1
|
Burke M, Blatt B, Teixeira J, Pérez‐López D, Yue Y, Pan X, Hakim C, Yao G, Herzog R, Duan D. Adeno-Associated Virus 8 and 9 Myofibre Type/Size Tropism Profiling Reveals Therapeutic Effect of Microdystrophin in Canines. J Cachexia Sarcopenia Muscle 2025; 16:e13681. [PMID: 39790021 PMCID: PMC11718217 DOI: 10.1002/jcsm.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/08/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) 8 and 9 are in clinical trials for treating neuromuscular diseases such as Duchenne muscular dystrophy (DMD). Muscle consists of myofibres of different types and sizes. However, little is known about the fibre type and fibre size tropism of AAV in large mammals. METHODS We evaluated fibre type- and size-specific transduction properties of AAV8 and AAV9 in 17 dogs that received systemic gene transfer (dose 1.94 ± 0.52 × 1014 vg/kg; injected at 2.86 ± 0.30 months; harvested at 20.79 ± 3.30 months). For AAV8, two DMD dogs and three carrier dogs received an alkaline phosphatase (AP) reporter vector, and five DMD dogs received a four-repeat microdystrophin (uDys) vector. For AAV9, one normal and one DMD dog received the AP vector, and five DMD dogs received a five-repeat uDys vector. Association between AAV transduction and the fibre type/size was studied in three muscles that showed mosaic transgene expression, including the biceps femoris, teres major and latissimus dorsi. RESULTS Transgene expression was detected in 30%-45% of myofibres. In the AP reporter vector-injected dogs, neither AAV8 nor AAV9 showed a statistically significant fibre type preference. Interestingly, AP expression was enriched in smaller fibres. In uDys-treated DMD dogs, slow and fast myofibres were equally transduced. Notably, uDys-expressing myofibres were significantly larger than uDys-negative myofibres irrespective of the AAV serotype (p < 0.0001). In AAV8 uDys vector-injected dogs, the mini-Feret diameter was 15%, 16% and 23% larger in uDys-positive slow, fast and hybrid fibres, respectively; the cross-sectional area was 30%, 34% and 46% larger in uDys-positive slow, fast and hybrid fibres, respectively. In AAV9 uDys vector-injected dogs, the mini-Feret diameter was 12%, 13% and 25% larger in uDys-positive slow, fast and hybrid fibres, respectively; the cross-sectional area was 25%, 28% and 59% larger in uDys-positive slow, fast and hybrid fibres, respectively. CONCLUSIONS Our studies suggest that AAV8 and AAV9 transduce fast and slow myofibres at equivalent efficiency. Importantly, uDys therapy effectively prevented dystrophic myofibre atrophy. Our study provides important insight into systemic muscle AAV delivery in large mammals and supports further development of uDys gene therapy for DMD.
Collapse
Affiliation(s)
- Matthew J. Burke
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Braiden M. Blatt
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - James A. Teixeira
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Dennis O. Pérez‐López
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of EngineeringUniversity of MissouriColumbiaMissouriUSA
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Chemical and Biomedical Engineering, College of EngineeringUniversity of MissouriColumbiaMissouriUSA
- Department of Biomedical Sciences, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Neurology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
2
|
Le Guiner C, Xiao X, Larcher T, Lafoux A, Huchet C, Toumaniantz G, Adjali O, Anegon I, Remy S, Grieger J, Li J, Farrokhi V, Neubert H, Owens J, McIntyre M, Moullier P, Samulski RJ. Evaluation of an AAV9-mini-dystrophin gene therapy candidate in a rat model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2023; 30:30-47. [PMID: 37746247 PMCID: PMC10512999 DOI: 10.1016/j.omtm.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/15/2023] [Indexed: 09/26/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the dystrophin gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMDmdx) rat model of DMD. Overall, we found that transduction efficiency, number of muscle fibers expressing the human mini-dystrophin polypeptide, improvement of the skeletal and cardiac muscle tissue architecture, correction of muscle strength and fatigability, and improvement of diastolic and systolic cardiac function were directly correlated with the amount of vector administered. The effective dose was then tested in older DMDmdx rats with a more dystrophic phenotype similar to the pathology observed in older patients with DMD. Except for a less complete rescue of muscle function in the oldest cohort, fordadistrogene movaparvovec was also found to be therapeutically effective in older DMDmdx rats, suggesting that this product may be appropriate for evaluation in patients with DMD at all stages of disease.
