1
|
Gupta AO, Azul M, Bhoopalan SV, Abraham A, Bertaina A, Bidgoli A, Bonfim C, DeZern A, Li J, Louis CU, Purtill D, Ruggeri A, Boelens JJ, Prockop S, Sharma A. International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the current state of hematopoietic stem and progenitor cell-based genomic therapies and the challenges faced. Cytotherapy 2024; 26:1411-1420. [PMID: 38970612 PMCID: PMC11471386 DOI: 10.1016/j.jcyt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent β-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Azul
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allistair Abraham
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
2
|
Gupta AO, Raymond G, Pierpont RI, Kemp S, McIvor RS, Rayannavar A, Miller B, Lund TC, Orchard PJ. Treatment of cerebral adrenoleukodystrophy: allogeneic transplantation and lentiviral gene therapy. Expert Opin Biol Ther 2022; 22:1151-1162. [DOI: 10.1080/14712598.2022.2124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| | - Gerald Raymond
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rene I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC - University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands
| | - R Scott McIvor
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota
| | | | - Bradley Miller
- Division of Pediatric Endocrinology, University of Minnesota
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| |
Collapse
|
3
|
Chiesa R, Bernardo ME. Haematopoietic stem cell gene therapy in inborn errors of metabolism. Br J Haematol 2022; 198:227-243. [PMID: 35535965 DOI: 10.1111/bjh.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Over the last 30 years, allogeneic haematopoietic stem cell transplantation (allo-HSCT) has been adopted as a therapeutic strategy for many inborn errors of metabolism (IEM), due to the ability of donor-derived cells to provide life-long enzyme delivery to deficient tissues and organs. However, (a) the clinical benefit of allo-HSCT is limited to a small number of IEM, (b) patients are left with a substantial residual disease burden and (c) allo-HSCT is still associated with significant short- and long-term toxicities and transplant-related mortality. Haematopoietic stem/progenitor cell gene therapy (HSPC-GT) was established in the 1990s for the treatment of selected monogenic primary immunodeficiencies and over the past few years, its use has been extended to a number of IEM. HSPC-GT is particularly attractive in neurodegenerative IEM, as gene corrected haematopoietic progenitors can deliver supra-physiological enzyme levels to difficult-to-reach areas, such as the brain and the skeleton, with potential increased clinical benefit. Moreover, HSPC-GT is associated with reduced morbidity and mortality compared to allo-HSCT, although this needs to be balanced against the potential risk of insertional mutagenesis. The number of clinical trials in the IEM field is rapidly increasing and some HSPC-GT products recently received market approval. This review describes the development of ex vivo HSPC-GT in a number of IEM, with a focus on recent results from GT clinical trials and risks versus benefits considerations, when compared to established therapeutic strategies, such as allo-HSCT.
Collapse
Affiliation(s)
- Robert Chiesa
- Bone Marrow Transplantation Department, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, UK
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute" San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
The Landscape of Hematopoietic Stem Cell Transplant and Gene Therapy for X-Linked Adrenoleukodystrophy. Curr Treat Options Neurol 2019; 21:61. [PMID: 31768791 DOI: 10.1007/s11940-019-0605-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW To present an updated appraisal of hematopoietic stem cell transplant (HSCT) and gene therapy for X-linked adrenoleukodystrophy (ALD) in the setting of a novel, presymptomatic approach to disease. RECENT FINDINGS Outcomes in HSCT for ALD have been optimized over time due to early patient detection, improved myeloablative conditioning regimens, and adjunctive treatment for patients with advanced cerebral disease. Gene therapy has arrested disease progression in a cohort of boys with childhood cerebral ALD. New therapeutic strategies have provided the clinical basis for the implementation of Newborn Screening (NBS). With the help of advocacy groups, NBS has been implemented, allowing for MRI screening for the onset of cerebral ALD from birth. Gene therapy and optimized hematopoietic stem cell transplant for childhood CALD have changed the natural history of this previously devastating neurological disease.
