1
|
Luo Q, Ling Z, Huang X, Zuo Y. Association of IRS-1 and IRS-2 polymorphisms with predisposition to type-2 diabetes (T2D): a meta-analysis and trial sequential analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:837-851. [PMID: 37173295 DOI: 10.1080/15257770.2023.2211122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Background: Insulin Receptor Substrate (IRS) molecules play a major role in insulin signalling, and single nucleotide polymorphisms in the IRS-1 (rs1801278) and IRS-2 (rs1805097) gene has been associated with the predisposition to the development of type-2 diabetes (T2D) in some population. However, the observations remain contradictory. Discrepancies in the results have been attributed to several factors, and consideration of a smaller sample size is one of them. To reach a valid conclusion, we performed a meta-analysis of the genetic association between IRS-1 (rs1801278) and IRS-2 (rs1805097) polymorphism with a predisposition to T2D. Materials and Methods: The literature search was performed in different databases such as PubMed, Science Direct, and Scopus. All relevant articles were screened and based in inclusion and exclusion criteria eligible reports were identified. Baseline characteristics, genotype and allele frequencies were extracted from the eligible reports. The meta-analysis was performed by comprehensive meta-analysis software v3.3.070 and odds ratios, 95% confidence interval and probability values were calculated to find out association of IRS-1 and IRS-2 polymorphisms with rhinitis. Results: A total of seven studies comprising 1287 cases and 1638 control were considered for the present meta-analysis for the association of IRS-1 (rs1801278) polymorphism with T2D, and no significant association was observed. For IRS-2 (rs1805097) polymorphism, data from eight cohorts (cases: 1824, controls: 1786) were considered. The heterozygous genetic comparison models revealed a significant protective association against T2D predisposition (p = 0.017, OR = 0.841, 95% CI = 0.729 to 0.970). The trial sequential analysis revealed the requirement of additional case-control studies to draw a definitive conclusion for IRS-1 polymorphism. Conclusions: IRS-2 rs1805097 heterozygotes are protected from T2D development. However, IRS-1 (rs1801278) is not associated with a subject's proclivity for T2D.
Collapse
Affiliation(s)
- Qiaoyan Luo
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Zhifa Ling
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Xiaojia Huang
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Ying Zuo
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| |
Collapse
|
2
|
Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, Babazadeh Baghan A, Khorashadizadeh ME, Taghehchian N, Moghbeli M. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics 2022; 16:11. [PMID: 35366956 PMCID: PMC8976361 DOI: 10.1186/s40246-022-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that leads to the dysfunction of various tissues and organs, including eyes, kidneys, and cardiovascular system. According to the World Health Organization, diabetes prevalence is 8.8% globally among whom about 90% of cases are type 2 diabetes. There are not any significant clinical manifestations in the primary stages of diabetes. Therefore, screening can be an efficient way to reduce the diabetic complications. Over the recent decades, the prevalence of diabetes has increased alarmingly among the Middle East population, which has imposed exorbitant costs on the health care system in this region. Given that the genetic changes are among the important risk factors associated with predisposing people to diabetes, we examined the role of single-nucleotide polymorphisms (SNPs) in the pathogenesis of diabetes among Middle East population. In the present review, we assessed the molecular pathology of diabetes in the Middle East population that paves the way for introducing an efficient SNP-based diagnostic panel for diabetes screening among the Middle East population. Since, the Middle East has a population of 370 million people; the current review can be a reliable model for the introduction of SNP-based diagnostic panels in other populations and countries around the world.
Collapse
|
3
|
Pei J, Wang B, Wang D. Current Studies on Molecular Mechanisms of Insulin Resistance. J Diabetes Res 2022; 2022:1863429. [PMID: 36589630 PMCID: PMC9803571 DOI: 10.1155/2022/1863429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetes is a metabolic disease that raises the risk of microvascular and neurological disorders. Insensitivity to insulin is a characteristic of type II diabetes, which accounts for 85-90 percent of all diabetic patients. The fundamental molecular factor of insulin resistance may be impaired cell signal transduction mediated by the insulin receptor (IR). Several cell-signaling proteins, including IR, insulin receptor substrate (IRS), and phosphatidylinositol 3-kinase (PI3K), have been recognized as being important in the impaired insulin signaling pathway since they are associated with a large number of proteins that are strictly regulated and interact with other signaling pathways. Many studies have found a correlation between IR alternative splicing, IRS gene polymorphism, the complicated regulatory function of IRS serine/threonine phosphorylation, and the negative regulatory role of p85 in insulin resistance and diabetes mellitus. This review brings up-to-date knowledge of the roles of signaling proteins in insulin resistance in order to aid in the discovery of prospective targets for insulin resistance treatment.
