1
|
Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discov 2024; 23:709-722. [PMID: 38965378 DOI: 10.1038/s41573-024-00977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Delivery of genetic information to the interior of target cells in vivo has been a major challenge facing gene therapies. This barrier is now being overcome, owing in part to dramatic advances made by lipid-based systems that have led to lipid nanoparticles (LNPs) that enable delivery of nucleic acid-based vaccines and therapeutics. Examples include the clinically approved COVID-19 LNP mRNA vaccines and Onpattro (patisiran), an LNP small interfering RNA therapeutic to treat transthyretin-induced amyloidosis (hATTR). In addition, a host of promising LNP-enabled vaccines and gene therapies are in clinical development. Here, we trace this success to two streams of research conducted over the past 60 years: the discovery of the transfection properties of lipoplexes composed of positively charged cationic lipids complexed with nucleic acid cargos and the development of lipid nanoparticles using ionizable cationic lipids. The fundamental insights gained from these two streams of research offer potential delivery solutions for most forms of gene therapies.
Collapse
Affiliation(s)
- P R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - P L Felgner
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Ban E, Kim A. PicoGreen assay for nucleic acid quantification - Applications, challenges, and solutions. Anal Biochem 2024; 692:115577. [PMID: 38789006 DOI: 10.1016/j.ab.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Various analytical methods and reagents have been employed for nucleic acid analysis in cells, biological fluids, and formulations. Standard techniques like gel electrophoresis and qRT-PCR are widely used for qualitative and quantitative nucleic acid analysis. However, these methods can be time-consuming and labor-intensive, with limitations such as inapplicability to small RNA at low concentrations and high costs associated with qRT-PCR reagents and instruments. As an alternative, PicoGreen (PG) has emerged as a valuable method for the quantitative analysis of nucleic acids. PG, a fluorescent dye, enables the quantitation of double-stranded DNA (dsDNA) or double-stranded RNA, including miRNA mimic and siRNA, in solution. It is also applicable to DNA and RNA analysis within cells using techniques like FACS and fluorescence microscopy. Despite its advantages, PG's fluorescence intensity is affected by various experimental conditions, such as pH, salts, and chemical reagents. This review explores the recent applications of PG as a rapid, cost-effective, robust, and accurate assay tool for nucleic acid quantification. We also address the limitations of PG and discuss approaches to overcome these challenges, recognizing the expanding range of its applications.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea.
| |
Collapse
|
3
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
4
|
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS NANO 2021; 15:16982-17015. [PMID: 34181394 DOI: 10.1021/acsnano.1c04996] [Citation(s) in RCA: 806] [Impact Index Per Article: 268.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lipid nanoparticles (LNPs) have emerged across the pharmaceutical industry as promising vehicles to deliver a variety of therapeutics. Currently in the spotlight as vital components of the COVID-19 mRNA vaccines, LNPs play a key role in effectively protecting and transporting mRNA to cells. Liposomes, an early version of LNPs, are a versatile nanomedicine delivery platform. A number of liposomal drugs have been approved and applied to medical practice. Subsequent generations of lipid nanocarriers, such as solid lipid nanoparticles, nanostructured lipid carriers, and cationic lipid-nucleic acid complexes, exhibit more complex architectures and enhanced physical stabilities. With their ability to encapsulate and deliver therapeutics to specific locations within the body and to release their contents at a desired time, LNPs provide a valuable platform for treatment of a variety of diseases. Here, we present a landscape of LNP-related scientific publications, including patents and journal articles, based on analysis of the CAS Content Collection, the largest human-curated collection of published scientific knowledge. Rising trends are identified, such as nanostructured lipid carriers and solid lipid nanoparticles becoming the preferred platforms for numerous formulations. Recent advancements in LNP formulations as drug delivery platforms, such as antitumor and nucleic acid therapeutics and vaccine delivery systems, are discussed. Challenges and growth opportunities are also evaluated in other areas, such as medical imaging, cosmetics, nutrition, and agrochemicals. This report is intended to serve as a useful resource for those interested in LNP nanotechnologies, their applications, and the global research effort for their development.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Allison E Curtze
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Qiongqiong Zhou
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Lee Y, Kim H, Kim E, Park S, Ryu KH, Lee EG. Rational design of transient gene expression process with lipoplexes for high-level therapeutic protein production in HEK293 cells. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Kudsiova L, Mohammadi A, Mustapa MFM, Campbell F, Welser K, Vlaho D, Story H, Barlow DJ, Tabor AB, Hailes HC, Lawrence MJ. Trichain cationic lipids: the potential of their lipoplexes for gene delivery. Biomater Sci 2018; 7:149-158. [PMID: 30357152 PMCID: PMC6336150 DOI: 10.1039/c8bm00965a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/06/2018] [Indexed: 11/21/2022]
Abstract
Lipoplexes (LDs) have been prepared from DNA and positively charged vesicles composed of the helper lipid, dioleoyl l-α-phosphatidylethanolamine (DOPE) and either a dichain (DC) oxyethylated cationic lipid or their corresponding novel trichain (TC) counterpart. This is the first study using the TC lipids for the preparation of LDs and their application. Here the results of biophysical experiments characterising the LDs have been correlated with the in vitro transfection activity of the complexes. Photon correlation spectroscopy, zeta potential measurements and transmission electron microscopy studies indicated that, regardless of the presence of a third chain, there were little differences between the size and charge of the TC and DC containing LDs. Small angle neutron scattering studies established however that there was a significant conformational re-arrangement of the lipid bilayer when in the form of a LD complex as opposed to the parent vesicles. This re-arrangement was particularly noticeable in LDs containing TC lipids possessing a third chain of C12 or a longer chain. These results suggested that the presence of a third hydrophobic chain had a significant effect on lipid packing in the presence of DNA. Picogreen fluorescence and gel electrophoresis studies showed that the TC lipids containing a third acyl chain of at least C12 were most effective at complexing DNA while the TC lipids containing an octanoyl chain and the DC lipids were least effective. The transfection efficacies of the TC lipids in the form of LDs were found to be higher than for the DC analogues, particularly when the third acyl chain was an octanoyl or oleoyl moeity. Little or no increase in transfection efficiency was observed when the third chain was a methyl, acetyl or dodecanoyl group. The large enhancement in transfection performance of the TC lipids can be attributed to their ability to complex their DNA payload. These studies indicate that presence of a medium or long third acyl chain was especially beneficial for transfection.
Collapse
Affiliation(s)
- Laila Kudsiova
- Institute of Pharmaceutical Sciences. Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Atefeh Mohammadi
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - M Firouz Mohd Mustapa
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Frederick Campbell
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Katharina Welser
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Danielle Vlaho
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Harriet Story
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - David J Barlow
- Institute of Pharmaceutical Sciences. Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | - M Jayne Lawrence
- Institute of Pharmaceutical Sciences. Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
Sabouri-Rad S, Oskuee RK, Mahmoodi A, Gholami L, Malaekeh-Nikouei B. The effect of cell penetrating peptides on transfection activity and cytotoxicity of polyallylamine. ACTA ACUST UNITED AC 2017; 7:139-145. [PMID: 29159141 PMCID: PMC5684505 DOI: 10.15171/bi.2017.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 11/09/2022]
Abstract
![]()
Introduction: Cationic polymers have the potential to be modified to achieve an ideal gene vector lacking viral vector defects. The aim of the present study was to improve polyallylamine (PAA) transfection efficiency and to reduce cytotoxicity by incorporating of cell-penetrating peptides (CPPs).