Collapse
|
5
|
Abstract
Human mesenchymal stem cells (MSCs) contribute to the regeneration of mesenchymal tissues, and are essential in providing support for the growth and differentiation of primitive hemopoietic cells within the bone marrow microenvironment. Techniques are now available to isolate human MSCs and manipulate their expansion in vitro under defined culture conditions without change of phenotype or loss of function. Mesenchymal stem cells have generated a great deal of interest in many clinical settings, including that of regenerative medicine, immune modulation and tissue engineering. Studies have already demonstrated the feasibility of transplanted MSCs providing crucial new cellular therapy. In this review, many aspects of the MSC will be discussed, with the main focus being on clinical studies that describe the potential of MSCs to treat patients with hematological malignancies who are undergoing chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Kevin C Kemp
- Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol, UK
| | | | | |
Collapse
|
6
|
Sanders RJ, Ofman R, Dacremont G, Wanders RJA, Kemp S. Characterization of the human omega-oxidation pathway for omega-hydroxy-very-long-chain fatty acids. FASEB J 2008; 22:2064-71. [PMID: 18182499 DOI: 10.1096/fj.07-099150] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Very-long-chain fatty acids (VLCFAs) have long been known to be degraded exclusively in peroxisomes via beta-oxidation. A defect in peroxisomal beta-oxidation results in elevated levels of VLCFAs and is associated with the most frequent inherited disorder of the central nervous system white matter, X-linked adrenoleukodystrophy. Recently, we demonstrated that VLCFAs can also undergo omega-oxidation, which may provide an alternative route for the breakdown of VLCFAs. The omega-oxidation of VLCFA is initiated by CYP4F2 and CYP4F3B, which produce omega-hydroxy-VLCFAs. In this article, we characterized the enzymes involved in the formation of very-long-chain dicarboxylic acids from omega-hydroxy-VLCFAs. We demonstrate that very-long-chain dicarboxylic acids are produced via two independent pathways. The first is mediated by an as yet unidentified, microsomal NAD(+)-dependent alcohol dehydrogenase and fatty aldehyde dehydrogenase, which is encoded by the ALDH3A2 gene and is deficient in patients with Sjögren-Larsson syndrome. The second pathway involves the NADPH-dependent hydroxylation of omega-hydroxy-VLCFAs by CYP4F2, CYP4F3B, or CYP4F3A. Enzyme kinetic studies show that oxidation of omega-hydroxy-VLCFAs occurs predominantly via the NAD(+)-dependent route. Overall, our data demonstrate that in humans all enzymes are present for the complete conversion of VLCFAs to their corresponding very-long-chain dicarboxylic acids.
Collapse
Affiliation(s)
- Robert-Jan Sanders
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Sevin C, Benraiss A, Van Dam D, Bonnin D, Nagels G, Verot L, Laurendeau I, Vidaud M, Gieselmann V, Vanier M, De Deyn PP, Aubourg P, Cartier N. Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Hum Mol Genet 2005; 15:53-64. [PMID: 16311251 DOI: 10.1093/hmg/ddi425] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a neurodegenerative lysosomal disease caused by a defect of the enzyme arylsulfatase A (ARSA) that disrupts the degradation of sulfatides (Sulf) in neurons and glial cells. Therapy for MLD requires active production of ARSA in the brain to prevent demyelination and neuronal damage, and efficient delivery of ARSA to act faster than disease progression, particularly in the rapidly progressive late infantile form. We used an adeno-associated virus serotype 5 (AAV5) vector to express the human ARSA gene in the brain of MLD mouse model. We achieved rapid, extensive and long-lasting expression of the recombinant ARSA in the brain, cerebellum and brainstem from at least 3 to 15 months post-injection. Analysis of the vector genome and ARSA distribution gave evidence for in vivo cross-correction of many untransduced neurons and astrocytes. ARSA delivery rapidly reversed Sulf storage and prevented neuropathological abnormalities and neuromotor impairment. We believe that AAV5-mediated brain delivery of ARSA is a potentially efficacious therapeutic strategy for MLD patients, especially for those with rapidly progressive form of the disease.
Collapse
Affiliation(s)
- Caroline Sevin
- Institut National de la Santé et de la Recherche Médicale U561, Université Paris V, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Richard E, Robert E, Cario-André M, Ged C, Géronimi F, Gerson SL, de Verneuil H, Moreau-Gaudry F. Hematopoietic stem cell gene therapy of murine protoporphyria by methylguanine-DNA-methyltransferase-mediated in vivo drug selection. Gene Ther 2005; 11:1638-47. [PMID: 15284838 DOI: 10.1038/sj.gt.3302335] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Erythropoietic protoporphyria (EPP) is an inherited defect of the ferrochelatase (FECH) gene characterized by the accumulation of toxic protoporphyrin in the liver and bone marrow resulting in severe skin photosensitivity. We previously described successful gene therapy of an animal model of the disease with erythroid-specific lentiviral vectors in the absence of preselection of corrected cells. However, the high-level of gene transfer obtained in mice is not translatable to large animal models and humans if there is no selective advantage for genetically modified hematopoietic stem cells (HSCs) in vivo. We used bicistronic SIN-lentiviral vectors coexpressing EGFP or FECH and the G156A-mutated O6-methylguanine-DNA-methyltransferase (MGMT) gene, which allowed efficient in vivo selection of transduced HSCs after O6-benzylguanine and BCNU treatment. We demonstrate for the first time that the correction and in vivo expansion of deficient transduced HSC population can be obtained by this dual gene therapy, resulting in a progressive increase of normal RBCs in EPP mice and a complete correction of skin photosensitivity. Finally, we developed a novel bipromoter SIN-lentiviral vector with a constitutive expression of MGMT gene to allow the selection of HSCs and with an erythroid-specific expression of the FECH therapeutic gene.