Collapse
Affiliation(s)
- Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Baochun Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, Hainan 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Hainan 570228, China
- State Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Hainan 570228, China
| |
Collapse
|
4
|
Bakhtiyari A, Haghani K, Bakhtiyari S, Zaimy MA, Noori-Zadeh A, Gheysarzadeh A, Darabi S, Seidkhani-Nahal A, Amraei M, Alipourfard I. Association between ABCC8 Ala1369Ser Polymorphism (rs757110 T/G) and Type 2 Diabetes Risk in an Iranian Population: A Case-Control Study. Endocr Metab Immune Disord Drug Targets 2020; 21:441-447. [PMID: 32660410 DOI: 10.2174/1871530320666200713091827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Glucose metabolism increases ATP/ADP ratio within the β-cells and causes ATP-sensitive K+ (KATP) channel closure and consequently insulin secretion. The enhanced activity of the channel may be a mechanism contributing to the reduced first-phase of insulin secretion observed in T2DM. There is no study to date in the Kurdish ethnic group regarding the relationship between SNP Ala1369Ser (rs757110 T/G) of SUR1 gene and T2DM, and additionally, the results of this association in other populations are inconsistent. Therefore, our aim in this study was to explore the possible association between SNP Ala1369Ser and type 2 diabetes in an Iranian Kurdish ethnic group. METHODS In this study, we checked out the frequency of alleles and genotypes of SNP Ala1369Ser in T2DM individuals (207 patients; men/women: 106/101) and non-T2DM subjects (201 controls; men/women: 97/104), and their effects on anthropometric, clinical, and biochemical parameters. Genomic DNA was extracted from the leukocytes of blood specimens using a standard method. We amplified the ABCC8 rs757110 polymorphic site (T/G) using a polymerase chain reaction (PCR) method and a designed primer pair. To perform the PCR-RFLP method, the amplicons were subjected to restriction enzymes and the resulting fragments separated by gel electrophoresis. RESULTS The frequency of the G-allele of Ala1369Ser polymorphism was significantly (0.01) higher in the case group than the control group (19% vs. 9%, respectively). In the dominant model (TT vs. TG+GG), there was a significant relationship between this SNP and an increased risk of T2DM (P = 0.00). T2DM patients with TG+GG genotypes had significantly higher fasting plasma insulin and HOMA-IR than those who had the TT genotype (P = 0.02 and 0.01, respectively). CONCLUSION Our study is the first study to investigate the association between Ala1369Ser ABCC8 genetic variation and T2DM in the Kurdish population of western Iran. The obtained results clearly show that Ala1369Ser polymorphism of ABCC8 is associated with an increased risk of T2DM in this population.