Methods: To prepare the peptide-based polyplexes, PAA (15 kDa) was modified with 2 peptides (TAT and CyLoP-1) by covering the 0.5% and 1% of amines. Buffer capacity and DNA condensation ability of modified polymer, particle size and zeta potential of nanoparticles, cell viability, and transfection activity of vectors were evaluated.
Results: In low carrier to plasmid (C/P) weight ratios such as 0.5 and 1, the unmodified polymer was more capable to condense the DNA compared to the synthesized vectors. In C/P ratio of 2, the plasmid was fully condensed in all vectors. The size of polyplexes ranged from 195 to 240 nm. The zeta potential was almost as the same as PAA and varied from 25 to 27 mV. All polyplexes increased the buffer capacity compared to PAA. The transfection efficiency was improved compared to unmodified polymer especially in the vectors modified with 1% of TAT or CyLoP-1 peptides in C/P ratio of 2. The cytotoxicity of prepared vectors was less than PAA. In most ratios, the cytotoxicity of the CyLoP-1 modified samples was less than the TAT modified ones.
Conclusion: Modification of PAA with CPPs improved the transfection activity of vector.
Collapse
Affiliation(s)
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoodi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
8
|
CPP-Assisted Intracellular Drug Delivery, What Is Next? Int J Mol Sci 2016; 17:ijms17111892. [PMID: 27854260 PMCID: PMC5133891 DOI: 10.3390/ijms17111892] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022] Open
Abstract
For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs), the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.
Collapse
|
9
|
Khamehchian S, Nikkhah M, Madani R, Hosseinkhani S. Enhanced and selective permeability of gold nanoparticles functionalized with cell penetrating peptide derived from maurocalcine animal toxin. J Biomed Mater Res A 2016; 104:2693-700. [DOI: 10.1002/jbm.a.35806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Sedigheh Khamehchian
- Department of Nanobiotechnology; Faculty of Biological Science, Tarbiat Modares University; Tehran Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology; Faculty of Biological Science, Tarbiat Modares University; Tehran Iran
| | - Rasool Madani
- Department of Biotechnology; Razi Vaccine and Serum Research Institute; Karaj Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology; Faculty of Biological Science, Tarbiat Modares University; Tehran Iran
| |
Collapse
|
10
|
Zaro JL, Shen WC. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1538-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Biophysical properties of cationic lipophosphoramidates: Vesicle morphology, bilayer hydration and dynamics. Colloids Surf B Biointerfaces 2015; 136:192-200. [PMID: 26398144 DOI: 10.1016/j.colsurfb.2015.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 02/04/2023]
Abstract
Cationic lipids are used to deliver genetic material to living cells. Their proper biophysical characterization is needed in order to design and control this process. In the present work we characterize some properties of recently synthetized cationic lipophosphoramidates. The studied compounds share the same structure of their hydrophobic backbone, but differ in their hydrophilic cationic headgroup, which is formed by a trimethylammonium, a trimethylarsonium or a dicationic moiety. Dynamic light scattering and cryo-transmission electron microscopy proves that the studied lipophosphoramidates create stable unilamellar vesicles. Fluorescence of polarity probe, Laurdan, analyzed using time-dependent fluorescence shift method (TDFS) and generalized polarization (GP) gives important information about the phase, hydration and dynamics of the lipophosphoramidate bilayers. While all of the compounds produced lipid bilayers that were sufficiently fluid for their potential application in gene therapy, their polarity/hydration and mobility was lower than for the standard cationic lipid - DOTAP. Mixing cationic lipophosphoramidates with DOPC helps to reduce this difference. The structure of the cationic headgroup has an important and complex influence on bilayer hydration and mobility. Both TDFS and GP methods are suitable for the characterization of cationic amphiphiles and can be used for screening of the newly synthesized compounds.
Collapse
|
12
|
Thanhaeuser SM, Wieser H, Koehler P. Spectrophotometric and fluorimetric quantitation of quality-related protein fractions of wheat flour. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Hosseinkhani H, Abedini F, Ou KL, Domb AJ. Polymers in gene therapy technology. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3432] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Center of Excellence in Nanomedicine; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute; Karaj Alborz IRAN
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
14
|
Davies LA, Nunez-Alonso GA, McLachlan G, Hyde SC, Gill DR. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. HUM GENE THER CL DEV 2014; 25:97-107. [PMID: 24865497 DOI: 10.1089/humc.2014.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Lung gene therapy is being evaluated for a range of acute and chronic diseases, including cystic fibrosis (CF). As these therapies approach clinical realization, it is becoming increasingly clear that the ability to efficiently deliver gene transfer agents (GTAs) to target cell populations within the lung may prove just as critical as the gene therapy formulation itself in terms of generating positive clinical outcomes. Key to the success of any aerosol gene therapy is the interaction between the GTA and nebulization device. We evaluated the effects of aerosolization on our preferred formulation, plasmid DNA (pDNA) complexed with the cationic liposome GL67A (pDNA/GL67A) using commercially available nebulizer devices. The relatively high viscosity (6.3±0.1 cP) and particulate nature of pDNA/GL67A formulations hindered stable aerosol generation in ultrasonic and vibrating mesh nebulizers but was not problematic in the jet nebulizers tested. Aerosol size characteristics varied significantly between devices, but the AeroEclipse II nebulizer operating at 50 psi generated stable pDNA/GL67A aerosols suitable for delivery to the CF lung (mass median aerodynamic diameter 3.4±0.1 μm). Importantly, biological function of pDNA/GL67A formulations was retained after nebulization, and although aerosol delivery rate was lower than that of other devices (0.17±0.01 ml/min), the breath-actuated AeroEclipse II nebulizer generated aerosol only during the inspiratory phase and as such was more efficient than other devices with 83±3% of generated aerosol available for patient inhalation. On the basis of these results, we have selected the AeroEclipse II nebulizer for the delivery of pDNA/GL67A formulations to the lungs of CF patients as part of phase IIa/b clinical studies.