Collapse
Affiliation(s)
- E Richard
- INSERM E0217, Federative Research Institute 66, Université Victor Segalen Bordeaux 2, Bordeaux France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Asheuer M, Pflumio F, Benhamida S, Dubart-Kupperschmitt A, Fouquet F, Imai Y, Aubourg P, Cartier N. Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc Natl Acad Sci U S A 2004; 101:3557-62. [PMID: 14990803 PMCID: PMC373501 DOI: 10.1073/pnas.0306431101] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In rodents, bone marrow-derived cells enter the brain during adult life. Allogeneic bone marrow transplantation is used to treat genetic CNS diseases, but the fate of human bone marrow and CD34(+) cells within the brain remains to be elucidated. The present study demonstrates that cells derived from human CD34(+) cells, isolated from either cord blood or peripheral blood, migrate into the brain after infusion into nonobese diabetic/severe combined immunodeficient mice. Both types of CD34(+)-derived cells differentiate into perivascular and ramified microglia. The lentiviral transfer of genes into CD34(+) cells before infusion does not modify the differentiation of human CD34(+) cells into microglia, allowing new transgenic proteins to be expressed in these cells. The transplantation of CD34(+) cells could thus be used for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Muriel Asheuer
- Institut National de la Santé et de la Recherche Médicale U561, Hôpital Saint-Vincent de Paul, 75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Géronimi F, Richard E, Redonnet-Vernhet I, Lamrissi-Garcia I, Lalanne M, Ged C, Moreau-Gaudry F, De Verneuil H. Highly efficient lentiviral gene transfer in CD34+ and CD34+/38-/lin- cells from mobilized peripheral blood after cytokine prestimulation. Stem Cells 2004; 21:472-80. [PMID: 12832700 DOI: 10.1634/stemcells.21-4-472] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Because mobilized peripheral blood (mPB) represents an attractive source of cells for gene therapy, we investigated lentiviral gene transfer in CD34(+) cells and the stem/progenitor-cell-enriched CD34(+)/38(-)/lin(-) cell subset isolated from mPB. In this study, we used an optimized third-generation self-inactivating lentiviral vector containing both the central polypurine tract and the woodchuck hepatitis posttranscriptional regulatory element sequences and encoding enhanced green fluorescent protein (EGFP) under the control of the elongation factor lalpha promoter. This lentivector was first used to compare multiplicity of infection (MOI)-dependent gene transfer efficiency in cord blood (CB) versus mPB CD34(+)-derived cells, colony-forming cells (CFCs), and long-term culture-initiating cells (LTC-ICs). Results showed a difference in the percentage of transduced cells particularly significant at low MOIs. A plateau was reached where 15% and 25% of CB and mPB cells, respectively, remained refractory to lentiviral trans-duction. Effects of a cytokine prestimulation period (18 hours) with interleukin-3, stem cell factor, Flt-3 ligand, and thrombopoietin were then analyzed in total cells, CFCs, and LTC-ICs derived from mPB CD34(+) cells. Transduction levels in those conditions demonstrated a two- and fourfold increase in CFCs and LTC-ICs, respectively, compared with unstimulated (<3 hours) control cells. Moreover, using the same transduction protocol, we were able to efficiently transduce CD34(+)/38(-)/lin(-) cells isolated from mPB, with up to >85% of colonies derived from LTC-ICs expressing EGFP and gene transfer levels remaining stable for 10 weeks in liquid culture. We therefore demonstrate a highly efficient gene transfer in this therapeutically relevant target cell population.
