1
|
Jiang Y, Jiang B, Wang Z, Li Y, Cheung JCW, Yin B, Wong SHD. Nucleic Acid Armor: Fortifying RNA Therapeutics through Delivery and Targeting Innovations for Immunotherapy. Int J Mol Sci 2024; 25:8888. [PMID: 39201574 PMCID: PMC11354913 DOI: 10.3390/ijms25168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
RNA is a promising nucleic acid-based biomolecule for various treatments because of its high efficacy, low toxicity, and the tremendous availability of targeting sequences. Nevertheless, RNA shows instability and has a short half-life in physiological environments such as the bloodstream in the presence of RNAase. Therefore, developing reliable delivery strategies is important for targeting disease sites and maximizing the therapeutic effect of RNA drugs, particularly in the field of immunotherapy. In this mini-review, we highlight two major approaches: (1) delivery vehicles and (2) chemical modifications. Recent advances in delivery vehicles employ nanotechnologies such as lipid-based nanoparticles, viral vectors, and inorganic nanocarriers to precisely target specific cell types to facilitate RNA cellular entry. On the other hand, chemical modification utilizes the alteration of RNA structures via the addition of covalent bonds such as N-acetylgalactosamine or antibodies (antibody-oligonucleotide conjugates) to target specific receptors of cells. The pros and cons of these technologies are enlisted in this review. We aim to review nucleic acid drugs, their delivery systems, targeting strategies, and related chemical modifications. Finally, we express our perspective on the potential combination of RNA-based click chemistry with adoptive cell therapy (e.g., B cells or T cells) to address the issues of short duration and short half-life associated with antibody-oligonucleotide conjugate drugs.
Collapse
Affiliation(s)
- Yi Jiang
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - Bolong Jiang
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - Zhenru Wang
- Medical College, Jining Medical University, Jining 272000, China;
| | - Yuxi Li
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China;
| | - Bohan Yin
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
YANG W, GU Y. [Research Progress of Engineered Exosomes in the Treatment of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:535-540. [PMID: 39147708 PMCID: PMC11331261 DOI: 10.3779/j.issn.1009-3419.2024.101.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 08/17/2024]
Abstract
The best treatment for non-small cell lung cancer is early surgical treatment, but most lung cancer is diagnosed at an advanced stage. The main treatment methods are drug and radiotherapy. However, drug resistance or no signifi cant effect of the above treatment methods is inevitable. Therefore, more methods are urgently needed for the treatment of lung cancer. Studies have confirmed that engineered exosomes have good clinical application potential in cardiovascular diseases, tumors, tissue regeneration and repair. This paper summarizes the application of engineered exosomes in the treatment of lung cancer at home and abroad.
.
Collapse
|
3
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Wang W, Chen X, Chen J, Xu M, Liu Y, Yang S, Zhao W, Tan S. Engineering lentivirus envelope VSV-G for liver targeted delivery of IDOL-shRNA to ameliorate hypercholesterolemia and atherosclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102115. [PMID: 38314097 PMCID: PMC10835450 DOI: 10.1016/j.omtn.2024.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Lentiviral vectors (LVs) have been widely used as a tool for gene therapies. However, tissue-selective transduction after systemic delivery remains a challenge. Inducible degrader of low-density lipoprotein receptor is an attractive target for treating hypercholesterolemia. Here, a liver-targeted LV, CS8-LV-shIDOL, is developed by incorporating a hepatocyte-targeted peptide derived from circumsporozoite protein (CSP) into the lentivirus envelope for liver-targeted delivery of IDOL-shRNA (short hairpin RNA) to alleviate hypercholesterolemia. Tail-vein injection of CS8-LV-shIDOL results in extremely high accumulation in liver and nearly undetectable levels in other organs in mice. In addition, it shows superior therapeutic efficacy in lowering serum low-density lipoprotein cholesterol (LDL-C) and reducing atherosclerotic lesions over unmodified LV-shIDOL in hyperlipidemic mice. Mechanically, the envelope-engineered CS8-LV-shIDOL can enter liver cells via low-density lipoprotein receptor-related protein (LRP). Thus, this study provides a novel approach for liver-targeted delivery of IDOL-shRNA to treat hypercholesterolemia by using an envelope-engineered LV, and this delivery system has great potential for liver-targeted transgene therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Xuemei Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jiali Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Liu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Shijie Yang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Gholap AD, Gupta J, Kamandar P, Bhowmik DD, Rojekar S, Faiyazuddin M, Hatvate NT, Mohanto S, Ahmed MG, Subramaniyan V, Kumarasamy V. Harnessing Nanovaccines for Effective Immunization─A Special Concern on COVID-19: Facts, Fidelity, and Future Prospective. ACS Biomater Sci Eng 2024; 10:271-297. [PMID: 38096426 DOI: 10.1021/acsbiomaterials.3c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Juhi Gupta
