1
|
Zhao Y, Liu H, Zhan Q, Jin H, Wang Y, Wang H, Huang B, Huang F, Jia X, Wang Y, Wang X. Oncolytic adenovirus encoding LHPP exerts potent antitumor effect in lung cancer. Sci Rep 2024; 14:13108. [PMID: 38849383 PMCID: PMC11161505 DOI: 10.1038/s41598-024-63325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
LHPP has been shown to be a new tumor suppressor, and has a tendency to be under-expressed in a variety of cancers. Oncolytic virotheray is a promising therapeutics for lung cancer in recent decade years. Here we successfully constructed a new recombinant oncolytic adenovirus GD55-LHPP and investigated the effect of GD55-LHPP on the growth of lung cancer cells in vitro and in vivo. The results showed that LHPP had lower expression in either lung cancer cells or clinical lung cancer tissues compared with normal cells or tissues, and GD55-LHPP effectively mediated LHPP expression in lung cancer cells. GD55-LHPP could effectively inhibit the proliferation of lung cancer cell lines and rarely affected normal cell growth. Mechanically, the oncolytic adenovirus GD55-LHPP was able to induce stronger apoptosis of lung cancer cells compared with GD55 through the activation of caspase signal pathway. Notably, GD55-LHPP also activated autophagy-related signal pathway. Further, GD55-LHPP efficiently inhibited tumor growth in lung cancer xenograft in mice and prolonged animal survival rate compared with the control GD55 or PBS. In conclusion, the novel construct GD55-LHPP provides a valuable strategy for lung cancer-targeted therapy and develop the role of tumor suppress gene LHPP in lung cancer gene therapy.
Collapse
Affiliation(s)
- Yaru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Huihui Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Zhan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiqiang Wang
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoyan Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China.
| |
Collapse
|
2
|
He Y, Huang X, Li X, Liu H, Liu M, Tao J, Shan Y, Raza HK, Liu Y, Zhong W, Cao XP, Yang YY, Li R, Fang XL, Zhang KJ, Zhang R, Liu F. Preliminary efficacy and safety of YSCH-01 in patients with advanced solid tumors: an investigator-initiated trial. J Immunother Cancer 2024; 12:e008999. [PMID: 38719544 PMCID: PMC11086575 DOI: 10.1136/jitc-2024-008999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE To evaluate the safety and preliminary efficacy of YSCH-01 (Recombinant L-IFN adenovirus) in subjects with advanced solid tumors. METHODS In this single-center, open-label, investigator-initiated trial of YSCH-01, 14 patients with advanced solid tumors were enrolled. The study consisted of two distinct phases: (1) the dose escalation phase and (2) the dose expansion phase; with three dose groups in the dose escalation phase based on dose levels (5.0×109 viral particles (VP)/subject, 5.0×1010 VP/subject, and 5.0×1011 VP/subject). Subjects were administered YSCH-01 injection via intratumoral injections. The safety was assessed using National Cancer Institute Common Terminology Criteria for Adverse Events V.5.0, and the efficacy evaluation was performed using Response Evaluation Criteria in Solid Tumor V.1.1. RESULTS 14 subjects were enrolled in the study, including 9 subjects in the dose escalation phase and 5 subjects in the dose expansion phase. Of the 13 subjects included in the full analysis set, 4 (30.8%) were men and 9 (69.2%) were women. The most common tumor type was lung cancer (38.5%, 5 subjects), followed by breast cancer (23.1%, 3 subjects) and melanoma (23.1%, 3 subjects). During the dose escalation phase, no subject experienced dose-limiting toxicities. The content of recombinant L-IFN adenovirus genome and recombinant L-IFN protein in blood showed no trend of significant intergroup changes. No significant change was observed in interleukin-6 and interferon-gamma. For 11 subjects evaluated for efficacy, the overall response rate with its 95% CI was 27.3% (6.02% to 60.97%) and the disease control rate with its 95% CI was 81.8% (48.22% to 97.72%). The median progression-free survival was 4.97 months, and the median overall survival was 8.62 months. In addition, a tendency of decrease in the sum of the diameters of target lesions was observed. For 13 subjects evaluated for safety, the overall incidence of adverse events (AEs) was 92.3%, the overall incidence of adverse drug reactions (ADRs) was 84.6%, and the overall incidence of >Grade 3 AEs was 7.7%, while no AEs/ADRs leading to death occurred. The most common AEs were fever (69.2%), nausea (30.8%), vomiting (30.8%), and hypophagia (23.1%). CONCLUSIONS The study shows that YSCH-01 injections were safe and well tolerated and exhibited preliminary efficacy in patients with advanced solid tumors, supporting further investigation to evaluate its efficacy and safety. TRIAL REGISTRATION NUMBER NCT05180851.