Collapse
Affiliation(s)
- Lee A Davies
- 1 Gene Medicine Research Group, Nuffield Division of Clinical Laboratory Sciences, University of Oxford , John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Davies LA, Nunez-Alonso GA, McLachlan G, Hyde SC, Gill DR. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Alabi CA, Love KT, Sahay G, Stutzman T, Young WT, Langer R, Anderson DG. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes. ACS NANO 2012; 6:6133-41. [PMID: 22693946 PMCID: PMC3404193 DOI: 10.1021/nn3013838] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The assembly, stability, and timely disassembly of short interfering RNA (siRNA) nanocomplexes have the potential to affect the efficiency of siRNA delivery and gene silencing. As such, the design of new probes that can measure these properties without significantly perturbing the nanocomplexes or their environment may facilitate the study and further development of new siRNA nanocomplexes. Herein, we study Förster resonance energy transfer (FRET)-labeled siRNA probes that can track the assembly, stability, and disassembly of siRNA nanocomplexes in different environments. The probe is composed of two identical siRNAs, each labeled with a fluorophore. Upon nanocomplex formation, the siRNA-bound fluorophores become locally aggregated within the nanocomplex and undergo FRET. A key advantage of this technique is that the delivery vehicle (DV) need not be labeled, thus enabling the characterization of a large variety of nanocarriers, some of which may be difficult or even impossible to label. We demonstrate proof-of-concept by measuring the assembly of various DVs with siRNAs and show good agreement with gel electrophoresis experiments. As a consequence of not having to label the DV, we are able to determine nanocomplex biophysical parameters such as the extracellular apparent dissociation constants (K(D)) and intracellular disassembly half-life for several in-house and proprietary commercial DVs. Furthermore, the lack of DV modification allows for a true direct comparison between DVs as well as correlation between their biophysical properties and gene silencing.
Collapse
Affiliation(s)
- Christopher A. Alabi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin T. Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gaurav Sahay
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Tina Stutzman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Whitney T. Young
- Department of Biological Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT divison of Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT divison of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Electrostatic charge conversion processes in engineered tumor-identifying polypeptides for targeted chemotherapy. Biomaterials 2012; 33:1884-93. [DOI: 10.1016/j.biomaterials.2011.11.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/13/2011] [Indexed: 11/19/2022]
|
18
|
Bekei B, Rose HM, Herzig M, Dose A, Schwarzer D, Selenko P. In-cell NMR in mammalian cells: part 1. Methods Mol Biol 2012; 895:43-54. [PMID: 22760311 DOI: 10.1007/978-1-61779-927-3_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many mammalian IDPs exert important biological functions in key cellular processes and often in highly specialized subsets of cells. For these reasons, tools to characterize the structural and functional characteristics of IDPs inside mammalian cells are of particular interest. Moving from bacterial and amphibian in-cell NMR experiments to mammalian systems offers the unique opportunity to advance our knowledge about general IDP properties in native cellular environments. This is never more relevant than for IDPs that exhibit pathological structural rearrangements under certain cellular conditions, as is the case for human α-synuclein in dopaminergic neurons of the substantia nigra in the course of Parkinson's disease, for example. To efficiently deliver isotope-labeled IDPs into mammalian cells is one of the first challenges when preparing a mammalian in-cell NMR sample. The method presented here provides a detailed protocol for the transduction of isotope-labeled α-synuclein, as a model IDP, into cultured human HeLa cells. Cellular IDP delivery is afforded by action of a cell-penetrating peptide (CPP) tag. In the protocol outlined below, the CPP tag is "linked" to the IDP cargo moiety via an oxidative, disulfide-coupling reaction.
Collapse
Affiliation(s)
- Beata Bekei
- Department of NMR-assisted Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Basha G, Novobrantseva TI, Rosin N, Tam YYC, Hafez IM, Wong MK, Sugo T, Ruda VM, Qin J, Klebanov B, Ciufolini M, Akinc A, Tam YK, Hope MJ, Cullis PR. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther 2011; 19:2186-200. [PMID: 21971424 PMCID: PMC3242662 DOI: 10.1038/mt.2011.190] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases.
Collapse
Affiliation(s)
- Genc Basha
- NanoMedicine Research Group, Department of Biochemistry and Molecular Biology Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Harada A, Kimura Y, Kono K. Cationic polymers with inhibition ability of DNA condensation elevate gene expression. Chembiochem 2011; 11:1985-8. [PMID: 20806309 DOI: 10.1002/cbic.201000394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Harada
- Department of Applied Chemistry, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | |
Collapse
|
21
|
Tanaka K, Kanazawa T, Ogawa T, Suda Y, Takashima Y, Fukuda T, Okada H. A Novel, Bio-Reducible Gene Vector Containing Arginine and Histidine Enhances Gene Transfection and Expression of Plasmid DNA. Chem Pharm Bull (Tokyo) 2011; 59:202-7. [DOI: 10.1248/cpb.59.202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Tanaka
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Takanori Kanazawa
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Takaya Ogawa
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yumiko Suda
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yuuki Takashima
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | - Hiroaki Okada
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
22
|
Trabulo S, Cardoso AL, Mano M, De Lima MCP. Cell-Penetrating Peptides-Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals (Basel) 2010; 3:961-993. [PMID: 27713284 PMCID: PMC4034016 DOI: 10.3390/ph3040961] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/20/2010] [Accepted: 03/29/2010] [Indexed: 01/13/2023] Open
Abstract
The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs) have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides). In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.
Collapse
Affiliation(s)
- Sara Trabulo
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Miguel Mano
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Maria C Pedroso De Lima
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal.
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal.
| |
Collapse
|
23
|
Lane ME, Brennan FS, Corrigan OI. Comparison of post-emulsification freeze drying or spray drying processes for the microencapsulation of plasmid DNA. J Pharm Pharmacol 2010; 57:831-8. [PMID: 15969941 DOI: 10.1211/0022357056406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
In this work, methods used to microencapsulate plasmid DNA in a biodegradable polymer were compared for their effects on the physicochemical characteristics of DNA-loaded microparticles and on the release and integrity of encapsulated DNA. Microparticles were formulated by either w/o/w emulsification and freeze-drying (EFD) or by w/o/w emulsification and spray-drying (ESD). The influence of both manufacturing processes on particle morphology, charge, release characteristics and biological activity of encapsulated DNA was evaluated. Particles produced by emulsification/spray-drying exhibited more diversity in shape and size than those produced by emulsification/freeze-drying. These particles also exhibited higher plasmid DNA encapsulation efficiency than particles produced by emulsification/freeze-drying. The fractional DNA release rates were similar over the first 25 days for both formulations, release rate declining more rapidly at later times for the ESD product. Mammalian cell transfection assays confirmed the biological activity of encapsulated DNA extracted from both types of particles, with significantly higher transfection levels being observed for ESD particles. Application of a double emulsion (w/o/w) before spray drying resulted in higher encapsulation levels (> 90%) relative to previous literature values, which used single (w/o) emulsions before spray drying. The emulsification/spray-drying technique described here appears to be a rapid and efficient method for the preparation of PLGA microparticles loaded with plasmid DNA.
Collapse
|
24
|
Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes. Top Curr Chem (Cham) 2010; 296:51-93. [PMID: 21504100 DOI: 10.1007/128_2010_67] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.