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Pallavi Kamandar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Deblina D Bhowmik
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Faiyazuddin
- Department of Pharmaceutics, School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Almarghalani DA, Boddu SHS, Ali M, Kondaka A, Ta D, Shah RA, Shah ZA. Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regen Res 2022; 17:1717-1725. [PMID: 35017419 PMCID: PMC8820693 DOI: 10.4103/1673-5374.332129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH’s destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Akhila Kondaka
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Devin Ta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Rayyan A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
7
|
Bai J, Duan J, Liu R, Du Y, Luo Q, Cui Y, Su Z, Xu J, Xie Y, Lu W. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells. Asian J Pharm Sci 2020; 15:461-471. [PMID: 32952669 PMCID: PMC7486479 DOI: 10.1016/j.ajps.2019.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Natural exosomes can express specific proteins and carbohydrate molecules on the surface and hence have demonstrated the great potentials for gene therapy of cancer. However, the use of natural exosomes is restricted by their low transfection efficiency. Here, we report a novel targeting tLyp-1 exosome by gene recombinant engineering for delivery of siRNA to cancer and cancer stem cells. To reach such a purpose, the engineered tLyp-1-lamp2b plasmids were constructed and amplified in Escherichia coli. The tLyp-1-lamp2b plasmids were further used to transfect HEK293T tool cells and the targeting tLyp-1 exosomes were isolated from secretion of the transfected HEK293T cells. Afterwards, the artificially synthesized siRNA was encapsulated into targeting tLyp-1 exosomes by electroporation technology. Finally, the targeting siRNA tLyp-1 exosomes were used to transfect cancer or cancer stem cells. Results showed that the engineered targeting tLyp-1 exosomes had a nanosized structure (approximately 100 nm) and high transfection efficiency into lung cancer and cancer stem cells. The function verifications demonstrated that the targeting siRNA tLyp-1 exosomes were able to knock-down the target gene of cancer cells and to reduce the stemness of cancer stem cells. In conclusion, the targeting tLyp-1 exosomes are successfully engineered, and can be used for gene therapy with a high transfection efficiency. Therefore, the engineered targeting tLyp-1 exosomes offer a promising gene delivery platform for future cancer therapy.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yafei Du
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian Luo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yinuo Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhanbo Su
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiarui Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Patar A, Dockery P, McMahon S, Howard L. Ex Vivo Rat Transected Spinal Cord Slices as a Model to Assess Lentiviral Vector Delivery of Neurotrophin-3 and Short Hairpin RNA against NG2. BIOLOGY 2020; 9:biology9030054. [PMID: 32183469 PMCID: PMC7150802 DOI: 10.3390/biology9030054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/06/2023]
Abstract
The failure of the spinal cord to regenerate can be attributed both to a lack of trophic support for regenerating axons and to upregulation of inhibitory factors such as chondroitin sulphate proteoglycans including NG2 following injury. Lentiviral vector-mediated gene therapy is a possible strategy for treating spinal cord injury (SCI). This study investigated the effect of lentiviral vectors expressing Neurotrophin-3 (NT-3) and short-hairpin RNA against NG2 (NG2 sh) to enhance neurite outgrowth in in vitro and ex vivo transection injury models. Conditioned medium from cells transduced with NT-3 or shNG2 lentiviruses caused a significant increase in neurite length of primary dorsal root ganglia neurons compared to the control group in vitro. In an ex vivo organotypic slice culture (OSC) transduction with Lenti-NT-3 promoted axonal growth. Transducing OSCs with a combination of Lenti-NT-3/NG2 sh lead to a further increase in axonal growth but only in injured slices and only within the region adjacent to the site of injury. These findings suggest that the combination of lentiviral NT-3 and NG2 sh reduced NG2 levels and provided a more favourable microenvironment for neuronal regeneration after SCI. This study also shows that OSCs may be a useful platform for studying glial scarring and potential SCI treatments.