Collapse
Affiliation(s)
- Yandong He
- Department of Urology, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhong Huang
- Department of Gynecology and Obstetrics, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Li
- Department of Nursing, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| | - Hongwei Liu
- Department of Pneumology, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- Department of Ultrasound Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| | - Junjia Tao
- Department of Ultrasound Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanzhou Shan
- Department of General Surgery, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz Khuram Raza
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Yanqiu Liu
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Wenting Zhong
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Xue-Ping Cao
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Yuan-Yuan Yang
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Ruimei Li
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Xian-Long Fang
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Kang-Jian Zhang
- Department of Clinical Transformation, Shanghai Yuansong Biotechnology Company Limited, Shanghai, China
| | - Rong Zhang
- Department of Gynecologic Oncology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Feng Liu
- Department of Urology, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Lan YZ, Wu Z, Chen WJ, Fang ZX, Yu XN, Wu HT, Liu J. Small nucleolar RNA and its potential role in the oncogenesis and development of colorectal cancer. World J Gastroenterol 2024; 30:115-127. [PMID: 38312115 PMCID: PMC10835520 DOI: 10.3748/wjg.v30.i2.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification, thereby contributing significantly to the maintenance of cellular functions related to protein synthesis. SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression, holding immense potential in controlling human diseases. It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types, stages, metastasis, treatment response and/or prognosis in patients. On the other hand, colorectal cancer (CRC), a prevalent malignancy of the digestive system, is characterized by high incidence and mortality rates, ranking as the third most common cancer type. Recent research indicates that snoRNA dysregulation is associated with CRC, as snoRNA expression significantly differs between normal and cancerous conditions. Consequently, assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC. Nevertheless, current comprehension of the potential roles of snoRNAs in CRC remains limited. This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC, providing valuable insights into the discovery of novel biomarkers, therapeutic targets, and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
4
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
5
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
6
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Optimization of the Administration Strategy for the Armed Oncolytic Adenovirus ZD55-IL-24 in Both Immunocompromised and Immunocompetent Mouse Models. Hum Gene Ther 2021; 32:1481-1494. [PMID: 34155929 DOI: 10.1089/hum.2021.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZD55-IL-24 is an armed oncolytic adenovirus similar but superior to ONYX-015. Virotherapeutic strategies using ZD55-IL-24 have been demonstrated to be effective against several cancer types. However, it is unclear whether the traditional administration strategy is able to exert the maximal antitumor efficacy of ZD55-IL-24. In this study, we sought to optimize the administration strategy of ZD55-IL-24 in both A375-bearing immunocompromised mouse model and B16-bearing immunocompetent mouse model. Although the underlying antitumor mechanisms are quite different, the obtained results are similar in these two mouse tumor models. We find that the antitumor efficacy of ZD55-IL-24 increases as injection times increase in both of these two models. However, no obvious increase of efficacy is observed as the dose of each injection increases. Our further investigation reveals that the administration strategy of sustained ZD55-IL-24 therapy can achieve a better therapeutic effect than the traditional administration strategy of short-term ZD55-IL-24 therapy. Furthermore, there is no need to inject every day; every 2 or 3 days of injection achieves an equivalent therapeutic efficacy. Finally, we find that the sustained rather than the traditional short-term ZD55-IL-24 therapy can synergize with anti-PD-1 therapy to reject tumors in B16-bearing immunocompetent mouse model. These findings suggest that the past administration strategy of ZD55-IL-24 is in fact suboptimal and the antitumor efficacy can be further enhanced through administration strategy optimization. This study might shed some light on the development of clinically applicable administration regimens for ZD55-IL-24 therapy.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, China; and
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Enhanced anti-melanoma efficacy through a combination of the armed oncolytic adenovirus ZD55-IL-24 and immune checkpoint blockade in B16-bearing immunocompetent mouse model. Cancer Immunol Immunother 2021; 70:3541-3555. [PMID: 33903973 PMCID: PMC8571158 DOI: 10.1007/s00262-021-02946-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Although the recent treatment in melanoma through the use of anti-PD-1 immunotherapy is successful, the efficacy of this approach remains to be improved. Here, we explore the feasibility of combination strategy with the armed oncolytic adenovirus ZD55-IL-24 and PD-1 blockade. We find that combination therapy with localized ZD55-IL-24 and systemic PD-1 blockade leads to synergistic inhibition of both local and distant established tumors in B16-bearing immunocompetent mouse model. Our further mechanism investigation reveals that synergistic therapeutic effect is associated with marked promotion of tumor immune infiltration and recognition in both local and distant tumors as well as spleens. PD-1 blockade has no obvious effect on promotion of tumor immune infiltration and recognition. Localized therapy with ZD55-IL-24, however, can help PD-1 blockade to overcome the limitation of relatively low tumor immune infiltration and recognition. This study provides a rationale for investigation of such combination therapy in the clinic.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
8
|
Mao L, Yu H, Ma S, Xu Z, Wei F, Yang C, Zheng J. Combination of oncolytic adenovirus targeting SATB1 and docetaxel for the treatment of castration-resistant prostate cancer. J Cancer 2021; 12:1846-1852. [PMID: 33613773 PMCID: PMC7890306 DOI: 10.7150/jca.46868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background: Oncolytic viral therapy is a new strategy for tumor eradication which combines the advantages of viral therapy and gene therapy. Silencing SATB1 exhibits strong inhibitory effect on the growth of prostate cancer. Docetaxel (DTX) is the gold standard for chemotherapy of prostate cancer, but its side effects decrease the life quality of patients. Therefore, it is urgent to develop combination therapy to increase its anti-tumor effect. Methods: Oncolytic adenovirus targeting SATB1 was constructed and named ZD55-SATB1. Human prostatic cancer cells DU145 and PC-3 and human prostatic stromal cells WPMY-1 were treated with ZD55-SATB1 or/and DTX. In vitro cell proliferation, migration, invasion, apoptosis were detected. In addition, PC-3 cells were injected subcutaneously into nude mice, which were treated with ZD55-SATB1 or/and DTX. Tumor growth was monitored in vivo. Results: ZD55-SATB1 combined with DTX inhibited proliferation, migration and invasion of DU145 and PC-3 cells, while promoted apoptosis of DU145 and PC-3 cells more efficiently than monotherapy. ZD55-SATB1 had no cytotoxicity on WPMY-1 cells. In animal models, the combined treatment of ZD55-SATB1+DTX and endocrine therapy effectively inhibited the growth of xenograft tumor, accompanied by increased expression of caspase-3 and caspase-8, and decrease expression of Bcl-2 and angiogenesis marker CD31 compared to other treatment groups. Conclusion: The combination of oncolytic adenovirus ZD55-SATB1 and chemotherapy provides a novel approach to effective therapy of prostate cancer.