Collapse
|
25
|
de la Torre LG, Rosada RS, Trombone APF, Frantz FG, Coelho-Castelo AA, Silva CL, Santana MHA. The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes. Colloids Surf B Biointerfaces 2009; 73:175-84. [DOI: 10.1016/j.colsurfb.2009.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 05/09/2009] [Accepted: 05/14/2009] [Indexed: 12/01/2022]
|
26
|
The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes. Colloids Surf B Biointerfaces 2009; 72:1-5. [PMID: 19395245 DOI: 10.1016/j.colsurfb.2009.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 03/01/2009] [Accepted: 03/08/2009] [Indexed: 11/21/2022]
Abstract
Among non-viral vectors, cationic liposomes are the most promising carriers in gene delivery. But the most critical issue about their application is their low transfection efficiency compared to viral vectors. In this study, we tried to make a comparison between transfection efficiency of different liposomal formulations and to investigate the effect of membrane fluidity and other physical properties of liposomes and lipoplexes such as size and charge ratio on the transfection efficiency in in vitro environment. Different gene delivery systems were developed by using liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 3-beta-[N-(N'N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-CHOL) in combination with other lipids including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), egg L-alpha-phosphatidylcholine (EPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). These multilamellar vesicle (MLV) liposomes were extruded through 100 nm polycarbonate filters to produce small unilamellar vesicles (SUVs). Transfection activity of these lipoplexes in Neuro2A cells was tested using pRL-CMV encoding Renilla luciferase. We could not establish any direct correlation between high fluid membranes and high transfection efficiency because DOTAP:DPPE had a better result than DOTAP:DOPE while DC-CHOL:DOPE was more successful in gene transfer than DC-CHOL:DPPE. It was revealed that the use of these two helper lipids with different Tm (DPPE: 64 degrees C and DOPE: -11 degrees C) along with DOTAP increased transfection efficiency but formulation of these phospholipids with DC-CHOL was led to a significant reduction in transfection activity. Generally, DOTAP:DPPE, DC-CHOL:DOPE and DOTAP:DOPE:DPPE formulations showed the highest transfection activity. The results of this study showed that, in designing of liposome based non-viral vectors, different parameters such as size, lipid composition and the use of helper lipid should be considered.
Collapse
|
27
|
Mueller J, Kretzschmar I, Volkmer R, Boisguerin P. Comparison of Cellular Uptake Using 22 CPPs in 4 Different Cell Lines. Bioconjug Chem 2008; 19:2363-74. [DOI: 10.1021/bc800194e] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Judith Mueller
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| | - Ines Kretzschmar
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| | - Prisca Boisguerin
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| |
Collapse
|
28
|
Papanicolaou I, Briggs S, Alpar HO. Increased Resistance of DNA Lipoplexes to Protein BindingIn Vitroby Surface-modification with a Multivalent Hydrophilic Polymer. J Drug Target 2008; 12:541-7. [PMID: 15621679 DOI: 10.1080/10611860400011950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The potential of cationic liposomes as DNA delivery vehicles for gene therapy is significantly limited by their instability upon systemic administration. Their strong positive charge induces non-specific binding of serum proteins and subsequent clearance from the circulation. This work investigates the ability of the multivalent reactive copolymer of poly[N-(2-hydroxypropopyl) methacrylamide], pHPMA (MA-GG-ONp) to shield lipoplexes from non-specific protein binding. The polymer was found to react with cationic liposome-DNA complexes (lipoplexes) in both an electrostatic and covalent manner to form an external polymer coat. Polymer coating resulted in an increase in lipoplex diameter (by up to 100 nm) that was proportional to the amount of polymer used, with a concomitant reduction in surface charge from strongly positive to neutral (from 30 to 0 mV). Polymer-coated lipoplexes exhibited increased stability to protein binding compared to untreated liposomes and reduced non-specific uptake into cells in vitro.
Collapse
Affiliation(s)
- I Papanicolaou
- Centre for Drug Delivery Research, The School of Pharmacy, University of London, London, UK
| | | | | |
Collapse
|
29
|
Simberg D, Hirsch-Lerner D, Nissim R, Barenholz Y. Comparison of Different Commercially Available Cationic Lipid-Based Transfection Kits. J Liposome Res 2008. [DOI: 10.3109/08982100009031091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
de Jonge J, Amorij JP, Hinrichs WLJ, Wilschut J, Huckriede A, Frijlink HW. Inulin sugar glasses preserve the structural integrity and biological activity of influenza virosomes during freeze-drying and storage. Eur J Pharm Sci 2007; 32:33-44. [PMID: 17628452 DOI: 10.1016/j.ejps.2007.05.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/19/2007] [Accepted: 05/26/2007] [Indexed: 01/29/2023]
Abstract
Influenza virosomes are reconstituted influenza virus envelopes that may be used as vaccines or as carrier systems for cellular delivery of therapeutic molecules. Here we present a procedure to generate influenza virosomes as a stable dry-powder formulation by freeze-drying (lyophilization) using an amorphous inulin matrix as a stabilizer. In the presence of inulin the structural integrity and fusogenic activity of virosomes were fully preserved during freeze-drying. For example, the immunological properties of the virosomes, i.e. the HA potency in vitro and the immunogenic potential in vivo, were maintained during lyophilization in the presence of inulin. In addition, compared to virosomes dispersed in buffer, inulin-formulated virosomes showed substantially prolonged preservation of the HA potency upon storage. Also the capacity of virosomes to mediate cellular delivery of macromolecules was maintained during lyophilization in the presence of inulin and upon subsequent storage. Specifically, when dispersed in buffer, virosomes with encapsulated plasmid DNA lost their transfection activity completely within 6 weeks, whereas their transfection activity was fully preserved for at least 12 weeks after incorporation in an inulin matrix. Thus, in the presence of inulin as a stabilizing agent, the shelf-life of influenza virosomes with and without encapsulated macromolecules was considerably prolonged. Formulation of influenza virosomes as a dry-powder is advantageous for storage and transport and offers the possibility to develop needle-free dosage forms, e.g. for oral, nasal, pulmonal, or dermal delivery.
Collapse
Affiliation(s)
- Jørgen de Jonge
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
de Jonge J, Leenhouts J, Holtrop M, Schoen P, Scherrer P, Cullis P, Wilschut J, Huckriede A. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem J 2007; 405:41-9. [PMID: 17355227 PMCID: PMC1925238 DOI: 10.1042/bj20061756] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reconstituted influenza virosomes (virus membrane envelopes) have been used previously to deliver pDNA (plasmid DNA) bound to their external surface to a variety of target cells. Although high transfection efficiencies can be obtained with these complexes in vitro, the virosome-associated DNA is readily accessible to nucleases and could therefore be prone to rapid degradation under in vivo conditions. In the present study, we show a new method for the production of DNA-virosomes resulting in complete protection of the DNA from nucleases. This method relies on the use of the short-chain phospholipid DCPC (dicaproylphosphatidylcholine) for solubilization of the viral membrane. The solubilized viral membrane components are mixed with pDNA and cationic lipid. Reconstitution of the viral envelopes and simultaneous encapsulation of pDNA is achieved by removal of the DCPC from the mixture through dialysis. Analysis by linear sucrose density-gradient centrifugation revealed that protein, phospholipid and pDNA physically associated to particles, which appeared as vesicles with spike proteins inserted in their membranes when analysed by electron microscopy. The DNA-virosomes retained the membrane fusion properties of the native influenza virus. The virosome-associated pDNA was completely protected from degradation by nucleases, providing evidence for the DNA being highly condensed and encapsulated in the lumen of the virosomes. DNA-virosomes, containing reporter gene constructs, transfected a variety of cell lines, with efficiencies approaching 90%. Transfection was completely dependent on the fusogenic properties of the viral spike protein haemagglutinin. Thus, DNA-virosomes prepared by the new procedure are highly efficient vehicles for DNA delivery, offering the advantage of complete DNA protection, which is especially important for future in vivo applications.