Collapse
Affiliation(s)
- Amin Bakhtiyari
- Department of Genetics, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.,Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad A Zaimy
- Department of Medical Genetics, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Gheysarzadeh
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Seidkhani-Nahal
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mansour Amraei
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Alipourfard
- School of Pharmacy, Faculty of Sciences, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Ijaz A, Babar S, Sarwar S, Shahid SU. The combined role of allelic variants of IRS-1 and IRS-2 genes in susceptibility to type2 diabetes in the Punjabi Pakistani subjects. Diabetol Metab Syndr 2019; 11:64. [PMID: 31404179 PMCID: PMC6683393 DOI: 10.1186/s13098-019-0459-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder characterized by a high level of glucose in the blood. Both genetic and environmental factors interact to cause diabetes. Insulin receptor substrate (IRS) proteins have a significant part in insulin signaling pathways. We aimed to investigate the relationship of type 2 diabetes with a Gly972Arg (G972R) variant of the IRS-1 gene and Gly1057Asp (G1057D) polymorphism of IRS-2 gene in the population of Punjab, Pakistan. METHODS We collected 926 samples, 500 healthy controls (fasting blood sugar < 99 mg/dL, random blood sugar < 126 mg/dL) and 426 cases with diabetes (fasting blood sugar > 99 mg/dL, random blood sugar > 126 mg/dL). Several anthropometric measurements were measured. Statistical analysis was performed by using SPSS to determine the allele group/genotype frequency of the selected variants in the study population. RESULTS The genotyping results of G972R by RLFP-PCR showed the allelic frequency of G = 0.68 and R = 0.32 in controls while G = 0.71 and R = 0.29 in the cases. The minor R allele had a slightly higher frequency in the cases than the controls (OR = 0.86, CI 0.706-1.052, p = 0.17). The genotyping results of G1057D showed allelic frequency G = 0.74 and D = 0.26 in the controls while G = 0.961 and D = 0.29 in the cases. The minor D allele appeared to be a risk allele for this SNP although the difference in the allele frequencies was not statistically significant (OR = 1.55, CI 0.961-1.41, p = 0.108). The combined genotype analysis showed that the difference in the allele and genotype frequencies reached statistical difference between the cases and the controls as well as the odds ratio substantially increased when the R allele (G972R) was present together with D allele (G1057D) in any combination. When the association of single variants with the lipid traits was observed, only D allele (G1057D) showed significant association with TG, HDL and LDL, however when the analysis was repeated for combined genotypes using general linear model, many more significant associations between the genotype where D allele and R allele are together, were seen with many lipid traits. CONCLUSION In conclusion, the single nucleotide polymorphisms with low-modest effect size may not affect the phenotype individually but when in combination, the effect becomes stronger and more visible, therefore, for the SNP association studies, the more the number of SNPs included in the analysis, the more meaningful the results.
Collapse
Affiliation(s)
- Anam Ijaz
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Sana Babar
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Sumbal Sarwar
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Saleem Ullah Shahid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Mandour I, Darwish R, Fayez R, Naguib M, El-Sayegh S. TCF7L2 Gene Polymorphisms and Susceptibility to Type 2 Diabetes Mellitus, A Pilot Study. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2) variants are known risk factors of type 2 diabetes (T2DM).However, this association is not consistent among different populations. The current study aimed at investigating the relationship between rs 7903146, rs 12255372 variants of TCF7L2 and susceptibility to T2DM and different metabolic parameters in a cohort of Egyptian type 2 diabetic patients. This case control study included 60 diabetic patients and 60 matched unrelated healthy controls. Genotyping was performed by using Real Time-PCR. The frequency of genotypes, alleles, anthropometric measures, glycemic indices, HOMA-IR and lipid profile were evaluated in patients and control. Regarding rs 7903146, TT genotype was more frequent in healthy controls (43.3%) than diabetic patients (20%) (OR = 0.291, 95% CI = 0.108-0.788, P = 0.015). T allele was more frequent in healthy control (61.7%) than diabetic patients (44.2%) and it was associated with lower risk of diabetes (OR = 0.492, 95% CI = 0.294-0.823, P = 0.007).However, there was no significant difference between patients with CC, CT and TT genotypes of rs7903146 regarding HbA1C (p=0.549), HOMA-IR (p=0.359), total cholesterol (p=0.482). In contrast, T allele of rs12255372 had no significant relation to diabetes risk (OR = 0.602, 95% CI = 0.361-1.005, P = 0.052). There was no statistically significant difference of frequency of any rs12255372 genotypes between cases and controls In addition, patients with GG,GT, TT genotypes of rs12255372 had no significant difference regarding HbA1C (p=0.393), HOMA-IR (p=0.985), total cholesterol (p=0.368). The study confirmed the association of TCF7L2 (rs 7903146) and T2DM, while failed to detect any association between TCF7L2 (rs 12255372) and susceptibility to T2DM. No significant difference in respect to metabolic parameters between different genotypes of rs7930146 and rs12255372.