Collapse
Affiliation(s)
- Lijun Mao
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Haiyuan Yu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Sai Ma
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Ziyang Xu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Fukun Wei
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chunhua Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| |
Collapse
|
9
|
Hu HJ, Liang X, Li HL, Du CM, Hao JL, Wang HY, Gu JF, Ni AM, Sun LY, Xiao J, Hu JQ, Yuan H, Dai YS, Jin XT, Zhang KJ, Liu XY. The armed oncolytic adenovirus ZD55-IL-24 eradicates melanoma by turning the tumor cells from the self-state into the nonself-state besides direct killing. Cell Death Dis 2020; 11:1022. [PMID: 33257647 PMCID: PMC7705698 DOI: 10.1038/s41419-020-03223-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
ZD55-IL-24 is similar but superior to the oncolytic adenovirus ONYX-015, yet the exact mechanism underlying the observed therapeutic effect is still not well understood. Here we sought to elucidate the underlying antitumor mechanism of ZD55-IL-24 in both immunocompetent and immunocompromised mouse model. We find that ZD55-IL-24 eradicates established melanoma in B16-bearing immunocompetent mouse model not through the classic direct killing pathway, but mainly through the indirect pathway of inducing systemic antitumor immunity. Inconsistent with the current prevailing view, our further results suggest that ZD55-IL-24 can induce antitumor immunity in B16-bearing immunocompetent mouse model in fact not due to its ability to lyse tumor cells and release the essential elements, such as tumor-associated antigens (TAAs), but due to its ability to put a “nonself” label in tumor cells and then turn the tumor cells from the “self” state into the “nonself” state without tumor cell death. The observed anti-melanoma efficacy of ZD55-IL-24 in B16-bearing immunocompetent mouse model was practically caused only by the viral vector. In addition, we also notice that ZD55-IL-24 can inhibit tumor growth in B16-bearing immunocompetent mouse model through inhibiting angiogenesis, despite it plays only a minor role. In contrast to B16-bearing immunocompetent mouse model, ZD55-IL-24 eliminates established melanoma in A375-bearing immunocompromised mouse model mainly through the classic direct killing pathway, but not through the antitumor immunity pathway and anti-angiogenesis pathway. These findings let us know ZD55-IL-24 more comprehensive and profound, and provide a sounder theoretical foundation for its future modification and drug development.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, 361023, Xiamen, China
| | - Chun-Ming Du
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jia-Li Hao
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Hao Yuan
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yan-Song Dai
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Xiao-Ting Jin
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Kang-Jian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
10
|
Oncolytic Adenovirus in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12113354. [PMID: 33202717 PMCID: PMC7697649 DOI: 10.3390/cancers12113354] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-selective replicating "oncolytic" viruses are novel and promising tools for immunotherapy of cancer. However, despite their first success in clinical trials, previous experience suggests that currently used oncolytic virus monotherapies will not be effective enough to achieve complete tumor responses and long-term cure in a broad spectrum of cancers. Nevertheless, there are reasonable arguments that suggest advanced oncolytic viruses will play an essential role as enablers of multi-stage immunotherapies including established systemic immunotherapies. Oncolytic adenoviruses (oAds) display several features to meet this therapeutic need. oAds potently lyse infected tumor cells and induce a strong immunogenic cell death associated with tumor inflammation and induction of antitumor immune responses. Furthermore, established and versatile platforms of oAds exist, which are well suited for the incorporation of heterologous genes to optimally exploit and amplify the immunostimulatory effect of viral oncolysis. A considerable spectrum of functional genes has already been integrated in oAds to optimize particular aspects of immune stimulation including antigen presentation, T cell priming, engagement of additional effector functions, and interference with immunosuppression. These advanced concepts have the potential to play a promising future role as enablers of multi-stage immunotherapies involving adoptive cell transfer and systemic immunotherapies.
Collapse
|
11
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
12
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
13
|
Deng L, Fan J, Ding Y, Yang X, Huang B, Hu Z. Target Therapy With Vaccinia Virus Harboring IL-24 For Human Breast Cancer. J Cancer 2020; 11:1017-1026. [PMID: 31956348 PMCID: PMC6959063 DOI: 10.7150/jca.37590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Breast cancer is a heterogeneous disease with high aggression and novel targeted therapeutic strategies are required. Oncolytic vaccinia virus is an attractive candidate for cancer treatment due to its tumor cell-specific replication causing lysis of tumor cells as well as a delivery vector to overexpress therapeutic transgenes. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that selectively induces apoptosis in a wide variety of tumor types, including breast cancer. In this study, we used vaccinia virus as a delivery vector to express IL-24 gene and antitumor effects were evaluated both in vitro and in vivo. Methods: The vaccinia virus strain Guang9 armed with IL-24 gene (VG9-IL-24) was constructed via disruption of the viral thymidine kinase (TK) gene region. The cytotoxicity of VG9-IL-24 in various breast cancer cell lines was assessed by MTT and cell cycle progression and apoptosis were examined by flow cytometry. In vivo antitumor effects were further observed in MDA-MB-231 xenograft mouse model. Results: In vitro, VG9-IL-24 efficiently infected and selectively killed breast cancer cells with no strong cytotoxicity to normal cells. VG9-IL-24 induced increased number of apoptotic cells and blocked breast cancer cells in the G2/M phase of the cell cycle. Western blotting results indicated that VG9-IL-24-mediated apoptosis was related to PI3K/β-catenin signaling pathway. In vivo, VG9-IL-24 delayed tumor growth and improved survival. Conclusions: Our findings provided documentation that VG9-IL-24 was targeted in vitro and exhibited enhanced antitumor effects, and it may be an innovative therapy for breast cancer.