Collapse
Affiliation(s)
- Jørgen de Jonge
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Johanna M. Leenhouts
- †Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Marijke Holtrop
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Pieter Schoen
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Peter Scherrer
- †Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Pieter R. Cullis
- †Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jan Wilschut
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
del Pozo-Rodríguez A, Delgado D, Solinís MA, Gascón AR, Pedraz JL. Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity. Int J Pharm 2007; 339:261-8. [PMID: 17467205 DOI: 10.1016/j.ijpharm.2007.03.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 03/06/2007] [Indexed: 11/29/2022]
Abstract
Since solid lipid nanoparticles (SLNs) were introduced as non-viral transfection systems, very few reports of their use for gene delivery have been published. In this work different formulations based on SLN-DNA complexes were formulated in order to evaluate the influence of the formulation components on the "in vitro" transfection capacity. SLNs composed by the solid lipid Precirol ATO 5, the cationic lipid DOTAP and the surfactant Tween 80, and SLN-DNA complexes prepared at different DOTAP/DNA ratios were characterized by studying their size, surface charge, DNA protection capacity, transfection and cell viability in HEK293 cultured cells. The incorporation of Tween 80 allowed for the reduction of the cationic lipid concentration. The formulations prepared at DOTAP/DNA ratios 7/1, 5/1 and 4/1 provided almost the same transfection levels (around 15% transfected cells), without significant differences between them (p>0.05). Other assayed formulations presented lower transfection. Transfection activity was dependent on the DOTAP/DNA ratio since it influences the DNA condensation into the SLNs. DNA condensation is a crucial factor which conditions the transfection capacity of SLNs, because it influences DNA delivery from nanoparticles, gene protection from external agents and DNA topology.
Collapse
Affiliation(s)
- A del Pozo-Rodríguez
- Pharmacy and Pharmaceutical Technology Laboratory, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | | | | | | |
Collapse
|
33
|
Boktov J, Hirsch-Lerner D, Barenholz Y. Characterization of the interplay between the main factors contributing to lipoplex-mediated transfection in cell cultures. J Gene Med 2007; 9:884-93. [PMID: 17721894 DOI: 10.1002/jgm.1079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfection efficiency of lipoplex-mediated gene delivery is multifactorial. However, the mode of interaction between the factors which affect transfection is not fully understood. To help fill this deficiency we evaluated the effect of the interplay between several variables that affect transfection efficiency in cell cultures. For this, we applied the Analysis of Variance Model with Fixed Effects and Repeated Measures to assess the data. The variables studied include: two different genes, Luc, and human growth hormone (hGH), in three different plasmids (two of which contain the luciferase (Luc) gene, but different promoter-enhancer regions (CMV and H19) and one plasmid coding hGH with a S16 promoter); three topoisoforms of pDNA (supercoiled (SC), open circular (OC), and closed circular (CC)); three cationic lipid compositions, all based on the monocationic lipid DOTAP (100% DOTAP, DOTAP/DOPE 1 : 1, and DOTAP/cholesterol 1 : 1, all ratios are mole ratios); two DNA-/L+ charge ratios (0.2 and 0.5); and two cell lines (NIH 3T3 and MBT-2). Our statistical analysis confirmed that the cell type, the gene used for transfection, the promoter type, the type of helper lipid, and DNA-/DOTAP+ charge ratio, all affect transfection efficiency in a statistically significant manner. The most efficient lipoplex formulation in both cell lines was that based on DOTAP (without helper lipid), having CC plasmid DNA. We suggest that for obtaining the most transfection-efficient lipoplex one should select the best topoisoform of pDNA for each particular cell type, and complex it with cationic liposomes having optimal lipid composition.
Collapse
Affiliation(s)
- Julia Boktov
- Laboratory of Membrane and Liposome Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
34
|
Abstract
Cationic lipids are conceptually and methodologically simple tools to deliver nucleic acids into the cells. Strategies based on cationic lipids are viable alternatives to viral vectors and are becoming increasingly popular owing to their minimal toxicity. The first-generation cationic lipids were built around the quaternary nitrogen primarily for binding and condensing DNA. A large number of lipids with variations in the hydrophobic and hydrophilic region were generated with excellent transfection efficiencies in vitro. These cationic lipids had reduced efficiencies when tested for gene delivery in vivo. Efforts in the last decade delineated the cell biological basis of the cationic lipid gene delivery to a significant detail. The application of techniques such as small angle X-ray spectroscopy (SAXS) and fluorescence microscopy, helped in linking the physical properties of lipid:DNA complex (lipoplex) with its intracellular fate. This biological knowledge has been incorporated in the design of the second-generation cationic lipids. Lipid-peptide conjugates (peptoids) are effective strategies to overcome the various cellular barriers along with the lipoplex formulations methodologies. In this context, cationic lipid-mediated gene delivery is considerably benefited by the methodologies of liposome-mediated drug delivery. Lipid mediated gene delivery has an intrinsic advantage of being a biomimetic platform on which considerable variations could be built to develop efficient in vivo gene delivery protocols.
Collapse
Affiliation(s)
- N Madhusudhana Rao
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
35
|
Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, de Lima MP. Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2006; 2:237-54. [PMID: 16296751 DOI: 10.1517/17425247.2.2.237] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic liposome-DNA complexes (lipoplexes) constitute a potentially viable alternative to viral vectors for the delivery of therapeutic genes. This review will focus on various parameters governing lipoplex biological activity, from their mode of formation to in vivo behaviour. Particular emphasis is given to the mechanism of interaction of lipoplexes with cells, in an attempt to dissect the different barriers that need to be surpassed for efficient gene expression to occur. Aspects related to new trends in the formulation of lipid-based gene delivery systems aiming at overcoming some of their limitations will be covered. Finally, examples illustrating the potential of cationic liposomes in clinical applications will be provided.
Collapse
Affiliation(s)
- Sérgio Simões
- University of Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Portugal.
| | | | | | | | | | | | | |
Collapse
|
36
|
Mano M, Henriques A, Paiva A, Prieto M, Gavilanes F, Simões S, Pedroso de Lima MC. Cellular uptake of S413-PV peptide occurs upon conformational changes induced by peptide-membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:336-46. [PMID: 16516138 DOI: 10.1016/j.bbamem.2006.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 11/23/2022]
Abstract
In face of accumulated reports demonstrating that uptake of some cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of cell fixation artifacts, we conducted a systematic analysis on the mechanism responsible for the cellular uptake of the S4(13)-PV karyophilic cell-penetrating peptide. The results reviewed here show that the S4(13)-PV peptide is able to very efficiently accumulate inside live cells in a rapid, non-toxic and dose-dependent manner, through a mechanism distinct from endocytosis. Comparative analysis of peptide uptake by mutant cells lacking heparan sulfate proteoglycans demonstrates that, although not mandatory, their presence at cell surface facilitates the cellular uptake of the S4(13)-PV peptide. Furthermore, we demonstrate that upon interaction with lipid vesicles, the S4(13)-PV peptide undergoes significant conformational changes that are consistent with the formation of helical structures. Such conformational changes occur concomitantly with a penetration of the peptide into the lipid bilayer, strongly suggesting that the resulting helical structures are crucial for the non-endocytic cellular uptake of the S4(13)-PV peptide. Overall, our data support that, rather than endocytosis, the cellular uptake of the S4(13)-PV cell-penetrating peptide is a consequence of its direct translocation through cell membranes following conformational changes induced by peptide-membrane interactions.
