specific novel non-synonymous mutations may be co-responsible in the determination of these diseases. The higher frequency of certain mtDNA variants in the patients compared with the controls may suggest a role in predisposing patients to these diseases. Further functional analyses are required to reveal the role of the identified mutations in these disease conditions.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Suad Alfadhli
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| |
Collapse
|
5
|
Alwehaidah MS, Bakhiet M, AlFadhli S. Mitochondrial Haplogroup Reveals the Genetic Basis of Diabetes Mellitus Type 2 Comorbidity in Psoriasis. Med Princ Pract 2021; 30:62-68. [PMID: 32629455 PMCID: PMC7923845 DOI: 10.1159/000509937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Published data show a clear link between psoriasis (Ps) and the increasing prevalence of comorbid conditions, such as diabetes mellitus type 2 (DM2). The role of the mitochondrial genomic haplogroup in the potential coexistence of Ps and DM2 comorbidity is the subject of this study. MATERIAL AND METHODS Ninety-eight Kuwaiti individuals were recruited in 4 cohorts (20 healthy controls, 15 with DM2, 34 with Ps, and 29 with Ps and diabetes mellitus). An Ion Torrent S5XL was used to sequence mitochondrial DNA (mtDNA). χ2 test was used to assess differences in the distribution of each haplogroup between cases and controls (p < 0.05). The Bonferroni correction was applied (p < 0.004). The mtDNA haplogroups were analyzed by HaploGrep. RESULTS Haplogroups R0, U, J, T, N, L3, M, H, X, HV, R, and K were detected in the studied population. Haplogroup M had a high risk for Ps (odds ratio (OR) 4.0, p = 0.003). Haplogroup R0 and J had decreased the risk of DM2 (OR 0.28, p = 0.007). CONCLUSION Our results indicated that mtDNA haplogroups have a potential contribution to the pathogenesis of Ps and DM2 comorbidity. We show for the first time that the comorbidity of diabetes in Ps may be related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat, Kuwait,
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medical and Medicine Sciences, Arabian Gulf University, Manama, Bahrain
| | - Suad AlFadhli
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat, Kuwait
| |
Collapse
|
6
|
Li M, Luo X, Long X, Jiang P, Jiang Q, Guo H, Chen Z. Potential role of mitochondria in synoviocytes. Clin Rheumatol 2020; 40:447-457. [PMID: 32613391 DOI: 10.1007/s10067-020-05263-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Synoviocytes are located in the synovium lining layer, which is composed of macrophage-like synoviocytes (MLS) and fibroblast-like synoviocytes (FLS) with different characteristics. Mitochondria, which exist in most cells, are two membrane-covered organelles. In addition to providing the necessary ATP for synoviocytes, mitochondria are involved in the regulation of redox homeostasis and the integration of synoviocytes death signals. In recent years, mitochondrial dysfunction has been found in rheumatoid arthritis (RA) and osteoarthritis (OA). Interestingly, recent studies have started uncovering that mitochondria that were previously reported to play a role in chondrocytes or immune cells, but not known to have pronounced roles in synoviocytes, can actually play crucial roles in the regulation of the pathological properties of the synoviocytes. The purpose of this review is to summarize our current understanding of the key role of mitochondria in synoviocytes, including mitochondrial dysfunction in synoviocytes can induce and aggravate inflammatory responses and changes in mitochondrial structure and function with the involvement of multiple cytokines, signal pathway, and hypoxic state of synovial tissue alter the response of synoviocytes to apoptotic stimulation. Also, mitochondrial abnormalities in synoviocytes promote the synoviocytes invasion and proliferation.