Collapse
|
11
|
Géronimi F, Richard E, Lamrissi-Garcia I, Lalanne M, Ged C, Redonnet-Vernhet I, Moreau-Gaudry F, de Verneuil H. Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med (Berl) 2003; 81:310-20. [PMID: 12721665 DOI: 10.1007/s00109-003-0438-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 03/14/2003] [Indexed: 11/25/2022]
Abstract
Congenital erythropoietic porphyria (CEP) is an inherited disease due to a deficiency in the uroporphyrinogen III synthase, the fourth enzyme of the heme biosynthesis pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood and other organs. The prognosis of CEP is poor, with death often occurring early in adult life. For severe transfusion-dependent cases, when allogeneic cell transplantation cannot be performed, the autografting of genetically modified primitive/stem cells may be the only alternative. In vitro gene transfer experiments have documented the feasibility of gene therapy via hematopoietic cells to treat this disease. In the present study lentiviral transduction of porphyric cell lines and primary CD34(+) cells with the therapeutic human uroporphyrinogen III synthase (UROS) cDNA resulted in both enzymatic and metabolic correction, as demonstrated by the increase in UROS activity and the suppression of porphyrin accumulation in transduced cells. Very high gene transfer efficiency (up to 90%) was achieved in both cell lines and CD34(+) cells without any selection. Expression of the transgene remained stable over long-term liquid culture. Furthermore, gene expression was maintained during in vitro erythroid differentiation of CD34(+) cells. Therefore the use of lentiviral vectors is promising for the future treatment of CEP patients by gene therapy.
Collapse
Affiliation(s)
- F Géronimi
- INSERM E 0217, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Benhamida S, Pflumio F, Dubart-Kupperschmitt A, Zhao-Emonet JC, Cavazzana-Calvo M, Rocchiccioli F, Fichelson S, Aubourg P, Charneau P, Cartier N. Transduced CD34+ cells from adrenoleukodystrophy patients with HIV-derived vector mediate long-term engraftment of NOD/SCID mice. Mol Ther 2003; 7:317-24. [PMID: 12668127 DOI: 10.1016/s1525-0016(03)00002-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
X-linked adrenoleukodystrophy (ALD), an inherited demyelinating disorder of the central nervous system, can be corrected by allogeneic bone marrow transplantation, likely due to the turnover of brain macrophages that are bone marrow derived. ALD is characterized by an accumulation of very long chain fatty acids (VLCFA) due to the deficiency of an ATP binding cassette transporter that imports these fatty acids in peroxisomes. Murine retroviral transduction results in metabolic correction of ALD CD34(+) cells in vitro but reinfusion of these cells into ALD patients would not provide clinical benefit owing to the absence of selective advantage conferred by transgene expression. High-efficiency transduction of ALD CD34(+) peripheral blood mobilized cells was achieved using an HIV-based vector driving ALD gene expression under the elongation factor 1 alpha promoter and a protocol without prestimulation of CD34(+) cells with cytokines prior to transduction to preserve their stem cell properties. Efficient expression of the ALD gene was demonstrated in monocytes/macrophages derived from cultures of transduced ALD CD34(+) cells and in long-term culture initiating cells. VLCFA metabolism was corrected in transduced CD34(+), CFU-derived, and LTC-derived cells, indicating that the vector-encoded ALD protein was fully functional. Transplantation of transduced ALD CD34(+) cells into NOD/SCID mice resulted in long-term expression of ALD protein in monocytes/macrophages derived from engrafted stem cells.
Collapse
Affiliation(s)
- Sonia Benhamida
- INSERM U561, Hôpital Saint Vincent de Paul, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ravot E, Comolli G, Lori F, Lisziewicz J. High efficiency lentiviral gene delivery in non-dividing cells by deoxynucleoside treatment. J Gene Med 2002; 4:161-9. [PMID: 11933217 DOI: 10.1002/jgm.256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Gene therapy has recently been advanced by the development of HIV-based vectors that are able to transduce some non-dividing cells. The manipulation of most non-dividing cells remains, however, scarcely efficient. One of the biological mechanisms postulated to prevent powerful transduction of quiescent cells by lentiviral vectors is the paucity of deoxynucleotides (dNTPs). In this study, a novel delivery strategy is developed to improve significantly the efficiency of HIV-based vectors in transducing non-dividing cells. This approach is based on increasing the intracellular availability of dNTPs by incubating target cells with the dNTP precursors, deoxynucleosides (dNSs). METHODS Mature human monocyte-derived macrophages (14-21 days old) were transduced at a low multiplicity of infection (MOI) of HIV vectors carrying a reporter gene. dNSs were added to the medium during transduction (5 mM dNS) and immediately before post-transduction culture (2.5 mM dNS). Macrophages were harvested 2-7 days after transduction and assayed for transgene expression by cytofluorimetry. RESULTS The addition of dNS to the medium significantly enhanced the efficiency of transduction of human macrophages by HIV-based vectors. The percentage of cells expressing the transgene rose up to 50% in the presence of dNS, increasing the basal transduction levels up to 35-fold (average=10.8-fold). Furthermore, treatment with dNTP precursors compensated for the wide inter-donor variability, allowing the highest enhancement effects in donors with the lowest basal transduction efficiencies. CONCLUSIONS This is the first demonstration that a single treatment of non-dividing target cells with exogenous dNS can enhance the efficiency of lentiviral-mediated transduction of cells, allowing for high efficiency gene transfer. The effects of dNTP precursors compensated for both the poor basal levels and the wide inter-donor variability, two major limitations for the transduction of non-dividing cells. Macrophages are a representative model of cells whose permissiveness to gene delivery was increased up to levels suitable for genetic manipulation applications. This simple approach might be transferred to a broader range of quiescent cell types that are scarcely susceptible to lentiviral-based gene delivery due to low dNTP levels.