Collapse
Affiliation(s)
- Iman Mandour
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| | - Rania Darwish
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| | - Randa Fayez
- Department of Internal Medicine, Kasr Al-Ainy, Cairo University, Egypt
| | - Mervat Naguib
- Department of Internal Medicine, Kasr Al-Ainy, Cairo University, Egypt
| | - Sarah El-Sayegh
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| |
Collapse
|
7
|
Gong L, Li R, Ren W, Wang Z, Wang Z, Yang M, Zhang S. The FOXO1 Gene-Obesity Interaction Increases the Risk of Type 2 Diabetes Mellitus in a Chinese Han Population. J Korean Med Sci 2017; 32:264-271. [PMID: 28049237 PMCID: PMC5219992 DOI: 10.3346/jkms.2017.32.2.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Here, we aimed to study the effect of the forkhead box O1-insulin receptor substrate 2 (FOXO1-IRS2) gene interaction and the FOXO1 and IRS2 genes-environment interaction for the risk of type 2 diabetes mellitus (T2DM) in a Chinese Han population. We genotyped 7 polymorphism sites of FOXO1 gene and IRS2 gene in 780 unrelated Chinese Han people (474 cases of T2DM, 306 cases of healthy control). The risk of T2DM in individuals with AA genotype for rs7986407 and CC genotype for rs4581585 in FOXO1 gene was 2.092 and 2.57 times higher than that with GG genotype (odds ratio [OR] = 2.092; 95% confidence interval [CI] = 1.178-3.731; P = 0.011) and TT genotype (OR = 2.571; 95% CI = 1.404-4.695; P = 0.002), respectively. The risk of T2DM in individuals with GG genotype for Gly1057Asp in IRS2 gene was 1.42 times higher than that with AA genotype (OR = 1.422; 95% CI = 1.037-1.949; P = 0.029). The other 4 single nucleotide polymorphisms (SNPs) had no significant association with T2DM (P > 0.05). Multifactor dimensionality reduction (MDR) analysis showed that the interaction between SNPs rs7986407 and rs4325426 in FOXO1 gene and waist was the best model confirmed by interaction analysis, closely associating with T2DM. There was an increased risk for T2DM in the case of non-obesity with genotype combined AA/CC, AA/AC or AG/AA for rs7986407 and rs4325426, and obesity with genotype AA for rs7986407 or AA for rs4325426 (OR = 3.976; 95% CI = 1.156-13.675; P value from sign test [P(sign)] = 0.025; P value from permutation test [P(perm)] = 0.000-0.001). Together, this study indicates an association of FOXO1 and IRS2 gene polymorphisms with T2DM in Chinese Han population, supporting FOXO1-obesity interaction as a key factor for the risk of T2DM.
Collapse
Affiliation(s)
- Lilin Gong
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Rong Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Ren
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zengchan Wang
- Laboratory for Disease and Gene, Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Public Health, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maosheng Yang
- Laboratory for Disease and Gene, Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Department of Public Health, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Disorders Genes and Department of Pharmacology, Jishou University, Jishou, China
| | - Suhua Zhang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Quantitative assessment of genetic testing for type 2 diabetes mellitus based on findings of genome-wide association studies. Ann Epidemiol 2016; 26:816-818.e6. [PMID: 27751632 DOI: 10.1016/j.annepidem.2016.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/26/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022]
|
9
|
Kodama S, Fujihara K, Ishiguro H, Horikawa C, Ohara N, Yachi Y, Tanaka S, Shimano H, Kato K, Hanyu O, Sone H. Meta-analytic research on the relationship between cumulative risk alleles and risk of type 2 diabetes mellitus. Diabetes Metab Res Rev 2016; 32:178-86. [PMID: 26265102 DOI: 10.1002/dmrr.2680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/01/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our aim is to examine the dose-response association between cumulative genetic risk and actual risk of type 2 diabetes mellitus (T2DM) and the influence of adjustment for covariates on T2DM risk through a comprehensive meta-analysis of observational studies. METHODS Electronic