1
|
Kok DE, Saunders R, Nelson A, Smith D, Ford D, Mathers JC, McKay JA. Influence of maternal folate depletion on Art3 DNA methylation in the murine adult brain; potential consequences for brain and neurocognitive health. Mutagenesis 2024; 39:196-204. [PMID: 38417824 PMCID: PMC11040152 DOI: 10.1093/mutage/geae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024] Open
Abstract
The developmental origins of health and disease hypothesis suggest early-life environment impacts health outcomes throughout the life course. In particular, epigenetic marks, including DNA methylation, are thought to be key mechanisms through which environmental exposures programme later-life health. Adequate maternal folate status before and during pregnancy is essential in the protection against neural tube defects, but data are emerging that suggest early-life folate exposures may also influence neurocognitive outcomes in childhood and, potentially, thereafter. Since folate is key to the supply of methyl donors for DNA methylation, we hypothesize that DNA methylation may be a mediating mechanism through which maternal folate influences neurocognitive outcomes. Using bisulphite sequencing, we measured DNA methylation of five genes (Art3, Rsp16, Tspo, Wnt16, and Pcdhb6) in the brain tissue of adult offspring of dams who were depleted of folate (n = 5, 0.4 mg folic acid/kg diet) during pregnancy (~19-21 days) and lactation (mean 22 days) compared with controls (n = 6, 2 mg folic acid/kg diet). Genes were selected as methylation of their promoters had previously been found to be altered by maternal folate intake in mice and humans across the life course, and because they have potential associations with neurocognitive outcomes. Maternal folate depletion was significantly associated with Art3 gene hypomethylation in subcortical brain tissue of adult mice at 28 weeks of age (mean decrease 6.2%, P = .03). For the other genes, no statistically significant differences were found between folate depleted and control groups. Given its association with neurocognitive outcomes, we suggest Art3 warrants further study in the context of lifecourse brain health. We have uncovered a potential biomarker that, once validated in accessible biospecimens and human context, may be useful to track the impact of early-life folate exposure on later-life neurocognitive health, and potentially be used to develop and monitor the effects of interventions.
Collapse
Affiliation(s)
- Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen Stippeneng 4, 6708 WE Wageningen Wageningen Campus l Building 124 (Helix), Wageningen, The Netherlands
| | - Rachael Saunders
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Andrew Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Darren Smith
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Dianne Ford
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - John C Mathers
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Room M2.060, 2nd floor William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jill A McKay
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
2
|
Chang HL, Chen GR, Hsiao PJ, Chiu CC, Tai MC, Kao CC, Tsai DJ, Su H, Chen YH, Chen WT, Su SL. Decisive evidence corroborates a null relationship between MTHFR C677T and chronic kidney disease: A case-control study and a meta-analysis. Medicine (Baltimore) 2020; 99:e21045. [PMID: 32702845 PMCID: PMC7373545 DOI: 10.1097/md.0000000000021045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous meta-analyses have explored the association between the C677T polymorphism of methyltetrahydrofolate reductase (MTHFR) and chronic kidney disease (CKD) but there were no studies with a decisive conclusion. Furthermore, the high heterogeneity among different populations is not yet interpreted. OBJECTIVES This study used trial sequential analysis (TSA) to evaluate whether the nowadays conclusion supported by current cumulative samples. We also applied case-weighted meta-regression to explore the potential gene-environment interactions. METHODS For the first stage of this study we conducted a case-control study involving 847 dialysis patients from 7 hemodialysis centers in Taipei during 2015 to 2018 and 755 normal controls from a health center in the Tri-Service General Hospital. The second stage combined the results from the first stage with previous studies. The previous studies were collected from PubMed, EMBASE, and Web of Science databases before January 2018. RESULTS From the case-control study, the T allele of MTHFR C677T appeared to have a protective effect on end-stage renal disease compared with the C allele [odds ratio (OR): 0.80, 95% CI (confidence interval) = 0.69-0.93]. However, the meta-analysis contradicted the results in Asian (OR = 1.12, 95% CI = 0.96-1.30). The same analysis was also applied in Caucasian and presented similar results from Asian (OR = 1.18, 95% CI = 0.98-1.42). The TSA showed our case-control study to be the decisive sample leading to a null association among Asian population. The high heterogeneity (I = 75%) could explain the contradictory results between the case-control study and the meta-analysis. However, further case-weighted meta-regression did not find any significant interaction between measured factors and MTHFR C677T on CKD. CONCLUSIONS High heterogeneities were found in both Caucasian and Asian, which caused the null relationship in meta-analysis while there were significant effects in individual studies. Future studies should further explore the high heterogeneity that might be hidden in unmeasured gene-environment interactions, to explain the diverse findings among different populations.