Collapse
Affiliation(s)
- Elisabetta Ravot
- Research Institute for Genetic and Human Therapy (RIGHT) at IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | |
Collapse
|
14
|
McGuinness MC, Zhang HP, Smith KD. Evaluation of pharmacological induction of fatty acid beta-oxidation in X-linked adrenoleukodystrophy. Mol Genet Metab 2001; 74:256-63. [PMID: 11592822 DOI: 10.1006/mgme.2001.3239] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder associated with elevated levels of saturated unbranched very-long-chain fatty acids (VLCFA; C > 22:0) in plasma and tissues, and reduced VLCFA beta-oxidation in fibroblasts, white blood cells, and amniocytes from X-ALD patients. The X-ALD gene (ABCD1) at Xq28 encodes the adrenoleukodystrophy protein (ALDP) that is related to the peroxisomal ATP-binding cassette (ABCD) transmembrane half-transporter proteins. The function of ALDP is unknown and its role in VLCFA accumulation unresolved. Previously, our laboratory has shown that sodium 4-phenylbutyrate (4PBA) treatment of X-ALD fibroblasts results in increased peroxisomal VLCFA beta-oxidation activity and increased expression of the X-ALD-related protein, ALDRP, encoded by the ABCD2 gene. In this study, the effect of various pharmacological agents on VLCFA beta-oxidation in ALD mouse fibroblasts is tested. 4PBA, styrylacetate and benzyloxyacetate (structurally related to 4PBA), and trichostatin A (functionally related to 4PBA) increase both VLCFA (peroxisomal) and long-chain fatty acid [LCFA (peroxisomal and mitochondrial)] beta-oxidation. Isobutyrate, zaprinast, hydroxyurea, and 5-azacytidine had no effect on VLCFA or LCFA beta-oxidation. Lovastatin had no effect on fatty acid beta-oxidation under normal tissue culture conditions but did result in an increase in both VLCFA and LCFA beta-oxidation when ALD mouse fibroblasts were cultured in the absence of cholesterol. The effect of trichostatin A on peroxisomal VLCFA beta-oxidation is shown to be independent of an increase in ALDRP expression, suggesting that correction of the biochemical abnormality in X-ALD is not dependent on pharmacological induction of a redundant gene (ABCD2). These studies contribute to a better understanding of the role of ALDP in VLCFA accumulation and may lead to the development of more effective pharmacological therapies.
Collapse
Affiliation(s)
- M C McGuinness
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
15
|
Mazurier F, Géronimi F, Lamrissi-Garcia I, Morel C, Richard E, Ged C, Fontanellas A, Moreau-Gaudry F, Morey M, de Verneuil H. Correction of deficient CD34+ cells from peripheral blood after mobilization in a patient with congenital erythropoietic porphyria. Mol Ther 2001; 3:411-7. [PMID: 11273784 DOI: 10.1006/mthe.2001.0270] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Congenital erythropoietic porphyria (CEP) is an inherited disease due to a deficiency in the uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood, and other organs. The onset of most cases occurs in infancy and the main symptoms are cutaneous photosensitivity and hemolysis. For severe transfusion-dependent cases, when allogeneic cell transplantation cannot be performed, autografting of genetically modified primitive/stem cells is the only alternative. In the present study, efficient mobilization of peripheral blood primitive CD34(+) cells was performed on a young adult CEP patient. Retroviral transduction of this cell population with the therapeutic human UROS (hUS) gene resulted in both enzymatic and metabolic correction of CD34(+)-derived cells, as demonstrated by the increase in UROS activity and by a 53% drop in porphyrin accumulation. A 10-24% gene transfer efficiency was achieved in the most primitive cells, as demonstrated by the expression of enhanced green fluorescent protein (EGFP) in long-term culture-initiating cells (LTC-IC). Furthermore, gene expression remained stable during in vitro erythroid differentiation. Therefore, these results are promising for the future treatment of CEP patients by gene therapy.