Collapse
Affiliation(s)
- Caroline Le Guiner
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Xiao Xiao
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | - Aude Lafoux
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Corinne Huchet
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Gilles Toumaniantz
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
- Nantes Université, CHU Nantes, CNRS, L’Institut du Thorax, 44007 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Séverine Remy
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Josh Grieger
- Bamboo Therapeutics, Pfizer, Chapel Hill, NC 27514, USA
| | - Juan Li
- Gene Therapy Center, Eshelman School of Pharmacy DPMP, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | | | | | | | - Philippe Moullier
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| |
Collapse
|
3
|
Improved transduction of canine X-linked muscular dystrophy with rAAV9-microdystrophin via multipotent MSC pretreatment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:133-141. [PMID: 33426145 PMCID: PMC7773564 DOI: 10.1016/j.omtm.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe congenital disease associated with mutation of the dystrophin gene. Supplementation of dystrophin using recombinant adeno-associated virus (rAAV) has promise as a treatment for DMD, although vector-related general toxicities, such as liver injury, neurotoxicity, and germline transmission, have been suggested in association with the systemic delivery of high doses of rAAV. Here, we treated normal or dystrophic dogs with rAAV9 transduction in conjunction with multipotent mesenchymal stromal cell (MSC) injection to investigate the therapeutic effects of an rAAV expressing microdystrophin (μDys) under conditions of immune modulation. Bone-marrow-derived MSCs, rAAV-CMV-μDys, and a rAAV-CAG-luciferase (Luc) were injected into the jugular vein of a young dystrophic dog to induce systemic expression of μDys. One week after the first injection, the dog received a second intravenous injection of MSCs, and on the following day, rAAV was intravenously injected into the same dog. Systemic injection of rAAV9 with MSCs pretreatment improves gene transfer into normal and dystrophic dogs. Dystrophic phenotypes significantly improved in the rAAV-μDys-injected dystrophic dog, suggesting that an improved rAAV-μDys treatment including immune modulation induces successful long-term transgene expression to improve dystrophic phenotypes.
Collapse
|
4
|
New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int J Mol Sci 2020; 21:ijms21093297. [PMID: 32392694 PMCID: PMC7246502 DOI: 10.3390/ijms21093297] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a congenital neuromuscular disorder characterized by motor neuron loss, resulting in progressive weakness. SMA is notable in the health care community because it accounts for the most common cause of infant death resulting from a genetic defect. SMA is caused by low levels of the survival motor neuron protein (SMN) resulting from SMN1 gene mutations or deletions. However, patients always harbor various copies of SMN2, an almost identical but functionally deficient copy of the gene. A genotype–phenotype correlation suggests that SMN2 is a potent disease modifier for SMA, which also represents the primary target for potential therapies. Increasing comprehension of SMA pathophysiology, including the characterization of SMN1 and SMN2 genes and SMN protein functions, has led to the development of multiple therapeutic approaches. Until the end of 2016, no cure was available for SMA, and management consisted of supportive measures. Two breakthrough SMN-targeted treatments, either using antisense oligonucleotides (ASOs) or virus-mediated gene therapy, have recently been approved. These two novel therapeutics have a common objective: to increase the production of SMN protein in MNs and thereby improve motor function and survival. However, neither therapy currently provides a complete cure. Treating patients with SMA brings new responsibilities and unique dilemmas. As SMA is such a devastating disease, it is reasonable to assume that a unique therapeutic solution may not be sufficient. Current approaches under clinical investigation differ in administration routes, frequency of dosing, intrathecal versus systemic delivery, and mechanisms of action. Besides, emerging clinical trials evaluating the efficacy of either SMN-dependent or SMN-independent approaches are ongoing. This review aims to address the different knowledge gaps between genotype, phenotypes, and potential therapeutics.