Collapse
Affiliation(s)
- Lili Deng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xue Yang
- Wuxi Children's Hospital, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Biao Huang
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
14
|
Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic Adenovirus-A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Front Oncol 2019; 9:1182. [PMID: 31781493 PMCID: PMC6857090 DOI: 10.3389/fonc.2019.01182] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide, particularly in China. Despite the development of HCC treatment strategies, the survival rate remains unpleasant. Gene-targeted oncolytic viral therapy (GTOVT) is an emerging treatment modality-a kind of cancer-targeted therapy-which creates viral vectors armed with anti-cancer genes. The adenovirus is a promising agent for GAOVT due to its many advantages. In spite of the oncolytic adenovirus itself, the host immune response is the determining factor for the anti-cancer efficacy. In this review, we have summarized recent developments in oncolytic adenovirus engineering and the development of novel therapeutic genes utilized in HCC treatment. Furthermore, the diversified roles the immune response plays in oncolytic adenovirus therapy and recent attempts to modulate immune responses to enhance the anti-cancer efficacy of oncolytic adenovirus have been discussed.
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Wang Y, Wang B, Liang J, Cui C, Ying C, Huang F, Ma B, Zhou X, Chu L. Oncolytic viro-chemotherapy exhibits antitumor effect in laryngeal squamous cell carcinoma cells and mouse xenografts. Cancer Manag Res 2019; 11:3285-3294. [PMID: 31114365 PMCID: PMC6489678 DOI: 10.2147/cmar.s196304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/17/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Oncolytic virus can specifically replicate in and then lyse tumor cells, but seldom in normal cells. Further studies have shown the significant therapeutic effect of oncolytic virotherapy combining with other strategies, such as chemo-, radio-, and immunotherapy et al. In this study, we investigated the combinational effect of oncolytic virus ZD55-TRAIL and chemotherapy drug doxorubicin (DOX) on human laryngeal squamous cell carcinoma (LSCC). Methods: The effect of ZD55-TRAIL combined with DOX on cell growth was assessed in LSCC Hep2 cells and normal cells by MTT assay. Hochest 33342 staining was performed to observe cell morphological changes. Western blot was used to detect the expression of apoptotic activation proteins. The in vivo antitumor efficacy of combination treatment was estimated in laryngeal cancer xenograft models. Results: The combination of ZD55-TRAIL and DOX exhibited enhanced inhibitory effects on laryngocarcinoma cell growth, and had few side effects to normal cells in vitro. Chemotherapy drug increased the inducement of tumor cell apoptosis mediated by oncolytic virus. In vivo experiment confirmed that the combination treatment significantly inhibited Hep2 laryngocarcinoma xenografts growth in mice. Conclusion: The oncolytic viro-chemotherapy is a potent therapeutic approach for in vitro cytotoxicity evaluation of Hep2 cells and xenograft growth in vivo.
Collapse
Affiliation(s)
- Yigang Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Binrong Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Caixia Cui
- Department of Otorhinolaryngology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, People's Republic of China
| | - Chang Ying
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincal People's Hospital, Hangzhou 310014, People's Republic of China
| | - Buyun Ma
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiumei Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
16
|
Wei D, Xu J, Liu XY, Chen ZN, Bian H. Fighting Cancer with Viruses: Oncolytic Virus Therapy in China. Hum Gene Ther 2019; 29:151-159. [PMID: 29284308 DOI: 10.1089/hum.2017.212] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As part of oncolytic virotherapy to treat cancer, oncolytic viruses (OVs) can selectively infect tumor cells to promote oncolysis of cancer cells, local immunological reactions, and systemic antitumor immunity with minimal toxicity to normal tissues. The immunostimulatory properties of OVs provide enormous benefits for the treatment of cancer. A variety of OVs, including genetically engineered and natural viruses, have shown promise in preclinical models and clinical studies. In 2005, the China Food and Drug Administration approved its first OV drug, Oncorine (H101), for treatment of advanced head and neck cancer. To explore new treatment strategies, >200 recombinant or natural OVs are undergoing in-depth investigation in China, and >250 oncolytic virotherapy-related reports from the OV community in China have been published in the past 5 years. These studies investigated a variety of exogenous genes and combination therapeutic strategies to enhance the treatment effects of OVs. To date, five clinical trials covering four OV agents (Oncorine, OrienX010, KH901, and H103) are ongoing, and additional OV agents are awaiting approval for clinical trials in China. Overall, this research emphasizes that combination therapy, especially tumor immunotherapy coupled with effective system administration strategies, can promote the development of oncolytic virotherapies. This article focuses on studies that were carried out in China in order to give an overview of the past, present, and future of oncolytic virotherapy in China.