Collapse
Affiliation(s)
- Azim Patar
- Discipline of Anatomy, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 YR71 Galway, Ireland; (A.P.); (P.D.)
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Peter Dockery
- Discipline of Anatomy, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 YR71 Galway, Ireland; (A.P.); (P.D.)
| | - Siobhan McMahon
- Discipline of Anatomy, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 YR71 Galway, Ireland; (A.P.); (P.D.)
- Correspondence: (S.M.); (L.H.); Tel.: +353-91495268 (L.H.)
| | - Linda Howard
- Regenerative Medicine Institute (REMEDI), College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 YR71 Galway, Ireland
- Correspondence: (S.M.); (L.H.); Tel.: +353-91495268 (L.H.)
| |
Collapse
|
9
|
Cong W, Shi Y, Qi Y, Wu J, Gong L, He M. Viral approaches to study the mammalian brain: Lineage tracing, circuit dissection and therapeutic applications. J Neurosci Methods 2020; 335:108629. [PMID: 32045571 DOI: 10.1016/j.jneumeth.2020.108629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/09/2023]
Abstract
Viral vectors are widely used to study the development, function and pathology of neural circuits in the mammalian brain. Their flexible payloads with customizable choices of tool genes allow versatile applications ranging from lineage tracing, circuit mapping and functional interrogation, to translational and therapeutic applications. Different applications have distinct technological requirements, therefore, often utilize different types of virus. This review introduces the most commonly used viruses for these applications and some recent advances in improving the resolution and throughput of lineage tracing, the efficacy and selectivity of circuit tracing and the specificity of cell type targeting.
Collapse
Affiliation(s)
- Wei Cong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanqing Qi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
|
11
|
RNA Viruses as Tools in Gene Therapy and Vaccine Development. Genes (Basel) 2019; 10:genes10030189. [PMID: 30832256 PMCID: PMC6471356 DOI: 10.3390/genes10030189] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
RNA viruses have been subjected to substantial engineering efforts to support gene therapy applications and vaccine development. Typically, retroviruses, lentiviruses, alphaviruses, flaviviruses rhabdoviruses, measles viruses, Newcastle disease viruses, and picornaviruses have been employed as expression vectors for treatment of various diseases including different types of cancers, hemophilia, and infectious diseases. Moreover, vaccination with viral vectors has evaluated immunogenicity against infectious agents and protection against challenges with pathogenic organisms. Several preclinical studies in animal models have confirmed both immune responses and protection against lethal challenges. Similarly, administration of RNA viral vectors in animals implanted with tumor xenografts resulted in tumor regression and prolonged survival, and in some cases complete tumor clearance. Based on preclinical results, clinical trials have been conducted to establish the safety of RNA virus delivery. Moreover, stem cell-based lentiviral therapy provided life-long production of factor VIII potentially generating a cure for hemophilia A. Several clinical trials on cancer patients have generated anti-tumor activity, prolonged survival, and even progression-free survival.
Collapse
|
12
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
13
|
Del Pozo-Rodríguez A, Rodríguez-Gascón A, Rodríguez-Castejón J, Vicente-Pascual M, Gómez-Aguado I, Battaglia LS, Solinís MÁ. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:321-368. [PMID: 31492963 DOI: 10.1007/10_2019_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene therapy medicinal products (GTMPs) are one of the most promising biopharmaceuticals, which are beginning to show encouraging results. The broad clinical research activity has been addressed mainly to cancer, primarily to those cancers that do not respond well to conventional treatment. GTMPs to treat rare disorders caused by single-gene mutations have also made important advancements toward market availability, with eye and hematopoietic system diseases as the main applications.Nucleic acid-marketed products are based on both in vivo and ex vivo strategies. Apart from DNA-based therapies, antisense oligonucleotides, small interfering RNA, and, recently, T-cell-based therapies have been also marketed. Moreover, the gene-editing tool CRISPR is boosting the development of new gene therapy-based medicines, and it is expected to have a substantial impact on the gene therapy biopharmaceutical market in the near future.However, despite the important advancements of gene therapy, many challenges have still to be overcome, which are discussed in this book chapter. Issues such as efficacy and safety of the gene delivery systems and manufacturing capacity of biotechnological companies to produce viral vectors are usually considered, but problems related to cost and patient affordability must be also faced to ensure the success of this emerging therapy. Graphical Abstract.