literature search using EMBASE and MEDLINE (from 2003 to 2014) was conducted for cross-sectional or longitudinal studies that presented the odds ratio (OR) for T2DM in each group with categories based on the total number of risk alleles (RAs) carried (RAtotal ) using at least two single-nucleotide polymorphisms. Spline regression model was used to determine the shape of the relationship between the difference from the referent group of each study in RAtotal (ΔRAtotal ) and the natural logarithms of ORs (log OR) for T2DM. RESULTS Sixty-five eligible studies that included 68 267 cases among 182 603 participants were analysed. In both crude and adjusted ORs, defined by adjusting the risk for at least two confounders among age, gender and body mass index, the slope of the log OR for T2DM became less steep as the ΔRAtotal increased. In the analysis limited to 14 cross-sectional and four longitudinal studies presenting both crude and adjusted ORs, regression curves of both ORs in relation to ΔRAtotal were almost identical. CONCLUSION Using only single-nucleotide polymorphisms for T2DM screening was of limited value. However, when genotypic T2DM risk was considered independently from risk in relation to covariates, it was suggested that genetic profiles might have a supplementary role related to conventional T2DM risk factors in identifying individuals at high risk of T2DM. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Faculty of Medicine, Niigata, Japan
| | - Kazuya Fujihara
- Department of Internal Medicine, University of Tsukuba Institute of Clinical Medicine, Ibaraki, Japan
| | - Hajime Ishiguro
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Chika Horikawa
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan
| | - Nobumasa Ohara
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Faculty of Medicine, Niigata, Japan
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Yoko Yachi
- Department of Administrative Dietetics, Faculty of Health and Nutrition, Yamanashi Gakuin University, Yamanashi, Japan
| | - Shiro Tanaka
- Department of Clinical Trial, Design and Management, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine, University of Tsukuba Institute of Clinical Medicine, Ibaraki, Japan
| | - Kiminori Kato
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Faculty of Medicine, Niigata, Japan
| | - Osamu Hanyu
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| |
Collapse
|
10
|
Li Q, Qiao Y, Wang C, Zhang G, Zhang X, Xu L. Associations between two single-nucleotide polymorphisms (rs1801278 and rs2943641) of insulin receptor substrate 1 gene and type 2 diabetes susceptibility: a meta-analysis. Endocrine 2016; 51:52-62. [PMID: 26582067 DOI: 10.1007/s12020-015-0770-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
Abstract
The objective of the study is to assess the association between rs1801278 and rs2943641 of insulin receptor substrate 1 gene (IRS1) and the susceptibility to type 2 diabetes. A literature search strategy was conducted to identify all references lists of relevant studies. The fixed or random effect model was used to calculate the pooled ORs on the basis of heterogeneity. Further analyses were performed to explore the sources of heterogeneity by sensitivity analysis, meta-regression analysis, and subgroup analysis. There was significant association between rs1801278 and type 2 diabetes risk in recessive model (AA vs. GA + GG, p = 0.043) and codominant model (AA vs. GG, p = 0.007). Subgroup analysis showed that the association between rs1801278 and type 2 diabetes risk was significant in dominant model (GA + AA vs. GG, p = 0.044), codominant model (GA vs. GG, p = 0.039), codominant model (AA vs. GG, p = 0.044), overdominant model (GG + AA vs. GA, p = 0.037) in Asian and codominant model (AA vs. GG, p = 0.039) in Caucasian of rs1801278. The association between rs2943641 and type 2 diabetes risk was significant in codominant model (CT vs. CC, p = 0.023) in Caucasian. This meta-analysis suggests that rs1801278 may play a role in type 2 diabetes risk, especially in Asian. It also indicates that rs2943641 may be associated with type 2 diabetes risk in Caucasian. Further larger studies should be performed to warrant confirmation.