Collapse
Affiliation(s)
- Hsueh-Lu Chang
- School of Public Health
- School of Dentistry
- Center for General Education, National Defense Medical Center, Taipei
| | | | - Po-Jen Hsiao
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital
| | - Chih-Chien Chiu
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taoyuan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Chung-Cheng Kao
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taoyuan
| | - Dung-Jang Tsai
- School of Public Health
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei
| | - Hao Su
- Department of Health Industry Management, Kainan University, Taoyuan
| | | | - Wei-Teing Chen
- Division of Thoracic Medicine, Department of Medicine, Cheng Hsin General Hospital
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | | |
Collapse
|
3
|
Naushad SM, Rama Devi AR, Hussain T, Alrokayan SA, Janaki Ramaiah M, Kutala VK. In silico analysis of the structural and functional implications of SLC19A1 R27H polymorphism. J Genet 2019; 98:85. [PMID: 31544789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In view of the documented association of solute carrier family 19 member 1 (SLC19A1) G80A (R27H) polymorphism with the risk for different types of cancers and systemic lupus erythematosus (SLE), we have reanalysed the case-control study on breast cancer to ascertain the conditions in which this polymorphic variant exerts the risk of breast cancer. Association statistics have revealed that this polymorphism exerts the risk for breast cancer under the conditions of low folate intake, and in the absence of well-documented protective polymorphism in cytosolic serine hydroxymethyltransferase. To substantiate this observation, we have developed a homology model of SLC19A1 using glycerol-3-phosphate transporter (d1pw4a) as a template where 73% of the residues were modelled at 90% confidence while 162 residues were modelled ab initio. The wild and mutant proteins shared same topology in S3, S5, S6, S7, S11 and S12 transmembrane domains. The topology varied at S1 (28-43 residue vs 28-44 residue), S2 (66-87 residue vs 69-87 residue), S4 (117-140 residue vs 117-139 residue), S8 (305-325 residue vs 305-324 residue), S9 (336-356 residue vs 336-355residue), and S10 (361-386 residue vs 361-385 residue) transmembrane domains between wild versus mutant proteins. S2 domain is shortened by three amino acid residues in the mutant while in other domains the difference corresponds to one amino acid residue. The 3DLigandSite analysis revealed that the metallic-ligand-binding sites at 273Trp, 277Asn, 379Leu, 439Phe and 442Leu are although unaffected, there is a loss of active sites corresponding to nonmetallic ligand binding. Tetrahydrofolate and methotrexate have lesser affinity towards the mutant protein than the wild protein. To conclude, the R27H polymorphism affects the secondary and tertiary structures of SLC19A1 with the significant loss in ligand-binding sites.
Collapse
|
4
|
Maternal Haplotypes in DHFR Promoter and MTHFR Gene in Tuning Childhood Acute Lymphoblastic Leukemia Onset-Latency: Genetic/Epigenetic Mother/Child Dyad Study (GEMCDS). Genes (Basel) 2019; 10:genes10090634. [PMID: 31443485 PMCID: PMC6770441 DOI: 10.3390/genes10090634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) peaks around age 2–4, and in utero genetic epigenetic mother-fetus crosstalk might tune ALL onset during childhood life. Folate genes variably interact with vitamin status on ALL risk and prognosis. We investigated DHFR and MTHFR gene variants in 235 ALL children and their mothers to disclose their role in determining ALL onset age and survival. Pyrosequence of DHFR 19bp ins/del (rs70991108; W/D), MTHFR C677T (rs1801133; C>T), and MTHFR A1298C (rs1801131; A>C) was assessed in children and in 72% of mothers for dyad-analysis comparison. DHFR DD-children had delayed ALL onset compared to WW-children (7.5 ± 4.8 vs. 5.2 ± 3.7 years; P = 0.002) as well as MTHFR 1298 CC-children compared to AA-children (8.03 ± 4.8 vs. 5.78 ± 4.1 years; P = 0.006), and according to the strong linkage disequilibrium between MTHFR 677 T-allele and 1298C-allele, MTHFR TT-children showed early mean age of onset though not significant. Offspring of MTHFR 677 TT-mothers had earlier ALL onset compared to offspring of 677 CC-mothers (5.4 ± 3.3 vs. 7 ± 5.3 years; P = 0.017). DHFR/MTHFR 677 polymorphism combination influenced onset age by comparing DD/CC vs. WW/TT children (8.1 ± 5.7 vs. 4.7 ± 2.1 years; P = 0.017). Moreover, mother-child genotype combination gave 5.5-years delayed onset age in favor of DD-offspring of 677 CC-mothers vs. WW-offspring of 677 TT-mothers, and it was further confirmed including any D-carrier children and any 677 T-carrier mothers (P = 0.00052). Correction for multiple comparisons maintained statistical significance for DHFR ins/del and MTHFR A1298C polymorphisms. Unexpectedly, among the very-early onset group (<2.89 years; 25th), DD-genotype inversely clustered in children and mothers (4.8% vs. 23.8% respectively), and accordingly ALL offspring of homozygous DD-mothers had increased risk to have early-onset (adjusted OR (odds ratio) = 3.08; 1.1–8.6; P = 0.03). The opposite effect DHFR promoter variant has in tuning ALL onset-time depending on who is the carrier (i.e., mother or child) might suggest a parent-origin-effect of the D-allele or a two-faced epigenetic role driven by unbalanced folate isoform availability during the in-utero leukemogenesis responsible for the wide postnatal childhood ALL latency.
