1
|
Perrins RD, McCarthy LA, Robinson A, Spry KL, Cognet V, Ferreira A, Porter J, Garcίa CE, Rodriguez MÁ, Lopez D, Perera I, Conlon K, Barrientos A, Coulter T, Pace A, Hale SJM, Ferrari E, Bachrati CZ. Targeting Ultrasmall Gold Nanoparticles with cRGD Peptide Increases the Uptake and Efficacy of Cytotoxic Payload. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224013. [PMID: 36432299 PMCID: PMC9696180 DOI: 10.3390/nano12224013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 05/06/2023]
Abstract
Cyclic arginyl-glycyl-aspartic acid peptide (cRGD) peptides show a high affinity towards αVβ3 integrin, a receptor overexpressed in many cancers. We aimed to combine the versatility of ultrasmall gold nanoparticles (usGNP) with the target selectivity of cRGD peptide for the directed delivery of a cytotoxic payload in a novel design. usGNPs were synthesized with a modified Brust-Schiffrin method and functionalized via amide coupling and ligand exchange and their uptake, intracellular trafficking, and toxicity were characterized. Our cRGD functionalized usGNPs demonstrated increased cellular uptake by αVβ3 integrin expressing cells, are internalized via clathrin-dependent endocytosis, accumulated in the lysosomes, and when loaded with mertansine led to increased cytotoxicity. Targeting via cRGD functionalization provides a mechanism to improve the efficacy, tolerability, and retention of therapeutic GNPs.
Collapse
Affiliation(s)
| | - Lee-Anne McCarthy
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Angela Robinson
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Kelly L. Spry
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Valentin Cognet
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Avelino Ferreira
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - John Porter
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | | | | | - Diana Lopez
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Ibon Perera
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Kelly Conlon
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Africa Barrientos
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Tom Coulter
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Alessandro Pace
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Sarah J. M. Hale
- Midatech Pharma Plc, 1 Caspian Point, Caspian Way, Cardiff CF10 4DQ, UK
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Csanad Z. Bachrati
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
- Correspondence: ; Tel.: +44-1522-886787
| |
Collapse
|
2
|
Deng L, Liang P, Cui H. Pseudotyped lentiviral vectors: Ready for translation into targeted cancer gene therapy? Genes Dis 2022. [PMID: 37492721 PMCID: PMC10363566 DOI: 10.1016/j.gendis.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy holds great promise for curing cancer by editing the deleterious genes of tumor cells, but the lack of vector systems for efficient delivery of genetic material into specific tumor sites in vivo has limited its full therapeutic potential in cancer gene therapy. Over the past two decades, increasing studies have shown that lentiviral vectors (LVs) modified with different glycoproteins from a donating virus, a process referred to as pseudotyping, have altered tropism and display cell-type specificity in transduction, leading to selective tumor cell killing. This feature of LVs together with their ability to enable high efficient gene delivery in dividing and non-dividing mammalian cells in vivo make them to be attractive tools in future cancer gene therapy. This review is intended to summarize the status quo of some typical pseudotypings of LVs and their applications in basic anti-cancer studies across many malignancies. The opportunities of translating pseudotyped LVs into clinic use in cancer therapy have also been discussed.
Collapse
|
3
|
Tagging and Capturing of Lentiviral Vectors Using Short RNAs. Int J Mol Sci 2021; 22:ijms221910263. [PMID: 34638603 PMCID: PMC8508951 DOI: 10.3390/ijms221910263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022] Open
Abstract
Lentiviral (LV) vectors have emerged as powerful tools for transgene delivery ex vivo but in vivo gene therapy applications involving LV vectors have faced a number of challenges, including the low efficiency of transgene delivery, a lack of tissue specificity, immunogenicity to both the product encoded by the transgene and the vector, and the inactivation of the vector by the human complement cascade. To mitigate these issues, several engineering approaches, involving the covalent modification of vector particles or the incorporation of specific protein domains into the vector’s envelope, have been tested. Short synthetic oligonucleotides, including aptamers bound to the surface of LV vectors, may provide a novel means with which to retarget LV vectors to specific cells and to shield these vectors from neutralization by sera. The purpose of this study was to develop strategies to tether nucleic acid sequences, including short RNA sequences, to LV vector particles in a specific and tight fashion. To bind short RNA sequences to LV vector particles, a bacteriophage lambda N protein-derived RNA binding domain (λN), fused to the measles virus hemagglutinin protein, was used. The λN protein bound RNA sequences bearing a boxB RNA hairpin. To test this approach, we used an RNA aptamer specific to the human epidermal growth factor receptor (EGFR), which was bound to LV vector particles via an RNA scaffold containing a boxB RNA motif. The results obtained confirmed that the EGFR-specific RNA aptamer bound to cells expressing EGFR and that the boxB containing the RNA scaffold was bound specifically to the λN RNA binding domain attached to the vector. These results show that LV vectors can be equipped with nucleic acid sequences to develop improved LV vectors for in vivo applications.