Collapse
Affiliation(s)
- Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Luigi S Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| |
Collapse
|
14
|
Cai W, Lv W, Feng Y, Yang H, Zhang Y, Yang G, Duan Y, Wang J. The therapeutic effect in gliomas of nanobubbles carrying siRNA combined with ultrasound-targeted destruction. Int J Nanomedicine 2018; 13:6791-6807. [PMID: 30425489 PMCID: PMC6205539 DOI: 10.2147/ijn.s164760] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Nanobubbles (NBs) combined with ultrasound-targeted destruction (UTD) have become promising potential carriers for drug or siRNA delivery. Due to their nano-size, NBs could penetrate tumor blood vessels and accumulate in intercellular spaces so that "sonoporation" induced by UTD would act directly on the tumor cells to increase cell membrane permeability. Methods Based on the successful the fabrication of NBs, we synthesized NBs carrying siRNA (NBs-siRNA) by using a biotin-streptavidin system. We then utilized ultrasound irradiation (UI)-targeted NBs-siRNA to improve siRNA transfection and achieve the inhibition of glioma growth. Results NBs as carriers combined with UI effectively enhanced siRNA transfection and the effect of silencing targeted genes in vitro. Additionally, a better therapeutic effect was shown in the NBs-siRNA with UI group in vivo compared with that of microbubbles (MBs) with UI or NBs-siRNA without UI. Conclusion These results indicated that NBs combined with UTD might be an ideal delivery vector for siRNA to achieve the noninvasive treatment of glioma.
Collapse
Affiliation(s)
- Wenbin Cai
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ; .,General Hospital of Tibet Military Command, Lhasa, Tibet Autonomous Region, 850007, China
| | - Wei Lv
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ; .,Department of Radiology, 305 Hospital of Chinese People's Liberation Army, Xicheng District, Beijing, 100017, China
| | - Yang Feng
- Xijing Hospital, Traditional Chinese Medicine, Xi'an 710032, China
| | - Hengli Yang
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| | - Yajun Zhang
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| | - Jia Wang
- Department of Ultrasound Diagnosis, Tang Du Hospital, Fourth Military Medical University, Xi'an 710038, China, ;
| |
Collapse
|
15
|
Lundstrom K. Viral Vectors in Gene Therapy. Diseases 2018; 6:diseases6020042. [PMID: 29883422 PMCID: PMC6023384 DOI: 10.3390/diseases6020042] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/02/2023] Open
Abstract
Applications of viral vectors have found an encouraging new beginning in gene therapy in recent years. Significant improvements in vector engineering, delivery, and safety have placed viral vector-based therapy at the forefront of modern medicine. Viral vectors have been employed for the treatment of various diseases such as metabolic, cardiovascular, muscular, hematologic, ophthalmologic, and infectious diseases and different types of cancer. Recent development in the area of immunotherapy has provided both preventive and therapeutic approaches. Furthermore, gene silencing generating a reversible effect has become an interesting alternative, and is well-suited for delivery by viral vectors. A number of preclinical studies have demonstrated therapeutic and prophylactic efficacy in animal models and furthermore in clinical trials. Several viral vector-based drugs have also been globally approved.
Collapse
|
16
|
Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep 2018; 8:5447. [PMID: 29615686 PMCID: PMC5882972 DOI: 10.1038/s41598-018-23751-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
Nogo receptor 1 (NgR1) is a high-affinity receptor of myelin-associated inhibitors (MAIs), and suppresses neurogenesis. Lentiviral vector are commonly used to alter the expression of targeted genes. However, little is known about the potential function of lentiviral vector harboring NgR1 shRNA (LV-NgR1 shRNA) on neurogenesis in spinal cord injury (SCI). In this study, the rats were randomly divided into three groups: including the LN (LV-NgR1 shRNA injection), LC (LV-control shRNA injection) and Sham (laminectomy only). Eight weeks post-injection of LV, spinal cords were examined by histology for changes in cavity size and by immunohistochemistry for changes in expression of NgR1, cell apoptosis, astrocytes, neurons and myelination. Motor function was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor scale. Animals that received LV-NgR1 shRNA remarkably improved the motor function. These animals also showed an increase in levels of nerve fibers, synapses and myelination, a decrease in levels of lesion cavity and cell apoptosis at 8 weeks post-treatment. These findings give evidence that NgR1 may be a promising target for SCI treatment.