Collapse
|
5
|
Zhu J, Jia W, Wu C, Fu W, Xia H, Liu G, He J. Base Excision Repair Gene Polymorphisms and Wilms Tumor Susceptibility. EBioMedicine 2018; 33:88-93. [PMID: 29937070 PMCID: PMC6085508 DOI: 10.1016/j.ebiom.2018.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is the main mechanism to repair endogenous DNA lesions caused by reactive oxygen species. BER deficiency is linked with cancer susceptibility and premature aging. Single nucleotide polymorphisms (SNPs) within BER genes have been implicated in various human malignancies. Nevertheless, a comprehensive investigation of their association with Wilms tumor susceptibility is lacking. In this study, 145 cases and 531 sex and age-matched healthy controls were recruited. We systematically genotyped 18 potentially functional SNPs in six core BER pathway genes, using a candidate SNP approach. Logistic regression was employed to evaluate odds ratio (OR) and 95% confidence interval (CI) adjusted for age and gender. Several SNPs showed protective effects against Wilms tumor. Significant associations with Wilms tumor susceptibility were shown for hOGG1 rs1052133 (dominant: adjusted OR = 0.66, 95% CI = 0.45-0.96, P = .030), FEN1 rs174538 (dominant: adjusted OR = 0.66, 95% CI = 0.45-0.95, P = .027; recessive: adjusted OR = 0.54, 95% CI = 0.32-0.93 P = .027), and FEN1 rs4246215 (dominant: adjusted OR = 0.55, 95% CI = 0.38-0.80, P = .002) polymorphisms. Stratified analysis was performed by age, gender, and clinical stage. Moreover, there was evidence of functional implication of these significant SNPs suggested by online expression quantitative trait locus (eQTL) analysis. Our findings indicate that common SNPs in BER genes modify susceptibility to Wilms tumor.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Caixia Wu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
6
|
Mazul AL, Siega-Riz AM, Weinberg CR, Engel SM, Zou F, Carrier KS, Basta PV, Vaksman Z, Maris JM, Diskin SJ, Maxen C, Naranjo A, Olshan AF. A family-based study of gene variants and maternal folate and choline in neuroblastoma: a report from the Children's Oncology Group. Cancer Causes Control 2016; 27:1209-18. [PMID: 27541142 PMCID: PMC5025391 DOI: 10.1007/s10552-016-0799-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Neuroblastoma is a childhood cancer of the sympathetic nervous system with embryonic origins. Previous epidemiologic studies suggest maternal vitamin supplementation during pregnancy reduces the risk of neuroblastoma. We hypothesized offspring and maternal genetic variants in folate-related and choline-related genes are associated with neuroblastoma and modify the effects of maternal intake of folate, choline, and folic acid. METHODS The Neuroblastoma Epidemiology in North America (NENA) study recruited 563 affected children and their parents through the Children's Oncology Group's Childhood Cancer Research Network. We used questionnaires to ascertain pre-pregnancy supplementation and estimate usual maternal dietary intake of folate, choline, and folic acid. We genotyped 955 genetic variants related to folate or choline using DNA extracted from saliva samples and used a log-linear model to estimate both child and maternal risk ratios and stratum-specific risk ratios for gene-environment interactions. RESULTS Overall, no maternal or offspring genotypic results met criteria for a false discovery rate (FDR) Q-value <0.2. Associations were also null for gene-environment interaction with pre-pregnancy vitamin supplementation, dietary folic acid, and folate. FDR-significant gene-choline interactions were found for offspring SNPs rs10489810 and rs9966612 located in MTHFD1L and TYMS, respectively, with maternal choline dietary intake dichotomized at the first quartile. CONCLUSION These results suggest that variants related to one-carbon metabolism are not strongly associated with neuroblastoma. Choline-related variants may play a role; however, the functional consequences of the interacting variants are unknown and require independent replication.