Collapse
Affiliation(s)
- F Mazurier
- Laboratoire de Pathologie Moléculaire et Thérapie Génique, EA 484, Université Victor Segalen Bordeaux 2, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guest I, Uetrecht J. Bone marrow stem cell protection from chemotherapy by low--molecular-weight compounds. Exp Hematol 2001; 29:123-37. [PMID: 11166451 DOI: 10.1016/s0301-472x(00)00621-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stem cells of the bone marrow have the capacity for both self-renewal and derivation of all the blood cell lineages. Consequently, toxicity to these cells can result in neutropenia, agranulocytosis, thrombocytopenia, pancytopenia, or aplastic anemia. Many anticancer drugs adversely affect the bone marrow, and neutropenia is a common limiting factor in dose escalation. In this review, we discuss agents that appear to have potential as bone marrow sparing agents. Computerized catalogs of the National Library of Medicine and Medline were searched for reports on low-molecular-weight compounds that detailed effects on the hematopoietic progenitor cells. The most promising agents are the endogenous peptides p-glutamic acid-glutamic acid-aspartic acid-cysteine-lysine and acetyl-serine-aspartic acid-lysine-proline, and the exogenous compounds amifostine and ammonium trichloro[dioxoethylene-O,O']tellurate, but several others are also discussed. These compounds preserve stem cell function in the presence of antineoplastic drugs of diverse pharmacological classes, and they do so by various mechanisms of action. Their present status in clinical practice is also detailed. More needs to be learned about their mechanisms of action and therapeutic potential, but the results are encouraging for some of these compounds and more clinical trials should be expected.
Collapse
Affiliation(s)
- I Guest
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Shapiro E, Krivit W, Lockman L, Jambaqué I, Peters C, Cowan M, Harris R, Blanche S, Bordigoni P, Loes D, Ziegler R, Crittenden M, Ris D, Berg B, Cox C, Moser H, Fischer A, Aubourg P. Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet 2000; 356:713-8. [PMID: 11085690 DOI: 10.1016/s0140-6736(00)02629-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The childhood-onset cerebral form of X-linked adrenoleukodystrophy, a demyelinating disorder of the central nervous system, leads to a vegetative state and death within 3-5 years once clinical symptoms are detectable. The hypothesis to be tested was whether bone-marrow transplantation can over an extended period of time halt the inexorable progressive demyelination and neurological deterioration. METHODS 12 patients with childhood onset of cerebral X-linked adrenoleukodystrophy have been followed for 5-10 years after bone-marrow transplantation. Magnetic resonance imaging (MRI), neurological, neuropsychological, electrophysiological, and plasma very-long-chain fatty acid (VLCFA) measurements were used to evaluate the effect of this treatment. FINDINGS MRI showed complete reversal of abnormalities in two patients and improvement in one. One patient showed no change from baseline to last follow-up. All eight patients who showed an initial period of continued demyelination stabilised and remained unchanged thereafter. Motor function remained normal or improved after bone-marrow transplantation in ten patients. Verbal intelligence remained within the normal range for 11 patients. Performance (non-verbal) abilities were improved or were stable in seven patients. Decline in performance abilities followed by stability occurred in five patients. Plasma VLCFA concentrations decreased by 55% and remained slightly above the upper limits of normal. INTERPRETATION 5-10-year follow-up of 12 patients with childhood-onset cerebral X-linked adrenoleukodystrophy shows the long-term beneficial effect of bone marrow transplantation when the procedure is done at an early stage of the disease.
Collapse
Affiliation(s)
- E Shapiro
- Division of Paediatric Neurology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cartier N, Guidoux S, Rocchiccioli F, Aubourg P. Simvastatin does not normalize very long chain fatty acids in adrenoleukodystrophy mice. FEBS Lett 2000; 478:205-8. [PMID: 10930569 DOI: 10.1016/s0014-5793(00)01852-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
X-linked adrenoleukodystrophy (ALD) is a genetic demyelinating disorder characterized by accumulation of very long chain fatty acid (VLCFA) in tissues. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, normalizes VLCFA in fibroblasts and plasma from ALD patients. We dietary treated ALD mice with simvastatin, an analog of lovastatin with similar pharmacokinetics and effects on plasma VLCFA in ALD patients at 20 or 60 mg/kg/day for 6-12 weeks. No decrease of VLCFA content was observed in mouse tissues, including the brain. A significant increase of VLCFA was rather observed in the brain of ALD mice at 60 mg/kg/day.