Collapse
|
17
|
Varas-Godoy M, Lladser A, Farfan N, Villota C, Villegas J, Tapia JC, Burzio LO, Burzio VA, Valenzuela PDT. In vivo knockdown of antisense non-coding mitochondrial RNAs by a lentiviral-encoded shRNA inhibits melanoma tumor growth and lung colonization. Pigment Cell Melanoma Res 2017; 31:64-72. [DOI: 10.1111/pcmr.12615] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Varas-Godoy
- Fundación Ciencia & Vida; Santiago Chile
- Center for Biomedical Research; Faculty of Medicine; Universidad de los Andes; Santiago Chile
| | | | - Nicole Farfan
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Claudio Villota
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Chemical and Biological Sciences; Faculty of Health; Universidad Bernardo O Higgins; Santiago Chile
| | - Jaime Villegas
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Julio C. Tapia
- Cell Transformation Laboratory; Department of Basic and Clinical Oncology; Faculty of Medicine; Universidad de Chile; Santiago Chile
| | - Luis O. Burzio
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Veronica A. Burzio
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Pablo D. T. Valenzuela
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| |
Collapse
|
18
|
Cambon K, Zimmer V, Martineau S, Gaillard MC, Jarrige M, Bugi A, Miniarikova J, Rey M, Hassig R, Dufour N, Auregan G, Hantraye P, Perrier AL, Déglon N. Preclinical Evaluation of a Lentiviral Vector for Huntingtin Silencing. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:259-276. [PMID: 28603746 PMCID: PMC5453866 DOI: 10.1016/j.omtm.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/07/2017] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from a polyglutamine expansion in the huntingtin (HTT) protein. There is currently no cure for this disease, but recent studies suggest that RNAi to downregulate the expression of both normal and mutant HTT is a promising therapeutic approach. We previously developed a small hairpin RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector (LV), that reduced pathology in an HD rodent model. Here, we modified this vector for preclinical development by using a tat-independent third-generation LV (pCCL) backbone and removing the original reporter genes. We demonstrate that this novel vector efficiently downregulated HTT expression in vitro in striatal neurons derived from induced pluripotent stem cells (iPSCs) of HD patients. It reduced two major pathological HD hallmarks while triggering a minimal inflammatory response, up to 6 weeks after injection, when administered by stereotaxic surgery in the striatum of an in vivo rodent HD model. Further assessment of this shRNA vector in vitro showed proper processing by the endogenous silencing machinery, and we analyzed gene expression changes to identify potential off-targets. These preclinical data suggest that this new shRNA vector fulfills primary biosafety and efficiency requirements for further development in the clinic as a cure for HD.
Collapse
Affiliation(s)
- Karine Cambon
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Virginie Zimmer
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Sylvain Martineau
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Margot Jarrige
- Institut National de la Santé et de la Recherche Médicale UMR861, I-Stem, AFM, 91100 Corbeil-Essonnes, France
- UEVE UMR861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
- CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Aurore Bugi
- CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Jana Miniarikova
- Department of Research & Development, uniQure, 1105 Amsterdam, the Netherlands
| | - Maria Rey
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Raymonde Hassig
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Noelle Dufour
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Gwenaelle Auregan
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology Francois Jacob, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, University Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Anselme L. Perrier
- Institut National de la Santé et de la Recherche Médicale UMR861, I-Stem, AFM, 91100 Corbeil-Essonnes, France
- UEVE UMR861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
- Corresponding author: Nicole Déglon, Lausanne University Hospital (CHUV), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Pavillon 3, Avenue de Beaumont, 1011 Lausanne, Switzerland.