Collapse
Affiliation(s)
- Qiuyan Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yuandong Qiao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Chuntao Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Guangfa Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xuelong Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
11
|
Khodaeian M, Enayati S, Tabatabaei-Malazy O, Amoli MM. Association between Genetic Variants and Diabetes Mellitus in Iranian Populations: A Systematic Review of Observational Studies. J Diabetes Res 2015; 2015:585917. [PMID: 26587547 PMCID: PMC4637497 DOI: 10.1155/2015/585917] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Diabetes mellitus as the most prevalent metabolic disease is a multifactorial disease which is influenced by environmental and genetic factors. In this systematic review, we assessed the association between genetic variants and diabetes/its complications in studies with Iranian populations. METHODS Google Scholar, PubMed, Scopus, and Persian web databases were systematically searched up to January 2014. The search terms were "gene," "polymorphism," "diabetes," and "diabetic complications"; nephropathy, retinopathy, neuropathy, foot ulcer, and CAD (coronary artery diseases); and Persian equivalents. Animal studies, letters to editor, and in vitro studies were excluded. RESULTS Out of overall 3029 eligible articles, 88 articles were included. We found significant association between CTLA-4, IL-18, VDR, TAP2, IL-12, and CD4 genes and T1DM, HNFα and MODY, haptoglobin, paraoxonase, leptin, TCF7L2, calreticulin, ERα, PPAR-γ2, CXCL5, calpain-10, IRS-1 and 2, GSTM1, KCNJ11, eNOS, VDR, INSR, ACE, apoA-I, apo E, adiponectin, PTPN1, CETP, AT1R, resistin, MMP-3, BChE K, AT2R, SUMO4, IL-10, VEGF, MTHFR, and GSTM1 with T2DM or its complications. DISCUSSION We found some controversial results due to heterogeneity in ethnicity and genetic background. We thought genome wide association studies on large number of samples will be helpful in identifying diabetes susceptible genes as an alternative to studying individual candidate genes in Iranian populations.
Collapse
Affiliation(s)
- Mehrnoosh Khodaeian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M. Amoli
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
13
|
Jiang F, Li S, Pan L, Jia C. Association of the G1057D polymorphism in insulin receptor substrate 2 gene with type 2 diabetes mellitus: a meta-analysis. J Diabetes Complications 2015; 29:731-6. [PMID: 25959789 DOI: 10.1016/j.jdiacomp.2015.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/02/2015] [Accepted: 04/22/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The G1057D polymorphism in insulin receptor substrate (IRS)-2 gene is associated with type 2 diabetes mellitus (T2DM) risk, but results in published literatures are controversial. In addition, the effect of obesity as a modifier on this association is also inconsistent. Thus, this meta-analysis was performed to assess the above-mentioned association. METHODS A comprehensive search was performed to identify case-control or cohort studies (from 1990 to 2014) of the aforementioned association. The I(2) statistic was used to examine between-study heterogeneity. Fixed or random effect model was selected based on heterogeneity test among studies. Publication bias was estimated using modified Egger's regression test. RESULTS Nine articles with ten studies were included. After excluding studies deviated from Hardy-Weinberg equilibrium (HWE) in controls, results showed a significant association of D allele with reduced T2DM risk in dominant (OR = 0.825, 95% CI: 0.705-0.965) and codominant (OR = 0.857, 95% CI: 0.763-0.964) models, but no significant association in recessive (OR = 0.806, 95% CI: 0.628-1.035) model. For studies stratified by obesity, after excluding studies deviated from HWE in controls, no significant association of D allele with T2DM risk was found in three inherited models in obese group; however, a significant protective effect of D allele was observed in dominant (OR = 0.714, 95% CI: 0.533-0.958), recessive (OR = 0.438, 95% CI: 0.253-0.760) and codominant (OR = 0.706, 95% CI: 0.565-0.883) models in non-obese group. CONCLUSIONS This meta-analysis suggested that D allele of G1057D polymorphism have a significant effect on reduced risk of T2DM, and obesity is a modifier of this association. This result needs to be confirmed by further studies.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Epidemiology and Biostatistics, Shandong University, P. R. China
| | - Suyun Li
- Department of Epidemiology and Biostatistics, Shandong University, P. R. China
| | - Lulu Pan
- Department of Epidemiology and Biostatistics, Shandong University, P. R. China
| | - Chongqi Jia
- Department of Epidemiology and Biostatistics, Shandong University, P. R. China.