Collapse
Affiliation(s)
- Ding Wei
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Jing Xu
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Xin-Yuan Liu
- 2 State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Nan Chen
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Huijie Bian
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
17
|
Mao LJ, Ding M, Xu K, Pan J, Yu H, Yang C. Oncolytic Adenovirus Harboring Interleukin-24 Improves Chemotherapy for Advanced Prostate Cancer. J Cancer 2018; 9:4391-4397. [PMID: 30519344 PMCID: PMC6277655 DOI: 10.7150/jca.26437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/29/2018] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Oncolytic adenoviruses emerge as new agents for cancer therapy. This study aimed to investigate the synergistic anti-tumor activity of oncolytic adenovirus armed with IL-24 (ZD55-IL-24) and docetaxel (DTX) on advanced prostate cancer in vitro and in vivo. METHODS DU145 prostate cancer cells or nude mice xenografted with DU145 prostate cancer cells were treated by ZD55-IL-24 and DTX alone or in combination. RESULTS DTX did not affect ZD55-IL-24 replication and IL-24 expression in DU145 cells. In vitro, the combination of ZD55-IL-24 and DTX showed synergistic inhibitory effects on prostate cancer cell viability and invasion. In vivo, ZD55-IL-24 and DTX synergistically inhibited the growth and activated the apoptosis of DU145 xenografts, accompanied by significantly decreased PARP-1 levels and increased caspase-3 and caspase-8 levels as well as decreased CD31 expression. CONCLUSION We reported the synergistic anti-tumor efficacy of ZD55-IL-24 and DTX on prostate cancer. Our results suggest that chemotherapy combined with oncolytic adenovirus mediated gene therapy is a promising strategy for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Li-Jun Mao
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Meng Ding
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Kai Xu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Pan
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Haiyuan Yu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chunhua Yang
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.,Radiotherapy Department, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| |
Collapse
|
18
|
Ying C, Xiao BD, Qin Y, Wang BR, Liu XY, Wang RW, Fang L, Yan H, Zhou XM, Wang YG. GOLPH2-regulated oncolytic adenovirus, GD55, exerts strong killing effect on human prostate cancer stem-like cells in vitro and in vivo. Acta Pharmacol Sin 2018; 39:405-414. [PMID: 28880012 DOI: 10.1038/aps.2017.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
GOLPH2 (also called GP73) is a Golgi glycoprotein, which has been identified as a novel tumor marker upregulated in various cancers, including prostate cancer (PCa). GD55 is a novel GOLPH2-regulated oncolytic adenovirus that exhibits a strong killing effect on hepatoma cells. Here, we investigate the antitumor effect of GD55 on prostate cancer stem cell (CSC)-like cells in vitro and in vivo. Prostate CSC-like sphere cells were acquired and enriched by culturing DU145, LNCap or P3 prostate cancer cells in suspension. The prostate CSC-like sphere cells were capable of self-renewal, differentiation and quiescence, displaying tumorigenic feature and chemo-resistance to 5-FU, doxorubicin and DDP. Treatment with GD55 (1, 5, 10 MOI) dose-dependently suppressed the viability of DU145 sphere cells, which was a more pronounced compared to its cytotoxic action on the parental DU145 cells. In a mouse xenograft prostate CSC-like model, intratumoral injection of GD55 markedly suppressed the growth rate of xenograft tumors and induced higher levels of cell death and necrosis within the tumor tissues. Our results demonstrate that GD55 infection exerts strong anticancer effects on prostate CSC-like cells in vitro and in vivo, and has a potential to be used in the clinical therapy of PCa.
Collapse
|
19
|
Yuan S, Fang X, Xu Y, Ni A, Liu XY, Chu L. An oncolytic adenovirus that expresses the HAb18 and interleukin 24 genes exhibits enhanced antitumor activity in hepatocellular carcinoma cells. Oncotarget 2018; 7:60491-60502. [PMID: 27528029 PMCID: PMC5312398 DOI: 10.18632/oncotarget.11134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by alterations in multiple genes. High expression of CD147 on the surface of HCC cells promotes proliferation. The monoclonal antibody HAb18 recognizes CD147. We constructed an oncolytic adenoviral vector to express HAb18 (ZD55-HAb18) in HCC cells. Interleukin 24 (IL24) was co-expressed through the use of an F2A linker. ZD55-HAb18-IL24 decreased HCC cell viability to a greater degree than either ZD55-HAb18 or ZD55-IL24 alone. ZD55-HAb18-IL24 also induced apoptosis and autophagy in PLC/PRF/5 HCC cells. Intratumoral injection of ZD55-HAb18-IL24 repressed tumor growth in a PLC/PRF/5 xenograft model. Our results suggest that antibody-antitumor gene conjugation elicited a stronger antitumor effect than the antibody alone, and that this strategy could broaden the applications of antibody-based therapies in HCC.