Collapse
Affiliation(s)
- Miguel Mano
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
37
|
Mano M, Teodósio C, Paiva A, Simões S, Pedroso de Lima M. On the mechanisms of the internalization of S4(13)-PV cell-penetrating peptide. Biochem J 2006; 390:603-12. [PMID: 15907190 PMCID: PMC1198940 DOI: 10.1042/bj20050577] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-penetrating peptides have been shown to translocate across eukaryotic cell membranes through a temperature-insensitive and energy-independent mechanism that does not involve membrane receptors or transporters. Although cell-penetrating peptides have been successfully used to mediate the intracellular delivery of a wide variety of molecules of pharmacological interest both in vitro and in vivo, the mechanisms by which cellular uptake occurs remain unclear. In the face of recent reports demonstrating that uptake of cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of fixation artifacts, we conducted a critical re-evaluation of the mechanism responsible for the cellular uptake of the S4(13)-PV karyophilic cell-penetrating peptide. We report that the S4(13)-PV peptide is able to accumulate inside live cells very efficiently through a rapid, dose-dependent and non-toxic process, providing clear evidence that the cellular uptake of this peptide cannot be attributed to fixation artifacts. Comparative analysis of peptide uptake into mutant cells lacking heparan sulphate proteoglycans demonstrates that their presence at the cell surface facilitates the cellular uptake of the S4(13)-PV peptide, particularly at low peptide concentrations. Most importantly, our results clearly demonstrate that, in addition to endocytosis, which is only evident at low peptide concentrations, the efficient cellular uptake of the S4(13)-PV cell-penetrating peptide occurs mainly through an alternative, non-endocytic mechanism, most likely involving direct penetration across cell membranes.
Collapse
Affiliation(s)
- Miguel Mano
- *Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-517 Coimbra, Portugal
- †Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra, Portugal
| | | | - Artur Paiva
- ‡Histocompatibility Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Sérgio Simões
- *Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-517 Coimbra, Portugal
- §Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-295 Coimbra, Portugal
| | - Maria C. Pedroso de Lima
- *Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-517 Coimbra, Portugal
- †Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra, Portugal
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Pupo E, Padrón A, Santana E, Sotolongo J, Quintana D, Dueñas S, Duarte C, de la Rosa MC, Hardy E. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J Control Release 2005; 104:379-96. [PMID: 15907587 DOI: 10.1016/j.jconrel.2005.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
High-pressure homogenization-extrusion (HPHE) is a method that can be used for downsizing large lipid vesicles with commercially available instrumentation (e.g., from Avestin Inc., Canada), which covers a full range of processing capacities from laboratory (0.5-3.5 mL) to large-scale continuous (1-1000 L/h) production. Consequently, the feasibility (at the laboratory scale) of using HPHE for producing DNA-loaded liposomes by the conventional dehydration-rehydration method was explored. HPHE-generated small unilamellar vesicles had a mean size in the range of 27-76 nm depending on the number of processing cycles and lipid (PC:DOPE:DOTAP or PC:DOPE:Ethyl-DOPC, 1:0.5:0.5, mol/mol) formulation. The size could be further regulated by the pore size (50 or 100 nm) of the extrusion membrane. Using plasmids for the V3 loop of HIV-1, and the capsid, E1 and E2 of hepatitis C, entrapment yields of 72-98.2% into dehydrated-rehydrated vesicles (DRV) were obtained over a wide range (0.309-2.5 mg) of DNA quantities. Most of the plasmid DNA was retained by liposomes even in the presence of sodium dodecyl sulfate (from 0.05% to 0.3%) and efficiently protected from nuclease-mediated degradation. Although the encapsulation process slightly decreased (in the range of 42.8-65.7%) the relative abundance of plasmid super coiled isoforms, the transfection efficiency of monkey kidney COS-7 cells with the plasmid DNA extracted from liposomes (9+/-0.4%) was similar to that of the non-treated DNA (8.7+/-0.2%), using the commercial SuperFect(R) Transfection Reagent. Also, it was found that an appreciable loss of lipid mass-either associated with the HPHE or the dehydration-rehydration steps-occurs during the liposome manufacturing process. These results at the bench scale are a useful reference for planning pilot or large-scale manufacture of DNA vaccine-containing liposomes.
Collapse
Affiliation(s)
- Elder Pupo
- Division of Formulation Development, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Nucleic acid delivery has many applications in basic science, biotechnology, agriculture, and medicine. One of the main applications is DNA or RNA delivery for gene therapy purposes. Gene therapy, an approach for treatment or prevention of diseases associated with defective gene expression, involves the insertion of a therapeutic gene into cells, followed by expression and production of the required proteins. This approach enables replacement of damaged genes or expression inhibition of undesired genes. Following two decades of research, there are two major methods for delivery of genes. The first method, considered the dominant approach, utilizes viral vectors and is generally an efficient tool of transfection. Attempts, however, to resolve drawbacks related with viral vectors (e.g., high risk of mutagenicity, immunogenicity, low production yield, limited gene size, etc.), led to the development of an alternative method, which makes use of non-viral vectors. This review describes non-viral gene delivery vectors, termed "self-assembled" systems, and are based on cationic molecules, which form spontaneous complexes with negatively charged nucleic acids. It introduces the most important cationic polymers used for gene delivery. A transition from in vitro to in vivo gene delivery is also presented, with an emphasis on the obstacles to achieve successful transfection in vivo.
Collapse
Affiliation(s)
- H. Eliyahu
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Jerusalem, Israel
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Y. Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - A. J. Domb
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Jerusalem, Israel
| |
Collapse
|
40
|
Roth CM, Sundaram S. Engineering synthetic vectors for improved DNA delivery: insights from intracellular pathways. Annu Rev Biomed Eng 2004; 6:397-426. [PMID: 15255775 DOI: 10.1146/annurev.bioeng.6.040803.140203] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Significant progress has been made in the area of nonviral gene delivery to date. Yet, synthetic vectors remain less efficient by orders of magnitude than their viral counterparts. Research continues toward unraveling and overcoming various barriers to the efficient delivery of DNA, whether in plasmid form encoding a gene or as an oligonucleotide for the selective inhibition of target gene expression. Novel components for overcoming these hurdles are continually being incorporated into the design of synthetic vectors, leading to increasingly more virus-like particles. Despite these advances, general principles defining the design of synthetic vectors are yet to be developed fully. A more quantitative analysis of the cellular uptake and intracellular processing of these vectors is required for the rational manipulation of vector design. Mathematical frameworks with a more conceptual basis will help obtain an integrated perspective on these complex systems. In this review, we critically examine the progress made toward the improved design of synthetic vectors by the strategic exploitation of intracellular mechanisms and explore newer possibilities to overcome obstacles in the practical realization of this field.