| |
Collapse
|
14
|
Golshani H, Haghani K, Dousti M, Bakhtiyari S. Association of TNF-α 308 G/A Polymorphism With Type 2 Diabetes: A Case-Control Study in the Iranian Kurdish Ethnic Group. Osong Public Health Res Perspect 2015; 6:94-9. [PMID: 25938018 PMCID: PMC4411339 DOI: 10.1016/j.phrp.2015.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 12/03/2022] Open
Abstract
Objectives Tumor necrosis factor-α (TNF-α) plays roles in the development of obesity, insulin resistance, and possibility of Type 2 diabetes mellitus (T2DM). The objective of the current study was to evaluate the association of TNF-α promoter−308 G/A polymorphism with T2DM. Methods In all, 1038 patients with T2DM and 1023 normoglycemic controls were included in this study. All participants were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method. Genotypic and allelic frequencies were then analyzed in each group. Serum lipids, fasting glucose, fasting serum insulin, homeostatic model assessment of insulin resistance, and hemoglogin A1c levels were determined by conventional methods. Results The allelic frequency of the A allele was significantly different between case and control participants (p = 0.006). Genotypes GA and AA were found to be significantly associated with 2.24- and 3.18-fold increased risk for T2DM, respectively. Similarly, the dominant model of -308 G/A polymorphism was found to have a higher risk for T2DM (odds ratio = 2.34, p = 0.001). Individuals with T2DM carrying the GA + AA genotypes of -308 G/A variation had significantly lower fasting plasma insulin than those carrying GG genotype. Conclusion Our findings revealed that there is an association between the TNF-α promoter -308 G/A polymorphism and T2DM in this population.
Collapse
Affiliation(s)
- Hasan Golshani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Majid Dousti
- Department of Parasitology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
15
|
Shokouhi S, Haghani K, Borji P, Bakhtiyari S. Association between PGC-1alpha gene polymorphisms and type 2 diabetes risk: a case-control study of an Iranian population. Can J Diabetes 2014; 39:65-72. [PMID: 25282005 DOI: 10.1016/j.jcjd.2014.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/29/2014] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) gene could play a role in the onset of type 2 diabetes mellitus. The aim of this study was to explore the possible associations among polymorphisms Gly482Ser, Thr394Thr and Thr528Thr of the PGC-1alpha gene and the risk of type 2 diabetes in Kurdish-Iranians. METHODS DNA specimens from all 173 type 2 diabetes subjects and 173 normoglycemic subjects were genotyped by the polymerase chain reaction-restriction fragment length polymorphism method. Genotypic and allelic frequencies were analyzed in each group. Serum lipids, fasting glucose, fasting serum insulin, homeostasis model assessment of insulin resistance and glycated hemoglobin levels were determined using the conventional methods. The data were analyzed using SPSS software. RESULTS The GA genotype of Gly482Ser was associated with a significant susceptibility for type 2 diabetes (odds ratio 5.23, p<0.000). Furthermore, the GA genotype of Thr528Thr had a higher risk for type 2 diabetes (odds ratio 2.37, p<0.002). Normoglycemic persons carrying the GA+AA genotypes of Gly482Ser variation had significantly lower high-density lipoprotein cholesterol in comparison with persons having GG genotype. In comparison with GG genotype carriers, normoglycemic subjects carrying the GA+AA genotypes of Thr394Thr variation had significantly higher fasting blood sugar, fasting serum insulin and homeostasis model assessment of insulin resistance. Normoglycemic subjects with the GA+AA genotypes of Thr528Thr variation had significantly higher levels of low-density lipoprotein cholesterol compared with subjects having the GG genotype. Type 2 diabetes subjects carrying the GA+AA genotypes of this polymorphism had significantly higher waist-hip ratio in comparison with the GG genotype carriers. We also found that haplotype 394-GG/482-GA/528-GG of PGC-1alpha was significantly associated with higher risk of type 2 diabetes. CONCLUSIONS Our findings revealed significant associations between PGC-1alpha Gly482Ser and Thr528Thr polymorphisms and type 2 diabetes in Kurdish-Iranians.
Collapse
Affiliation(s)
- Shabnam Shokouhi
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Parveneh Borji
- Department of Biology, Faculty of Basic Sciences, Payame Noor University, Tehran, Iran
| | - Salar Bakhtiyari
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|