Collapse
Affiliation(s)
- N Cartier
- Inserm U342, Hôpital Saint-Vincent de Paul, 82 avenue Denfert Rochereau, 75014, Paris, France.
| | | | | | | |
Collapse
|
19
|
Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18:19-39. [PMID: 10661569 DOI: 10.1634/stemcells.18-1-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last decade, more than 300 phase I and phase II gene-based clinical trials have been conducted worldwide for the treatment of cancer and monogenic disorders. Lately, these trials have been extended to the treatment of AIDS and, to a lesser extent, cardiovascular diseases. There are 27 currently active gene therapy protocols for the treatment of HIV-1 infection in the USA. Preclinical studies are currently in progress to evaluate the possibility of increasing the number of gene therapy clinical trials for cardiopathies, and of beginning new gene therapy programs for neurologic illnesses, autoimmuno diseases, allergies, regeneration of tissues, and to implement procedures of allogeneic tissues or cell transplantation. In addition, gene transfer technology has allowed for the development of innovative vaccine design, known as genetic immunization. This technique has already been applied in the AIDS vaccine programs in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are at risk of infection. Research programs have also been considered to develop therapeutic vaccines for patients with AIDS and generate either preventive or therapeutic vaccines against malaria, tuberculosis, hepatitis A, B and C viruses, influenza virus, La Crosse virus, and Ebola virus. The potential therapeutic applications of gene transfer technology are enormous. However, the effectiveness of gene therapy programs is still questioned. Furthermore, there is growing concern over the matter of safety of gene delivery and controversy has arisen over the proposal to begin in utero gene therapy clinical trials for the treatment of inherited genetic disorders. From this standpoint, despite the latest significant achievements reported in vector design, it is not possible to predict to what extent gene therapeutic interventions will be effective in patients, and in what time frame.
Collapse
Affiliation(s)
- G Romano
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- P Aubourg
- INSERM U342, Hospital St. Vincent de Paul, Paris, France.
| | | |
Collapse
|
21
|
Liu LX, Janvier K, Berteaux-Lecellier V, Cartier N, Benarous R, Aubourg P. Homo- and heterodimerization of peroxisomal ATP-binding cassette half-transporters. J Biol Chem 1999; 274:32738-43. [PMID: 10551832 DOI: 10.1074/jbc.274.46.32738] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian peroxisomal proteins adrenoleukodystrophy protein (ALDP), adrenoleukodystrophy-related protein (ALDRP), and 70-kDa peroxisomal protein (PMP70) belong to the superfamily of ATP-binding cassette (ABC) transporters. Unlike many ABC transporters that are single functional proteins with two related halves, ALDP, ALDRP, and PMP70 have the structure of ABC half-transporters. The dysfunction of ALDP is responsible for X-linked adrenoleukodystrophy (X-ALD), a neurodegenerative disorder in which saturated very long-chain fatty acids accumulate because of their impaired peroxisomal beta-oxidation. No disease has so far been associated with mutations of adrenoleukodystrophy-related or PMP70 genes. It has been proposed that peroxisomal ABC transporters need to dimerize to exert import functions. Using the yeast two-hybrid system, we show that homo- as well as heterodimerization occur between the carboxyl-terminal halves of ALDP, ALDRP, and PMP70. Two X-ALD disease mutations located in the carboxyl-terminal half of ALDP affect both homo- and heterodimerization of ALDP. Co-immunoprecipitation demonstrated the homodimerization of ALDP, the heterodimerization of ALDP with PMP70 or ALDRP, and the heterodimerization of ALDRP with PMP70. These results provide the first evidence of both homo- and heterodimerization of mammalian ABC half-transporters and suggest that the loss of ALDP dimerization plays a role in X-ALD pathogenesis.
Collapse
Affiliation(s)
- L X Liu
- INSERM U342, Institut Cochin de Génétique Moléculaire, Hôpital Saint-Vincent-de-Paul, 82 Avenue Denfert Rochereau, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Koç ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999; 27:1675-81. [PMID: 10560915 DOI: 10.1016/s0301-472x(99)00101-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human bone marrow contains mesenchymal stem cells (MSCs) that can differentiate into various cells of mesenchymal origin. We developed an efficient method of isolating and culture expanding a homogenous population of MSCs from bone marrow and determined that MSCs express alpha-L-iduronidase, arylsulfatase-A and B, glucocerebrosidase, and adrenoleukodystrophy protein. These findings raised the possibility that MSCs may be useful in the treatment of storage disorders. To determine if donor derived MSCs are transferred to the recipients with lysosomal or peroxisomal storage diseases by allogeneic hematopoietic stem cell (HSC) transplantation, we investigated bone marrow derived MSCs of 13 patients 1-14 years after allogeneic transplantation. Highly purified MSCs were genotyped either by fluorescence in situ hybridization using probes for X and Y-chromosomes in gender mis-matched recipients or by radiolabeled PCR amplification of polymorphic simple sequence repeats. Phenotype was determined by the measurement of disease specific protein/enzyme activity in purified MSCs. We found that MSCs isolated from recipients of allogeneic HSC transplantation are not of donor genotype and have persistent phenotypic defects despite successful donor type hematopoietic engraftment. Whether culture expanded normal MSCs can be successfully transplanted into patients with storage diseases and provide therapeutic benefit needs to be determined.