Collapse
Affiliation(s)
- Muzhe Li
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xuling Luo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xin Long
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Peishi Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Qin Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Heng Guo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Zhiwei Chen
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
7
|
Environmental factors modulated ancient mitochondrial DNA variability and the prevalence of rheumatic diseases in the Basque Country. Sci Rep 2019; 9:20380. [PMID: 31892727 PMCID: PMC6938509 DOI: 10.1038/s41598-019-56921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
Among the factors that would explain the distribution of mitochondrial lineages in Europe, climate and diseases may have played an important role. A possible explanation lies in the nature of the mitochondrion, in which the energy generation process produces reactive oxygen species that may influence the development of different diseases. The present study is focused on the medieval necropolis of San Miguel de Ereñozar (13th-16th centuries, Basque Country), whose inhabitants presented a high prevalence of rheumatic diseases and lived during the Little Ice Age (LIA). Our results indicate a close relationship between rheumatic diseases and mitochondrial haplogroup H, and specifically between spondyloarthropathies and sub-haplogroup H2. One possible explanation may be the climate change that took place in the LIA that favoured those haplogroups that were more energy-efficient, such as haplogroup H, to endure lower temperatures and food shortage. However, it had a biological trade-off: the increased risk of developing rheumatic diseases.
Collapse
|
8
|
Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165:181-195. [DOI: 10.1016/j.bcp.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/09/2023]
|
9
|
Duhn PH, Sode J, Hagen CM, Christiansen M, Locht H. Mitochondrial haplogroups in patients with rheumatoid arthritis: No association with disease and disease manifestations. PLoS One 2017; 12:e0188492. [PMID: 29261674 PMCID: PMC5737896 DOI: 10.1371/journal.pone.0188492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To describe the distribution of specific mitochondrial DNA (mtDNA) haplogroups (hgs) in a cohort of patients with rheumatoid arthritis (RA). METHODS Two-hundred nineteen consecutive patients with RA had mtDNA isolated from their blood, sequenced and haplotyped. Patients were diagnosed according to the American College of Rheumatology (ACR)/European league against Rheumatism (EULAR) criteria. Demographic and clinical data were retrieved from the Danish nationwide database (DANBIO). Logistic regression analyses were performed to test for associations. RESULTS One-hundred eighty-four patients were eligible for analysis. Haplogroup frequencies were: H (n = 88; 47.8%), U (n = 37; 20.1%), T (n = 22; 12.0%), J (n = 16; 8.7%), K (n = 11; 5.9%), HV (n = 6; 3.3%) and V (n = 4; 2.2%). The distribution of individual hgs was identical to the background population. Radiographic erosions were significantly associated with hg clusters JT (OR = 2.37, 95% confidence interval (CI): 1.07-5.53, p = 0.038). Significantly fewer patients from hg cluster JT received biological treatment (OR = 0.17, 95% CI: 0.03-0.87, p = 0.038). Albeit, none of these associations were significant when corrected for multiple tests. CONCLUSION There was no significant association between mtDNA hgs and presence of RA or disease manifestations. There was an, albeit insignificant, overrepresentation of patients with hg JT among patients with erosive disease; however, slightly fewer patients in the JT group were treated with biological drugs.
Collapse
Affiliation(s)
- Pernille Hurup Duhn
- Department of Rheumatology Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg, Denmark
- * E-mail:
| | - Jacob Sode
- Department of Rheumatology Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg, Denmark
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
- Institute of Regional Health Research, Center Sønderjylland, University of Southern Denmark, Campusvej, Odense M, Denmark
| | - Christian Munch Hagen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
- Department of Biomedical Sciences, Faculty of Health and Life Science, University of Copenhagen, Blegdamsvej, Copenhagen N, Denmark
| | - Henning Locht
- Department of Rheumatology Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg, Denmark
| |
Collapse
|
10
|
Terrazzino S, Deantonio L, Cargnin S, Donis L, Pisani C, Masini L, Gambaro G, Canonico P, Genazzani A, Krengli M. Common European Mitochondrial Haplogroups in the Risk for Radiation-induced Subcutaneous Fibrosis in Breast Cancer Patients. Clin Oncol (R Coll Radiol) 2016; 28:365-72. [DOI: 10.1016/j.clon.2016.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/12/2023]
|