Collapse
Affiliation(s)
- Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yanni Xu
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, P. R. China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, P. R. China
| |
Collapse
|
20
|
Wang Q, Yang CS, Ma ZX, Chen JC, Zheng JN, Sun XQ, Wang JQ. Inhibition of prostate cancer DU145 cell growth with small interfering RNA targeting the SATB1 gene. Exp Ther Med 2018; 15:3028-3033. [PMID: 29599837 DOI: 10.3892/etm.2018.5792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is a common visceral cancer of men worldwide. It is important to develop a more effective treatment for prostate cancer to overcome the treatment resistance that occurs with recurrence. RNA interference has been demonstrated to be a powerful tool for gene knockdown and has potential as a cancer treatment. It has been previously demonstrated that staining of special AT-rich sequence-binding protein 1 (SATB1) was stronger in prostatic carcinoma with metastasis compared with prostatic carcinoma without metastasis. In the present study, SATB1 small interfering (si)RNA was transfected into prostate cancer DU145 cells and normal human lung fibroblast cells, and cell proliferation was investigated using a Cell Counting kit-8. Three siRNA were transfected into cells using siPORT Lipid Transfection agent, and blank control and negative control groups were established. The cells were harvested and SATB1 mRNA and protein expression was determined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. DU145 cell adhesion, migration and invasion capabilities were determined using cell adhesion, Transwell and Transwell with Matrigel assays, respectively. Silencing SATB1 significantly inhibited DU145 cell growth, adhesion, migration and invasive capability in vitro, indicating that a SATB1-targeting siRNA was successfully engineered. The results of the present study suggest that SATB1 siRNA may be a potential agent for treating human prostate cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Urology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Chun-Sheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| | - Zu-Xin Ma
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jia-Cun Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Nian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiao-Qing Sun
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Qi Wang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
21
|
Yang M, Yang CS, Guo W, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G, Liu YQ. A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol Ther 2017; 18:833-840. [PMID: 29144842 DOI: 10.1080/15384047.2017.1395115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the diagnosis and treatment of cancer; however, significant challenges remain. Conditionally replicating adenoviruses (CRAds), which not only kill cancer cells, but also serve as vectors to express therapeutic genes, are a novel and effective method to treat cancer. However, most adenoviruses are Ad5, which infect cells through the coxsackie and adenovirus receptor (CAR). The transduction efficacy of Ad5 is restricted because of the absent or low expression of CAR on several cancer cells. Ad serotype 35 has a different tropism pattern to Ad5. Ad35 attaches to cells via a non-CAR receptor, CD46, which is expressed widely on most tumor cells. Thus, chimeric adenoviral vectors consisting of the knob and shaft of Ad35 combined with Ad5 have been constructed. The chimeric fiber adenoviral vectors can transduce CAR-positive and CAR-negative cell lines. In this review, we explore the application of the novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 in tumor therapy in terms of safety, mechanism, transduction efficacy, and antitumor effect.
Collapse
Affiliation(s)
- Ming Yang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China.,b Department of Oncology , Affiliated Nanyang Second General Hospital , Nanyang , China
| | - Chun Sheng Yang
- c Department of Dermatology , Affiliated Huai'an Hospital of Xuzhou Medical University , the Second People's Hospital of Huai'an, Huai'an , China
| | - WenWen Guo
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - JianQin Tang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Qian Huang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - ShouXin Feng
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - AiJun Jiang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - XiFeng Xu
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guan Jiang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Yan Qun Liu
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
22
|
Liang Z, Yang CS, Gu F, Zhang LS. A conditionally replicating adenovirus expressing IL-24 acts synergistically with temozolomide to enhance apoptosis in melanoma cells in vitro. Oncol Lett 2017; 13:4185-4189. [PMID: 28599419 PMCID: PMC5453041 DOI: 10.3892/ol.2017.6007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/13/2016] [Indexed: 12/05/2022] Open
Abstract
Malignant melanoma is characterized by suppressed apoptosis in tumor cells and high levels of invasion. Temozolomide (TMZ) is one of the most effective single chemotherapeutic agents for patients with malignant melanoma, but resistance develops quickly and frequently. Therapeutic cytokines such as interleukin-24 (IL-24) and conditionally replicating adenoviruses have exhibited promising results as complementary therapies. Thus, the present study hypothesized that a conditionally replicating adenovirus expressing IL-24 combined with TMZ may exhibit increased antitumor activity compared with either treatment alone in melanoma A375 and M14 cell lines in vitro. The present study constructed an E1B-55 gene-deleted conditionally replicating adenovirus expressing the IL-24 gene (ZD55-IL-24). IL-24 was expressed at high levels in melanoma cells infected with ZD55-IL-24 in the presence of TMZ. The combination of ZD55-IL-24 + TMZ induced higher protein expression levels of the proapoptotic proteins B-cell lymphoma-2 (Bcl-2)-like protein 4 and phosphorylated protein, γ-H2A histone family member X (γ-H2AX), and reduced the levels of the antiapoptotic proteins Bcl-2, myeloid cell leukemia-1and nuclear factor-κB compared with either treatment individually. A dose-dependent increase in the cytopathic effects for the combination of ZD55-IL-24 and TMZ was also observed. The data of the present study suggest that the ZD55-IL-24 + TMZ combination induced increased levels of apoptosis, possibly by triggering DNA damage, in melanoma cells in vitro compared with either treatment alone. These findings suggest that this strategy may be a promising approach for the treatment of patients with malignant melanoma.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Chun-Sheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| | - Feng Gu
- Clinical Laboratory, Xuzhou Tumor Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Lan-Sheng Zhang
- Department of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
23
|
Yuan S, Wu Y, Wang Y, Chen J, Chu L. An Oncolytic Adenovirus Expressing SNORD44 and GAS5 Exhibits Antitumor Effect in Colorectal Cancer Cells. Hum Gene Ther 2017; 28:690-700. [PMID: 28530127 DOI: 10.1089/hum.2017.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SNORD44 is a C/D box small nucleolar RNA, and exhibits low expression in breast cancer and head and neck squamous cell carcinoma tissues. Its host gene is growth arrest specific transcript 5 (GAS5), which is a long noncoding RNA. GAS5 is downregulated in colorectal cancer (CRC), and overexpression of GAS5 suppresses cell proliferation. However, the function of SNORD44 in CRC remains largely unknown, and the application of SNORD44 combined with GAS5 in CRC treatment has not been reported. In this study, the expression levels of SNORD44 and GAS5 were measured in CRC tissues by quantitative RT-PCR. The correlation between SNORD44 and GAS5 was evaluated by Pearson correlation analysis. An oncolytic adenovirus expressing SNORD44 and GAS5 (SPDD-UG) was constructed. The biological effects of SPDD-UG were investigated in CRC cell line SW620 and LS174T in vitro and in xenografts. The synergistic effect of rapamycin and SPDD-UG was explored in SW620 and LS174T cells and tumors. We demonstrated that SNORD44 expression level was markedly decreased in CRC tissues and positively correlated with GAS5 expression. SPDD-UG significantly inhibited SW620 and LS174T cell growth and induced cell apoptosis. Intratumoral injection of SPDD-UG significantly suppressed xenografts growth in nude mice. Moreover, the mechanistic target of rapamycin (mTOR) inhibitor, rapamycin, enhanced the antitumor effect through antagonizing the PI3K/Akt pathway activated by SPDD-UG. These results suggest that overexpression of SNORD44 and GAS5 by oncolytic adenovirus provides a promising method for CRC therapy.