Collapse
Affiliation(s)
- Charles M Roth
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
41
|
Nchinda G, Zschörnig O, Uberla K. Increased non-viral gene transfer levels in mice by concentration of cationic lipid DNA complexes formed under optimized conditions. J Gene Med 2003; 5:712-22. [PMID: 12898640 DOI: 10.1002/jgm.388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND A number of non-viral gene transfer reagents including cationic lipid DNA complexes (LDC) have been developed and were improved by changing the ratio of their components. To determine the effect of other parameters during complex formation affecting the efficacy of LDC, the conditions during complexation were varied without changing the ratios of the components. METHODS LDC were formed at fixed ratios of an equimolar mixture of DOTAP and cholesterol to DNA to the condensing agent protamine sulfate according to different protocols at varying final concentrations. The influence of these parameters on transfection efficiency and physical properties of the complexes was determined. RESULTS Changing the order of addition of compounds during complex formation affected the size distribution, the charge of the LDC, the interaction between the lipids and the accessibility of the DNA. At fixed ratios of the components, higher transfection efficiencies were observed with more condensed LDC. Complexation in higher volumes increased transduction efficiency of the complexes after intravenous inoculation. Due to restrictions on the injectable volume, the LDC were formed in the optimal volume and subsequently concentrated by ultrafiltration. The concentrated complexes maintained transduction efficiency and up to 60-fold higher in vivo transduction levels were obtained. CONCLUSIONS In addition to the ratio of the components of cationic lipid DNA complexes, the final concentration and the order of addition of compounds during complex formation are critical for high transduction efficiency. Concentration of LDC formed under optimal conditions can be used to further increase in vivo gene transfer levels.
Collapse
Affiliation(s)
- Godwin Nchinda
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | | | | |
Collapse
|
42
|
Faneca H, Simões S, de Lima MCP. Evaluation of lipid-based reagents to mediate intracellular gene delivery. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:23-33. [PMID: 12488034 DOI: 10.1016/s0005-2736(02)00545-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We characterized different cationic lipid-based gene delivery systems consisting of both liposomes and nonliposomal structures, in terms of their in vitro transfection activity, resistance to the presence of serum, protective effect against nuclease degradation and stability under different storage conditions. The effect of lipid/DNA charge ratio of the resulting complexes on these properties was also evaluated. Our results indicate that the highest levels of transfection activity were observed for complexes prepared from nonliposomal structures composed of FuGENE 6. However, their DNA protective effect was shown to be lower than that observed for cationic liposome formulations when prepared at the optimal (+/-) charge ratio. Our results suggest that lipoplexes are resistant to serum up to 30% when prepared at a 2:1 lipid/DNA charge ratio. However, when they were prepared at higher (+/-) charge ratios, they become sensitive to serum for even lower concentrations (10%). Replacement of dioleoyl-phosphatidylethanolamine (DOPE) by cholesterol enhanced the resistance of the complexes to the inhibitory effect of serum. This different biological activity in the presence of serum was attributed to different extents of binding of serum proteins to the complexes, as evaluated by the immunoblotting assay. Studies on the stability under storage show that lipoplexes maintain most of their biological activity when stored at -80 degrees C, following their fast freezing in liquid nitrogen.
Collapse
Affiliation(s)
- H Faneca
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
| | | | | |
Collapse
|
43
|
Wiethoff CM, Gill ML, Koe GS, Koe JG, Middaugh CR. The Structural Organization of Cationic Lipid-DNA Complexes. J Biol Chem 2002; 277:44980-7. [PMID: 12297507 DOI: 10.1074/jbc.m207758200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of cationic liposomes with supercoiled plasmid DNA results in a major rearrangement of each component to form compact multilamellar structures comprised of alternating layers of two-dimensional arrays of DNA sandwiched between lipid bilayers. Fluorescence resonance energy transfer was used to estimate the distance of closest approach of DNA to the lipid bilayers in these complexes. The effect of several compositional variables on this distance, including the ratio of cationic lipid to DNA, and the charge density, intrinsic curvature, and fluidity of the lipid bilayer were examined. Additionally, the effect of ionic strength was studied. For complexes prepared at or above a 3:1 charge ratio (+/-), the observed distance of closest approach was found to be in agreement with the intercalation of DNA between lipid bilayers. As the charge ratio was decreased, a monotonic increase in the distance was observed with a maximum observed at 0.5:1. Correlations between differences in the proximity of DNA to the lipid bilayer and the hydrodynamic size of the complexes were also found. A model based on these observations and previous reports suggests the formation of discrete populations of complexes below a charge ratio of 0.5:1 and above 3:1. The structure of the negatively charged complexes is consistent with DNA extending from the surface of the particles, whereas those possessing excess positive charge were multilamellar aggregates with the DNA effectively condensed between lipid bilayers. Complexes between these two states consist of weighted fractions of these two species.
Collapse
Affiliation(s)
- Christopher M Wiethoff
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
44
|
Ferrari ME, Rusalov D, Enas J, Wheeler CJ. Synergy between cationic lipid and co-lipid determines the macroscopic structure and transfection activity of lipoplexes. Nucleic Acids Res 2002; 30:1808-16. [PMID: 11937635 PMCID: PMC113211 DOI: 10.1093/nar/30.8.1808] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The large number of cytofectin and co-lipid combinations currently used for lipoplex-mediated gene delivery reflects the fact that the optimal cytofectin/co-lipid combination varies with the application. The effects of structural changes in both cytofectin and co-lipid were systematically examined to identify structure-activity relationships. Specifically, alkyl chain length, degree of unsaturation and the head group to which the alkyl side chain was attached were examined to determine their effect on lipoplex structure and biological activity. The macroscopic lipoplex structure was assessed using a dye-binding assay and the biological activity was examined using in vitro transfection in three diverse cell lines. Lipoplexes were formulated in three different vehicles currently in use for in vivo delivery of naked plasmid DNA (pDNA) and lipoplex formulations. The changes in dye accessibility were consistent with structural changes in the lipoplex, which correlated with alterations in the formulation. In contrast, transfection activity of different lipoplexes was cell type and vehicle dependent and did not correlate with dye accessibility. Overall, the results show a correlation between transfection and enhanced membrane fluidity in both the lipoplex and cellular membranes.
