1
|
Yin WC, Satkunendran T, Mo R, Morrissy S, Zhang X, Huang ES, Uusküla-Reimand L, Hou H, Son JE, Liu W, Liu YC, Zhang J, Parker J, Wang X, Farooq H, Selvadurai H, Chen X, Ngan ESW, Cheng SY, Dirks PB, Angers S, Wilson MD, Taylor MD, Hui CC. Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Dev Cell 2018; 48:167-183.e5. [PMID: 30554998 DOI: 10.1016/j.devcel.2018.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/07/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023]
Abstract
SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.
Collapse
Affiliation(s)
- Wen-Chi Yin
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Thevagi Satkunendran
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rong Mo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiaoyun Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eunice Shiao Huang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Huayun Hou
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Weifan Liu
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yulu C Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jianing Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Jessica Parker
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xin Wang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamza Farooq
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hayden Selvadurai
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Elly Sau-Wai Ngan
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - Steven Y Cheng
- Department of developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Peter B Dirks
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss. J Assoc Res Otolaryngol 2017; 18:649-670. [PMID: 28815315 PMCID: PMC5612923 DOI: 10.1007/s10162-017-0634-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Gene therapy, or the treatment of human disease using genetic material, for inner ear dysfunction is coming of age. Recent progress in developing gene therapy treatments for genetic hearing loss has demonstrated tantalizing proof-of-principle in animal models. While successful translation of this progress into treatments for humans awaits, there is growing interest from patients, scientists, clinicians, and industry. Nonetheless, it is clear that a number of hurdles remain, and expectations for total restoration of auditory function should remain tempered until these challenges have been overcome. Here, we review progress, prospects, and challenges for gene therapy in the inner ear. We focus on technical aspects, including routes of gene delivery to the inner ear, choice of vectors, promoters, inner ear targets, therapeutic strategies, preliminary success stories, and points to consider for translating of these successes to the clinic.
Collapse
Affiliation(s)
- Hena Ahmed
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Shubina-Oleinik
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Cheng YF, Tong M, Edge ASB. Destabilization of Atoh1 by E3 Ubiquitin Ligase Huwe1 and Casein Kinase 1 Is Essential for Normal Sensory Hair Cell Development. J Biol Chem 2016; 291:21096-21109. [PMID: 27542412 DOI: 10.1074/jbc.m116.722124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/22/2022] Open
Abstract
Proneural basic helix-loop-helix transcription factor, Atoh1, plays a key role in the development of sensory hair cells. We show here that the level of Atoh1 must be accurately controlled by degradation of the protein in addition to the regulation of Atoh1 gene expression to achieve normal cellular patterning during development of the cochlear sensory epithelium. The stability of Atoh1 was regulated by the ubiquitin proteasome system through the action of Huwe1, a HECT-domain, E3 ubiquitin ligase. An interaction between Huwe1 and Atoh1 could be visualized by a proximity ligation assay and was confirmed by co-immunoprecipitation and mass spectrometry. Transfer of a lysine 48-linked polyubiquitin chain to Atoh1 by Huwe1 could be demonstrated both in intact cells and in a cell-free system, and proteasome inhibition or Huwe1 silencing increased Atoh1 levels. The interaction with Huwe1 and polyubiquitylation were blocked by disruption of casein kinase 1 (CK1) activity, and mass spectrometry and mutational analysis identified serine 334 as an important phosphorylation site for Atoh1 ubiquitylation and subsequent degradation. Phosphorylation by CK1 thus targeted the protein for degradation. Development of an extra row of inner hair cells in the cochlea and an approximate doubling in the number of afferent synapses was observed after embryonic or early postnatal deletion of Huwe1 in cochlear-supporting cells, and hair cells died in the early postnatal period when Huwe1 was knocked out in the developing cochlea. These data indicate that the regulation of Atoh1 by the ubiquitin proteasome pathway is necessary for hair cell fate determination and survival.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- From the Program in Speech and Hearing Bioscience and Technology, Harvard University/Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, the Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and the Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| | - Mingjie Tong
- the Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and the Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| | - Albert S B Edge
- From the Program in Speech and Hearing Bioscience and Technology, Harvard University/Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, the Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and the Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|