Collapse
Affiliation(s)
- Sujing Yuan
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yu Wu
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yigang Wang
- 2 Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University , Hangzhou, China
| | - Jianhua Chen
- 3 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Liang Chu
- 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
24
|
Zhang T, Suryawanshi YR, Kordish DH, Woyczesczyk HM, Jeng D, Essani K. Tanapoxvirus lacking a neuregulin-like gene regresses human melanoma tumors in nude mice. Virus Genes 2017; 53:52-62. [PMID: 27738905 PMCID: PMC5300959 DOI: 10.1007/s11262-016-1402-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2016] [Indexed: 10/25/2022]
Abstract
Neuregulin (NRG), an epidermal growth factor is known to promote the growth of various cell types, including human melanoma cells through ErbB family of tyrosine kinases receptors. Tanapoxvirus (TPV)-encoded protein TPV-15L, a functional mimic of NRG, also acts through ErbB receptors. Here, we show that the TPV-15L protein promotes melanoma proliferation. TPV recombinant generated by deleting the 15L gene (TPVΔ15L) showed replication ability similar to that of wild-type TPV (wtTPV) in owl monkey kidney cells, human lung fibroblast (WI-38) cells, and human melanoma (SK-MEL-3) cells. However, a TPV recombinant with both 15L and the thymidine kinase (TK) gene 66R ablated (TPVΔ15LΔ66R) replicated less efficiently compared to TPVΔ15L and the parental virus. TPVΔ15L exhibited more robust tumor regression in the melanoma-bearing nude mice compared to other TPV recombinants. Our results indicate that deletion of TPV-15L gene product which facilitates the growth of human melanoma cells can be an effective strategy to enhance the oncolytic potential of TPV for the treatment of melanoma.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Yogesh R Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Dennis H Kordish
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Helene M Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - David Jeng
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
25
|
Chen J, Gao P, Yuan S, Li R, Ni A, Chu L, Ding L, Sun Y, Liu XY, Duan Y. Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy. ACS NANO 2016; 10:11548-11560. [PMID: 27977128 DOI: 10.1021/acsnano.6b06182] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Oncolytic adenovirus (OncoAd) is a promising therapeutic agent for treating cancer. However, the therapeutic potential of OncoAd is hindered by hepatic sequestration and the host immune response in vivo. Here, we constructed a PEG/Lipids/calcium phosphate (CaP)-OncoAd (PLC-OncoAd) delivery system for ZD55-IL-24, an oncolytic adenovirus that carries the IL-24 gene. The negatively charged PLC-ZD55-IL-24 were disperse and resisted serum-induced aggregation. Compared to naked ZD55-IL-24, the systemic administration of PLC-ZD55-IL-24 in BALB/c mice resulted in reduced liver sequestration and systemic toxicity and evaded the innate immune response. In addition, masking the surface of OncoAd protected it from neutralization by pre-existing neutralizing antibody. PLC-OncoAd achieved efficient targeted delivery in Huh-7-bearing nude mice, and intravenous administration of a high dose of PLC-ZD55-IL-24 increased therapeutic efficacy without inducing toxicity. The developed PLC-OncoAd delivery system represents a promising improvement for oncolytic adenovirus-based cancer gene therapy in vivo.