| |
Collapse
|
19
|
Kanungo J. Puromycin-resistant lentiviral control shRNA vector, pLKO.1 induces unexpected cellular differentiation of P19 embryonic stem cells. Biochem Biophys Res Commun 2017; 486:481-485. [PMID: 28322785 DOI: 10.1016/j.bbrc.2017.03.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
RNA silencing is used as a common method for investigating loss-of-function effects of genes of interest. In mammalian cells, RNA interference (RNAi) or RNA silencing can be achieved by transient siRNA (small or short interfering RNA) transfection or by stable shRNA (short hairpin RNA) systems. Various vectors are used for efficient delivery of shRNA. Lentiviral vectors offer an efficient delivery system for stable and long-term expression of the shRNA in mammalian cells. The widely used lentiviral pLKO.1 plasmid vector is very popular in RNAi studies. A large RNAi database, a TRC (the RNAi Consortium) library, was established based on the pLKO.1-TRC plasmid vector. This plasmid (also called pLKO.1-puro) has a puromycin-resistant gene for selection in mammalian cells along with designs for generating lentiviral particles as well for RNA silencing. While using the pLKO.1-puro TRC control shRNA plasmid for transfection in murine P19 embryonic stem (ES) cells, it was unexpectedly discovered that this plasmid vector induced robust endodermal differentiation. Since P19 ES cells are pluripotent and respond to external stimuli that have the potential to alter the phenotype and thus its stemness, other cell types used in RNA silencing studies do not display the obvious effect and therefore, may affect experiments in subtle ways that would go undetected. This study for the first time provides evidence that raises concern and warrants extreme caution while using the pLKO.1-puro control shRNA vector because of its unexpected non-specific effects on cellular integrity.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
20
|
Günther A, Luczak V, Abel T, Baumann A. Caspase-3 and GFAP as early markers for apoptosis and astrogliosis in shRNA-induced hippocampal cytotoxicity. ACTA ACUST UNITED AC 2017; 220:1400-1404. [PMID: 28167801 DOI: 10.1242/jeb.154583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/01/2017] [Indexed: 01/12/2023]
Abstract
Genetic manipulation of cells and tissue by RNA interference has significantly contributed to the functional characterization of individual proteins and their role in physiological processes. Despite its versatility, RNA interference can have detrimental side effects, including reduced cell viability. We applied recombinant adeno-associated viruses by stereotaxic injection into the murine hippocampus to express different short hairpin RNA (shRNA) constructs along with eGFP. Tissue responses were assessed immunohistochemically for up to 8 weeks post-infection. Strong hippocampal degeneration and tissue atrophy was observed, most likely induced by high shRNA expression. The effect was entirely absent in mice injected with vectors driving only expression of eGFP. Active caspase-3 (Casp-3) and glial fibrillary acidic protein (GFAP) were identified as molecular markers and early indicators of adverse tissue responses. Our findings also demonstrate that detrimental effects of high shRNA expression in hippocampal tissue can be monitored even before the onset of tissue degeneration.
Collapse
Affiliation(s)
- Anne Günther
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Vince Luczak
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
21
|
Wu Y, Zhou B, Xu F, Wang X, Liu G, Zheng L, Zhao J, Zhang X. Functional quantum dot-siRNA nanoplexes to regulate chondrogenic differentiation of mesenchymal stem cells. Acta Biomater 2016; 46:165-176. [PMID: 27615736 DOI: 10.1016/j.actbio.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
SOX9 plays an important role in mesenchymal condensations during the early development of embryonic skeletons. However, its function in the chondrogenic differentiation of adult mesenchymal stem cells (MSCs) has not been fully investigated because SOX9 RNA interference in adult MSCs has seldom been studied. This study used SOX9 gene as the target gene and the quantum dot (QD)-based nanomaterial QD-NH2 (ZnS shell and poly-ethylene glycol (PEG) coating) with a fluorescent tracer function as the gene carrier to transfect siSOX9 into MSCs after sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) activation in vitro and in vivo. The results showed that QD-SMCC could effectively bind and deliver siRNAs into the MSCs, followed by efficient siRNA escape from the endosomes. The siRNAs released from QD-SMCC retained their structural integrity and could effectively inhibit the targeted gene expression, leading to reduced chondrogenic differentiation of MSCs and delayed cartilage repair. QDs were excreted from living cells instead of dead cells, and the ZnS shell and PEG coating layer greatly reduced the cytotoxicity of the QDs. The transfection efficiency of QD-SMCC was superior to that of polyethylenimine (PEI). In addition, QD-SMCC has an intrinsic signal for noninvasive imaging of siRNA transport. The results indicate that SOX9 is imperative for the chondrogenesis of MSCs and QD-SMCC has great potential for real-time tracking of transfection. STATEMENT OF SIGNIFICANCE In this study, we developed functional quantum dot (QD) nanoplexes by sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) activation of PEG-coated CdSe/ZnS QDs as the gene carrier of siRNA to study the effect of SOX9 RNA interference on the chondrogenic differentiation of MSCs. This study confirmed the importance of SOX9 in chondrogenesis, as evidenced by the findings that SOX9 knockdown significantly inhibited the expression of cartilage-specific markers including acan and col2a1 in MSCs and further delayed cartilage repair. Moreover, QD-SMCC has an intrinsic signal for noninvasive imaging of siRNA transport. The results indicate that SOX9 is imperative for the chondrogenesis of MSCs and QD-SMCC has great potential for real-time tracking of transfection.