Collapse
|
5
|
Muraine L, Bensalah M, Dhiab J, Cordova G, Arandel L, Marhic A, Chapart M, Vasseur S, Benkhelifa-Ziyyat S, Bigot A, Butler-Browne G, Mouly V, Negroni E, Trollet C. Transduction Efficiency of Adeno-Associated Virus Serotypes After Local Injection in Mouse and Human Skeletal Muscle. Hum Gene Ther 2020; 31:233-240. [PMID: 31880951 DOI: 10.1089/hum.2019.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The adeno-associated virus (AAV) vector is an efficient tool for gene delivery in skeletal muscle. AAV-based therapies show promising results for treatment of various genetic disorders, including muscular dystrophy. These dystrophies represent a heterogeneous group of diseases affecting muscles and typically characterized by progressive skeletal muscle wasting and weakness and the development of fibrosis. The tropism of each AAV serotype has been extensively studied using systemic delivery routes, but very few studies have compared their transduction efficiency through direct intramuscular injection. Yet, in some muscular dystrophies, where only a few muscles are primarily affected, a local intramuscular injection to target these muscles would be the most appropriate route. A comprehensive comparison between different recombinant AAV (rAAV) serotypes is therefore needed. In this study, we investigated the transduction efficiency of rAAV serotypes 1-10 by local injection in skeletal muscle of control C57BL/6 mice. We used a CMV-nls-LacZ reporter cassette allowing nuclear expression of LacZ to easily localize targeted cells. Detection of β-galactosidase activity on muscle cryosections demonstrated that rAAV serotypes 1, 7, 8, 9, and 10 were more efficient than the others, with rAAV9 being the most efficient in mice. Furthermore, using a model of human muscle xenograft in immunodeficient mice, we observed that in human muscle, rAAV8 and rAAV9 had similar transduction efficiency. These findings demonstrate for the first time that the human muscle xenograft can be used to evaluate AAV-based therapeutical approaches in a human context.
Collapse
Affiliation(s)
- Laura Muraine
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Mona Bensalah
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Jamila Dhiab
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Gonzalo Cordova
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Alix Marhic
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | | | | | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
6
|
More is needed to complement the available therapies of spinal muscular atrophy. Future Med Chem 2019; 11:2873-2876. [PMID: 31668092 DOI: 10.4155/fmc-2019-0239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Wasala LP, Hakim CH, Yue Y, Yang NN, Duan D. Systemic Delivery of Adeno-Associated Viral Vectors in Mice and Dogs. Methods Mol Biol 2019; 1937:281-294. [PMID: 30706404 PMCID: PMC6690205 DOI: 10.1007/978-1-4939-9065-8_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many diseases affect multiple tissues and/or organ systems, or affect tissues that are broadly distributed. For these diseases, an effective gene therapy will require systemic delivery of the therapeutic vector to all affected locations. Adeno-associated virus (AAV) has been used as a gene therapy vector for decades in preclinical studies and human trials. These studies have shown outstanding safety and efficacy of the AAV vector for gene therapy. Recent studies have revealed yet another unique feature of the AAV vector. Specifically, AAV can lead to bodywide gene transfer following a single intravascular injection. Here we describe the protocols for effective systemic delivery of AAV in both neonatal and adult mice and dogs. We also share lessons we learned from systemic gene therapy in the murine and canine models of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Lakmini P Wasala
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Bioengineering, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
9
|
Duan D. Micro-Dystrophin Gene Therapy Goes Systemic in Duchenne Muscular Dystrophy Patients. Hum Gene Ther 2018; 29:733-736. [PMID: 29463117 DOI: 10.1089/hum.2018.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Whole-body systemic gene therapy is likely the most effective way to reduce greatly the disease burden of Duchenne muscular dystrophy (DMD), an X-linked inherited muscle disease that leads to premature death in early adulthood. Genetically, DMD is due to null mutation of the dystrophin gene, one of the largest genes in the genome. Recent studies have shown highly promising improvements in animal models with intravascular delivery of the engineered micro-dystrophin gene by adeno-associated virus (AAV). Several human trials are now started to advance AAV micro-dystrophin therapy to DMD patients. This is a historical moment for the entire field. Results from these trials will shape the future of neuromuscular disease gene therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- 1 Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri.,2 Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri , Columbia, Missouri.,3 Department of Neurology, School of Medicine, University of Missouri , Columbia, Missouri.,4 Department of Bioengineering, University of Missouri , Columbia, Missouri
| |
Collapse
|
10
|