Collapse
Affiliation(s)
- Angela L Mazul
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA.
| | - Anna Maria Siega-Riz
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kathryn S Carrier
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| | - Patricia V Basta
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
- Biospecimen Processing Center, University of North Carolina, Chapel Hill, NC, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charlene Maxen
- Showers Center for Childhood Cancer and Blood Disorder, Akron Children's Hospital, Akron, OH, USA
| | - Arlene Naranjo
- Department of Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Campus Box 7435, 2106 McGavran-Greenberg Hall, Chapel Hill, NC, 27599-7435, USA
| |
Collapse
|
7
|
Huang X, Gao Y, He J, Cai J, Ta N, Jiang H, Zhu J, Zheng J. The association between RFC1 G80A polymorphism and cancer susceptibility: Evidence from 33 studies. J Cancer 2016; 7:144-52. [PMID: 26819637 PMCID: PMC4716846 DOI: 10.7150/jca.13303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023] Open
Abstract
Aberrant folate metabolism is closely related to tumorigenesis. Genetic variations in the Reduced folate carrier 1 (RFC1) may alter the progress of folate metabolism, and thereby cause the initiation and progress of the cancer. Considerable studies have performed to investigate the association between RFC1 G80A (rs1051266) polymorphism and cancer susceptibility, but the conclusions were conflicting. Therefore, we conducted a meta-analysis to reevaluate the association of RFC1 G80A polymorphism with cancer risk. PubMed and EMBASE were searched for eligible studies. The association of RFC1 G80A polymorphism and cancer risk was evaluated by the pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs). The significant association was found between RFC1 G80A polymorphism and hematological malignance susceptibility (A vs. G: OR=1.11, 95%CI=1.003-1.23, P=0.045; GA vs. GG: OR=1.18, 95%CI=1.06-1.31, P=0.002; AA+GA vs. GG: OR=1.18, 95%CI=1.07-1.29, P=0.001). Stratified analysis by ethnicity indicated that the association became more prominent among Caucasians (GA vs. GG: OR=1.28, 95%CI=1.12-1.45, P<0.001; AA+GA vs. GG: OR=1.21, 95%CI=1.08-1.36, P=0.001). In term of the cancer type, this polymorphism significantly increased the risk of acute lymphoblast leukemia (GA vs. GG: OR=1.13, 95%CI=1.001-1.28, P=0.048; AA+GA vs. GG: OR=1.28, 95%CI=1.13-1.46, P<0.001) and acute myeloid leukemia (GA vs. GG: OR=2.57, 95%CI=1.37-4.85, P=0.003). No significant association between RFC1 G80A polymorphism and overall solid cancer risk was observed, but a protective association with digestive cancer risk was found (GA vs. GG: OR=0.89, 95%CI= 0.81-0.99, P=0.030). The comprehensive meta-analysis encouraged the notion that RFC1 G80A polymorphism may play an important role in hematopoietic system malignance. These findings need further validation in the large multicenter investigations.
Collapse
Affiliation(s)
- Xiaoyi Huang
- 1. Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yisha Gao
- 1. Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jing He
- 2. Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Cai
- 3. Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Na Ta
- 1. Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hui Jiang
- 1. Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jinhong Zhu
- 4. Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
- ✉ Corresponding authors: Jianming Zheng, Department of Pathology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200438, China, Tel /Fax: (+86-021) 81873689, E-mail: ; Jinhong Zhu, Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China, Tel: (+86-0451) 86298786, Fax: (+86-0451) 86298398, E-mail:
| | - Jianming Zheng
- 1. Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- ✉ Corresponding authors: Jianming Zheng, Department of Pathology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200438, China, Tel /Fax: (+86-021) 81873689, E-mail: ; Jinhong Zhu, Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, Heilongjiang, China, Tel: (+86-0451) 86298786, Fax: (+86-0451) 86298398, E-mail:
| |
Collapse
|