Collapse
|
4
|
Yang D, Lin T, Li C, Harrison AG, Geng T, Wang P. A critical role for MSR1 in vesicular stomatitis virus infection of the central nervous system. iScience 2021; 24:102678. [PMID: 34169243 PMCID: PMC8208900 DOI: 10.1016/j.isci.2021.102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/14/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
Macrophage scavenger receptor 1 (MSR1) plays an important role in host defense to bacterial infections, M2 macrophage polarization, and lipid homeostasis. However, its physiological function in viral pathogenesis remains poorly defined. Herein, we report that MSR1 facilitates vesicular stomatitis virus (VSV) infection in the central nervous system. Msr1-deficient (Msr1−/−) mice presented reduced morbidity, mortality, and viral loads in the spinal cord following lethal VSV infection, along with normal viremia and innate immune responses, compared to Msr1+/− littermates and wild-type mice. Msr1 expression was most significantly upregulated in the spinal cord, the predominant target of VSV. Mechanistically, through its extracellular domains, MSR1 interacted with VSV surface glycoprotein and facilitated its cellular entry in a low-density lipoprotein receptor-dependent manner. In conclusion, our results demonstrate that MSR1 serves as a cofactor for VSV cellular entry and facilitates its infection preferentially in the spinal cord. MSR1 contributes to VSV pathogenesis in mice MSR1 is highly upregulated and facilitates VSV infection in the central nervous system MSR1 facilitates cellular entry of VSV in an LDLR family-dependent manner MSR1 interacts with VSV glycoprotein G via its extracellular domains
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cen Li
- Department of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tingting Geng
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
5
|
Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98:2895-2911. [PMID: 29143726 DOI: 10.1099/jgv.0.000980] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic virus (OV) therapy is an anti-cancer approach that uses viruses that preferentially infect, replicate in and kill cancer cells. Vesicular stomatitis virus (VSV, a rhabdovirus) is an OV that is currently being tested in the USA in several phase I clinical trials against different malignancies. Several factors make VSV a promising OV: lack of pre-existing human immunity against VSV, a small and easy to manipulate genome, cytoplasmic replication without risk of host cell transformation, independence of cell cycle and rapid growth to high titres in a broad range of cell lines facilitating large-scale virus production. While significant advances have been made in VSV-based OV therapy, room for improvement remains. Here we review recent studies (published in the last 5 years) that address 'old' and 'new' challenges of VSV-based OV therapy. These studies focused on improving VSV safety, oncoselectivity and oncotoxicity; breaking resistance of some cancers to VSV; preventing premature clearance of VSV; and stimulating tumour-specific immunity. Many of these approaches were based on combining VSV with other therapeutics. This review also discusses another rhabdovirus closely related to VSV, Maraba virus, which is currently being tested in Canada in phase I/II clinical trials.
Collapse
Affiliation(s)
- Sébastien A Felt
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
6
|
Chu Y, Oum YH, Carrico IS. Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 2015; 487:95-103. [PMID: 26499046 DOI: 10.1016/j.virol.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation.
Collapse
Affiliation(s)
- Yanjie Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Yoon Hyeun Oum
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Isaac S Carrico
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
7
|
Hastie E, Cataldi M, Marriott I, Grdzelishvili VZ. Understanding and altering cell tropism of vesicular stomatitis virus. Virus Res 2013; 176:16-32. [PMID: 23796410 DOI: 10.1016/j.virusres.2013.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV's broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV's neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, United States
| | | | | | | |
Collapse
|