Collapse
Affiliation(s)
- O N Koç
- Department of Medicine, University of Hospitals of Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kotagal S, Geller TJ, Wall D, Lastra C. A child with reading impairment and a family history of adrenoleukodystrophy. Semin Pediatr Neurol 1999; 6:233-6; discussion 236-7. [PMID: 10522346 DOI: 10.1016/s1071-9091(99)80020-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The clinical course of a 6-year-old boy with adrenoleukodystrophy (ALD) who underwent allogeneic stem-cell transplantation during an early clinical stage is described. Twenty-three months after transplant, he remains neurologically stable, but with moderate neurological sequelae; the serum very long chain fatty acid profile has improved, but not normalized. The indications, mechanism of action, and complications of bone marrow transplantation in ALD are discussed briefly, along with other potential therapies.
Collapse
Affiliation(s)
- S Kotagal
- Department of Neurology, Bob Costas Cancer Center, Saint Louis University Health Sciences Center, St. Louis, MO, USA
| | | | | | | |
Collapse
|
24
|
Flavigny E, Sanhaj A, Aubourg P, Cartier N. Retroviral-mediated adrenoleukodystrophy-related gene transfer corrects very long chain fatty acid metabolism in adrenoleukodystrophy fibroblasts: implications for therapy. FEBS Lett 1999; 448:261-4. [PMID: 10218488 DOI: 10.1016/s0014-5793(99)00379-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
X-linked adrenoleukodystrophy is a demyelinating disorder of the central nervous system with an impaired very long chain fatty acid metabolism. The adrenoleukodystrophy gene encodes a peroxisomal membrane protein that is part of a family of related ATP-binding transporters including the adrenoleukodystrophy-related protein. The adrenoleukodystrophy protein and adrenoleukodystrophy-related protein show 66% identity and have a mirror expression in most mouse tissues. We show that retroviral-mediated adrenoleukodystrophy-related gene transfer corrects very long chain fatty acid accumulation in adrenoleukodystrophy fibroblasts, irrespective of the presence or absence of adrenoleukodystrophy protein. Pharmacological approaches aiming at overexpressing the adrenoleukodystrophy-related gene in the central nervous system of adrenoleukodystrophy patients might thus offer new therapeutic leads.
Collapse
Affiliation(s)
- E Flavigny
- Inserm U342, Hôpital Saint-Vincent de Paul, Paris, France
| | | | | | | |
Collapse
|
25
|
Abstract
The profound and lasting involvement of Hugo and Ann Moser have allowed to make remarkable progress in adrenoleulodystrophy (ALD) during the last 20 years. Besides their own commitment in ALD, Hugo and Ann have constantly encouraged physicians, biologists and molecular geneticists to undertake clinical and fundamental research in this devastating disease. There is now some preventive and therapeutic approaches which can be proposed to ALD patients and families. The issues that still remain unresolved will certainly keep busy those who share the "Hugo and Ann spirit".
Collapse
Affiliation(s)
- P Aubourg
- Université René Descartes, Institut National de la Santé et de la Recherche médicale (U342), Hôpital St Vincent de Paul, Paris, France.
| |
Collapse
|
26
|
Dubois-Dalcq M, Feigenbaum V, Aubourg P. The neurobiology of X-linked adrenoleukodystrophy, a demyelinating peroxisomal disorder. Trends Neurosci 1999; 22:4-12. [PMID: 10088993 DOI: 10.1016/s0166-2236(98)01319-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenoleukodystrophy (ALD) is caused by mutations in an ATP-binding-cassette transporter located in the peroxisomal membrane, which result in a fatal demyelinating disease in boys and a milder phenotype in men and some heterozygous women. There is no molecular signature to indicate a particular clinical course. The underlying molecular mechanisms of this disease have yet to be targeted clinically. Is the increase in very-long-chain fatty acids (VLCFA) the disease trigger? Why is there no phenotype in ALD null mice that show this increase? Do VLCFA destabilize human myelin, once formed, and lead to the inflammation seen in this genetic disease? Bone-marrow transplantation might save a child by providing normal brain macrophages and allowing myelin regeneration early in disease. The processes that underlie ALD challenge neuroscientists to elucidate peroxisomal transporter functions in the nervous system and to pursue the gene-transfer strategies leading to remyelination until a preventive therapy emerges.
Collapse
Affiliation(s)
- M Dubois-Dalcq
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France
| | | | | |
Collapse
|