Katz MG, Fargnoli AS, Weber T, Hajjar RJ, Bridges CR. Use of Adeno-Associated Virus Vector for Cardiac Gene Delivery in Large-Animal Surgical Models of Heart Failure. HUM GENE THER CL DEV 2017; 28:157-164. [PMID: 28726495 DOI: 10.1089/humc.2017.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The advancement of gene therapy-based approaches to treat heart disease represents a need for clinically relevant animal models with characteristics equivalent to human pathologies. Rodent models of cardiac disease do not precisely reproduce heart failure phenotype and molecular defects. This has motivated researchers to use large animals whose heart size and physiological processes more similar and comparable to those of humans. Today, adeno-associated viruses (AAV)-based vectors are undoubtedly among the most promising DNA delivery vehicles. Here, AAV biology and technology are reviewed and discussed in the context of their use and efficacy for cardiac gene delivery in large-animal models of heart failure, using different surgical approaches. The remaining challenges and opportunities for the use of AAV-based vector delivery for gene therapy applications in the clinic are also highlighted.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anthony S Fargnoli
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas Weber
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roger J Hajjar
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Charles R Bridges
- Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev 2017; 96:1297-325. [PMID: 27535639 DOI: 10.1152/physrev.00041.2015] [Citation(s) in RCA: 1292] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Julia Beermann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maria-Teresa Piccoli
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28398005 DOI: 10.1002/wnan.1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael E Nance
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chady H Hakim
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Duan D. Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 2016; 21:16-25. [PMID: 27459604 PMCID: PMC5138077 DOI: 10.1016/j.coviro.2016.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
For diseases like muscular dystrophy, an effective gene therapy requires bodywide correction. Systemic viral vector delivery has been attempted since early 1990s. Yet a true success was not achieved until mid-2000 when adeno-associated virus (AAV) serotype-6, 8 and 9 were found to result in global muscle transduction in rodents following intravenous injection. The simplicity of the technique immediately attracts attention. Marvelous whole body amelioration has been achieved in rodent models of many diseases. Scale-up in large mammals also shows promising results. Importantly, the first systemic AAV-9 therapy was initiated in patients in April 2014. Recent studies have now begun to reveal molecular underpinnings of systemic AAV delivery and to engineer new AAV capsids with superior properties for systemic gene therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, The University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
14
|
Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary Animal Models For Human Gene Therapy Applications. Curr Gene Ther 2016; 15:531-40. [PMID: 26415576 DOI: 10.2174/1566523215666150929110424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
Abstract
Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.
Collapse
|
15
|
100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16045. [PMID: 27419194 PMCID: PMC4934459 DOI: 10.1038/mtm.2016.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Gene therapy as a treatment for neuromuscular disease has significantly advanced over the past decade. In the present review, the progress of adeno-associated viruses (AAV) vector-mediated gene therapy for Duchenne muscular dystrophy (DMD) during the past year is highlighted. RECENT FINDINGS Modulating the immune response to AAV vector capsid or the transgene has helped to increase stable transduction efficiency. Full-length dystrophin expression via gene editing with targeted nucleases may ultimately be an ideal treatment option. Also genes with homologues function may ameliorate many aspects of the DMD pathophysiology. SUMMARY The work during the past year has increased our understanding of AAV vector-mediated therapy and has also validated new approaches to treat DMD. The results will aid in the design of both preclinical and clinical trials.
Collapse
|
17
|
Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2015; 4:169-183. [PMID: 27340611 DOI: 10.1517/21678707.2016.1124039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cardiac involvement is a common feature in muscular dystrophies. It presents as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with symptom-relieving medications. Identification of disease-causing genes and investigation on pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/mechanisms using alternative genes may attenuate heart disease in muscular dystrophies. AREAS COVERED Duchenne muscular dystrophy is the most common muscular dystrophy. Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent developments and to outline the path forward. We also discuss gene therapy status for cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic dystrophy. EXPERT OPINION Gene therapy for dystrophic cardiomyopathy has taken a slow but steady path forward. Preclinical studies over the last decades have addressed many fundamental questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these encouraging results in large animal models will pave the way to future human trials.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri
| | | | - Stacey B Leach
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri
| | - Timothy L Domeier
- Department of Medical Physiology and Pharmacology, School of Medicine, University of Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri; Department of Neurology, School of Medicine, University of Missouri
| |
Collapse
|
18
|
Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin JH, Yang HT, McDonald T, Duan D. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 2015; 24:5880-90. [PMID: 26264580 DOI: 10.1093/hmg/ddv310] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022] Open
Abstract
The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Hsiao T Yang
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Thomas McDonald
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, Department of Neurology and
| |
Collapse
|