Collapse
|
22
|
Li B, Sun S, Li M, Cheng X, Li H, Kang F, Kang J, Dörnbrack K, Nassal M, Sun D. Suppression of hepatitis B virus antigen production and replication by wild-type HBV dependently replicating HBV shRNA vectors in vitro and in vivo. Antiviral Res 2016; 134:117-129. [PMID: 27591142 DOI: 10.1016/j.antiviral.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/07/2016] [Accepted: 08/07/2016] [Indexed: 02/08/2023]
Abstract
Chronic infection with hepatitis B virus (HBV), a small DNA virus that replicates by reverse transcription of a pregenomic (pg) RNA precursor, greatly increases the risk for terminal liver disease. RNA interference (RNAi) based therapy approaches have shown potential to overcome the limited efficacy of current treatments. However, synthetic siRNAs as well as small hairpin (sh) RNAs expressed from non-integrating vectors require repeated applications; integrating vectors suffer from safety concerns. We pursue a new concept by which HBV itself is engineered into a conditionally replicating, wild-type HBV dependent anti-HBV shRNA vector. Beyond sharing HBV's hepatocyte tropism, such a vector would be self-renewing, but only as long as wild-type HBV is present. Here, we realized several important aspects of this concept. We identified two distinct regions in the 3.2 kb HBV genome which tolerate replacement by shRNA expression cassettes without compromising reverse transcription when complemented in vitro by HBV helper constructs or by wild-type HBV; a representative HBV shRNA vector was infectious in cell culture. The vector-encoded shRNAs were active, including on HBV as target. A dual anti-HBV shRNA vector delivered into HBV transgenic mice, which are not susceptible to HBV infection, by a chimeric adenovirus-HBV shuttle reduced serum hepatitis B surface antigen (HBsAg) up to ∼4-fold, and virus particles up to ∼20-fold. Importantly, a fraction of the circulating particles contained vector-derived DNA, indicating successful complementation in vivo. These data encourage further investigations to prove antiviral efficacy and the predicted self-limiting vector spread in a small animal HBV infection model.
Collapse
Affiliation(s)
- Baosheng Li
- Chinese PLA Medical School, Chinese PLA General Hospital, 100853, Beijing, PR China; The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Shuo Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; Troop 66220 of PLA, Xingtai, Hebei Province, 054000, PR China
| | - Minran Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; The Fourth Department of the Fifth Hospital, Shijiazhuang City, 050017, PR China
| | - Xin Cheng
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Haijun Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Fubiao Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Jiwen Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Katharina Dörnbrack
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany
| | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany.
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China.
| |
Collapse
|
23
|
Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, Ergul A, Fagan SC. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Mol Neurobiol 2016; 54:661-670. [PMID: 26758277 DOI: 10.1007/s12035-015-9675-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/18/2015] [Indexed: 01/02/2023]
Abstract
Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Ahmed Alhusban
- Jordan University of Science and Technology, College of Pharmacy, Irbid, Jordan
| | - Tauheed Ishrat
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Wael Eldahshan
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | | | - Adviye Ergul
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Department of Physiology, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA. .,Department of Neurology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
24
|
Chu Y, Oum YH, Carrico IS. Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 2015; 487:95-103. [PMID: 26499046 DOI: 10.1016/j.virol.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation.
Collapse
Affiliation(s)
- Yanjie Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Yoon Hyeun Oum
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Isaac S Carrico
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
25
|
Yan Q, Zhu H, Wang FH, Feng JY, Wang WQ, Shi X, Zhou YP, Zhang X, Sun XD. Inhibition of TRB3 Protects Photoreceptors against Endoplasmic Reticulum Stress-Induced Apoptosis after Experimental Retinal Detachment. Curr Eye Res 2015; 41:240-8. [DOI: 10.3109/02713683.2015.1006371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|