Collapse
Affiliation(s)
- Marilyn E Ferrari
- Department of Chemistry, Vical Incorporated, 9373 Towne Centre Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
45
|
Simberg D, Danino D, Talmon Y, Minsky A, Ferrari ME, Wheeler CJ, Barenholz Y. Phase behavior, DNA ordering, and size instability of cationic lipoplexes. Relevance to optimal transfection activity. J Biol Chem 2001; 276:47453-9. [PMID: 11564736 DOI: 10.1074/jbc.m105588200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms of cationic lipid-based nucleic acid delivery are receiving increasing attention, but despite this the factors that determine high or low activity of lipoplexes are poorly understood. This study is focused on the fine structure of cationic lipid-DNA complexes (lipoplexes) and its relevance to transfection efficiency. Monocationic (N-(1-(2,3-dioleoyloxy)propyl),N,N,N-trimethylammonium chloride, N-(1-(2,3-dimyristyloxypropyl)-N,N-dimethyl-(2-hydroxyethyl)ammonium bromide) and polycationic (2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate) lipid-based assemblies, with or without neutral lipid (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, cholesterol) were used to prepare lipoplexes of different L(+)/DNA(-) charge ratios. Circular dichroism, cryogenic-transmission electron microscopy, and static light scattering were used for lipoplex characterization, whereas expression of human growth hormone or green fluorescent protein was used to quantify transfection efficiency. All monocationic lipids in the presence of inverted hexagonal phase-promoting helper lipids (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, cholesterol) induced appearance of Psi(-) DNA, a chiral tertiary DNA structure. The formation of Psi(-) DNA was also dependent on cationic lipid-DNA charge ratio. On the other hand, monocationic lipids either alone or with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine as helper lipid, or polycationic 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate-based assemblies, neither of which promotes a lipid-DNA hexagonal phase, did not induce the formation of Psi(-) DNA. Parallel transfection studies reveal that the size and phase instability of the lipoplexes, and not the formation of Psi(-) DNA structure, correlate with optimal transfection.
Collapse
Affiliation(s)
- D Simberg
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001; 8:1188-96. [PMID: 11509950 DOI: 10.1038/sj.gt.3301506] [Citation(s) in RCA: 407] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2000] [Accepted: 04/30/2001] [Indexed: 11/08/2022]
Abstract
The mechanism whereby cationic lipids destabilize cell membranes to facilitate the intracellular delivery of macromolecules such as plasmid DNA or antisense oligonucleotides is not well understood. Here, we show that cationic lipids can destabilize lipid bilayers by promoting the formation of nonbilayer lipid structures. In particular, we show that mixtures of cationic lipids and anionic phospholipids preferentially adopt the inverted hexagonal (H(II)) phase. Further, the presence of 'helper' lipids such as dioleoylphosphatidylethanolamine or cholesterol, lipids that enhance cationic lipid-mediated transfection of cells also facilitate the formation of the H(II)phase. It is suggested that the ability of cationic lipids to promote nonbilayer structures in combination with anionic phospholipids leads to disruption of the endosomal membrane following uptake of nucleic acid-cationic lipid complexes into cells, thus facilitating cytoplasmic release of the plasmid or oligonucleotide.
Collapse
Affiliation(s)
- I M Hafez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
47
|
Pedroso de Lima MC, Simões S, Pires P, Faneca H, Düzgüneş N. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 2001; 47:277-94. [PMID: 11311996 DOI: 10.1016/s0169-409x(01)00110-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Great expectations from the application of gene therapy approaches to human disease have been impaired by the unsatisfactory clinical progress observed. Among others, the use of an efficient carrier for nucleic acid-based medicines is considered to be a determinant factor for the successful application of this promising therapeutic strategy. The drawbacks associated with the use of viral vectors, namely those related with safety problems, have prompted investigators to develop alternative methods for gene delivery, cationic lipid-based systems being the most representative. This review focuses on the various parameters that are considered to be crucial to optimize the use of cationic lipid-DNA complexes for gene therapy purposes. Particular emphasis is devoted to the analysis of the different stages involved in the transfection process, from the biophysical aspects underlying the formation of the complexes to the different biological barriers that need to be surpassed for gene expression to occur.
Collapse
Affiliation(s)
- M C Pedroso de Lima
- Department of Biochemistry, University of Coimbra, 3000 codex, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
48
|
Ferrari ME, Rusalov D, Enas J, Wheeler CJ. Trends in lipoplex physical properties dependent on cationic lipid structure, vehicle and complexation procedure do not correlate with biological activity. Nucleic Acids Res 2001; 29:1539-48. [PMID: 11266556 PMCID: PMC31288 DOI: 10.1093/nar/29.7.1539] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a group of structurally related cytofectins, the effects of different vehicle constituents and mixing techniques on the physical properties and biological activity of lipoplexes were systematically examined. Physical properties were examined using a combination of dye accessibility assays, centrifugation, gel electrophoresis and dynamic light scattering. Biological activity was examined using in vitro transfection. Lipoplexes were formulated using two injection vehicles commonly used for in vivo delivery (PBS pH 7.2 and 0.9% saline), and a sodium phosphate vehicle previously shown to enhance the biological activity of naked pDNA and lipoplex formulations. Phosphate was found to be unique in its effect on lipoplexes. Specifically, the accessible pDNA in lipoplexes formulated with cytofectins containing a gamma-amine substitution in the headgroup was dependent on alkyl side chain length and sodium phosphate concentration, but the same effects were not observed when using cytofectins containing a beta-OH headgroup substitution. The physicochemical features of the phosphate anion, which give rise to this effect in gamma-amine cytofectins, were deduced using a series of phosphate analogs. The effects of the formulation vehicle on transfection were found to be cell type-dependent; however, of the formulation variables examined, the liposome/pDNA mixing method had the greatest effect on transgene expression in vitro. Thus, though predictive physical structure relationships involving the vehicle and cytofectin components of the lipoplex were uncovered, they did not extrapolate to trends in biological activity.
Collapse
Affiliation(s)
- M E Ferrari
- Department of Chemistry, Vical Incorporated, 9373 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
49
|
Even-Chen S, Barenholz Y. DOTAP cationic liposomes prefer relaxed over supercoiled plasmids. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:176-88. [PMID: 11118529 DOI: 10.1016/s0005-2736(00)00292-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the supercoiled form. This preference is much more pronounced when the cationic liposome formulation is based on the monocationic lipid DOTAP than on the polycationic lipid DOSPA. The preference of DOTAP formulations to bind to the relaxed DNA plasmid suggests that the binding of supercoiled DNA is weaker and easier to dissociate from the complex.
Collapse
Affiliation(s)
- S Even-Chen
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University - Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | | |
Collapse
|
50
|
Barman SP, Lunsford L, Chambers P, Hedley ML. Two methods for quantifying DNA extracted from poly(lactide-co-glycolide) microspheres. J Control Release 2000; 69:337-44. [PMID: 11102674 DOI: 10.1016/s0168-3659(00)00308-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA can be formulated with synthetic polymers such as poly(lactide-co-glycolide) (PLG) to generate microparticles. Researchers have used either UV spectroscopy or fluorometry with PicoGreen((R)) dye to quantify PLG-encapsulated DNA. While the sensitivity of DNA detection and quantification by PicoGreen is higher ( approximately 12 pg/ml) compared to UV ( approximately 0.5 microg/ml), each method as an analytical tool has limitations. The premise of this work addresses the usefulness and limitations of each method to determine encapsulation efficiencies in PLG microspheres post-process, and to quantify release of DNA from microspheres during in vitro release experiments. In addition, assay conditions for accurate and reproducible extraction of DNA from PLG microspheres using a biphasic (aqueous/organic) solvent system are described. It was also determined that residual poly(vinyl alcohol) and DNA isoforms (linear, nicked, supercoiled) affected PicoGreen/DNA fluorescence values.
Collapse
Affiliation(s)
- S P Barman
- ZYCOS Inc., 44 Hartwell, Lexington, MA 02421, USA
| | | | | | | |
Collapse
|