Collapse
Affiliation(s)
- Jianhua Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Rongxin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Li Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| |
Collapse
|
26
|
Hosseini E, Hosseini SY, Hashempour T, Fattahi MR, Sadeghizadeh M. Effect of RGD coupled MDA-7/IL-24 on apoptosis induction in a hepatocellular carcinoma cell line. Mol Med Rep 2016; 15:495-501. [DOI: 10.3892/mmr.2016.6009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
|
27
|
Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 2016; 21:9-15. [PMID: 27379906 DOI: 10.1016/j.coviro.2016.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
Oncolytic adenoviruses (Onc.Ads) selectively replicate in and lyse cancer cells and are therefore commonly used vectors in clinical trials for cancer gene therapy. Building upon the well-characterized adenoviral natural tropism, genetic modification of Onc.Ad can enhance/regulate their transduction and replication within specific cancer cell types. However, Onc.Ad-mediated tumor cell lysis cannot fully eliminate tumors. The hostile tumor microenvironment provides many barriers to efficient oncolytic virotherapy, as tumors develop structure and immune-evasion mechanisms in order to grow and ultimately spread. For these reasons, Onc.Ads modified to deliver structural or immune modulatory molecules (Armed Onc.Ads) have been developed to overcome the physical and immunological barriers of solid tumors. The combination of oncolysis with tumor microenvironment modulation/destruction may provide a promising platform for Ad-based cancer gene therapy.
Collapse
Affiliation(s)
- Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
28
|
Mechanism of Action and Applications of Interleukin 24 in Immunotherapy. Int J Mol Sci 2016; 17:ijms17060869. [PMID: 27271601 PMCID: PMC4926403 DOI: 10.3390/ijms17060869] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
Interleukin 24 (IL-24) is an important pleiotropic immunoregulatory cytokine, whose gene is located in human chromosome 1q32-33. IL-24's signaling pathways have diverse biological functions related to cell differentiation, proliferation, development, apoptosis, and inflammation, placing it at the center of an active area of research. IL-24 is well known for its apoptotic effect in cancer cells while having no such effect on normal cells. IL-24 can also be secreted by both immune and non-immune cells. Downstream effects of IL-24, after binding to the IL-20 receptor, can occur dependently or independently of the JAK/STAT signal transduction pathway, which is classically involved in cytokine-mediated activities. After exogenous addition of IL-24, apoptosis is induced in tumor cells independently of the JAK/STAT pathway. We have shown that IL-24 binds to Sigma 1 Receptor and this event induces endoplasmic reticulum stress, calcium mobilization, reactive oxygen species generation, p38MAPK activity, and ceramide production. Here we review IL-24's role in autoimmunity, infectious disease response, wound repair, and vascular disease. Detailed understanding of the pleiotropic roles of IL-24 signaling can assist in the selection of more accurate therapeutic approaches, as well as targeting of appropriate cell types in treatment strategy development, and ultimately achieve desired therapeutic effects.
Collapse
|
29
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
30
|
Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 2015; 6:36928-42. [PMID: 26474456 PMCID: PMC4741906 DOI: 10.18632/oncotarget.6047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.
Collapse
Affiliation(s)
- Mitchell E. Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Fang Yuan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Michael C. Archer
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Yaacov Ben-David
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Division of Biology, the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
31
|
Ma G, Zhong B, Okamoto S, Jiang Y, Kawamura K, Liu H, Li Q, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. A combinatory use of adenoviruses expressing melanoma differentiation-associated gene-7 and replication-competent adenoviruses produces synergistic effects on pancreatic carcinoma cells. Tumour Biol 2015; 36:8137-45. [PMID: 25990458 DOI: 10.1007/s13277-015-3555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Type 5 adenoviruses expressing mda-7 gene (Ad-mda-7) induced cell death in various kinds of human tumors, but pancreatic carcinoma cells were relatively resistant to Ad-mda-7-mediated cytotoxicity. We then examined whether infection of Ad-mda-7 together with replication-competent Ad produced combinatory cytotoxic effects. We prepared replication-competent Ad, defective of the E1B55kDa gene or activated by a transcriptional regulatory region of the midkine or the survivin gene of which the expression was up-regulated in human tumors. Type 5 Ad bearing the exogenous regulatory region were further modified by replacing the fiber-knob region with that of type 35 Ad. Pancreatic carcinoma cells were infected with replication-incompetent Ad-mda-7 and the replication-competent Ad. Combinatory effects were examined with the CalcuSyn software and cell cycle analyses. Ad-mda-7 and the replication-competent Ad achieved cytotoxicity to pancreatic carcinoma. A combinatory use of Ad-mda-7 and either Ad defective of the E1B55kDa gene or Ad activated by the regulatory region produced synergistic cytotoxic effects. Cell cycle analyses demonstrated that the combination increased sub-G1 populations. These data collectively suggest that expression of MDA-7 augments cytotoxicity of replication-competent Ad and achieves adjuvant effects on Ad-mediated cell death.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Boya Zhong
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinya Okamoto
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Hongdan Liu
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Quanhai Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Cell Therapy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Masato Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Ikuo Sekine
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
32
|
Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B, Chen K, Huang F, Zhou X, Cui C, Liu X. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 2015; 6:13564-78. [PMID: 25980438 PMCID: PMC4537034 DOI: 10.18632/oncotarget.3769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Golgi apparatus is the organelle mainly functioning as protein processing and secretion. GOLPH2 is a resident Golgi glycoprotein, usually called GP73. Recent data displayed that GOLPH2 is a superb hepatocellular carcinoma (HCC) marker candidate, and even its specificity is better than liver cancer marker AFP. Oncolytic adenoviruses are broadly used for targeting cancer therapy due to their selective tumor-killing effect. However, it was reported that traditionally oncolytic adenovirus lack the HCC specificity. In this study, a novel dual-regulated oncolytic adenovirus GD55 targeting HCC was first constructed based on our cancer targeted gene-viral therapeutic strategy. To verify the targeting and effectiveness of GOLPH2-regulated oncolytic adenovirus GD55 in HCC, the anticancer capacity was investigated in HCC cell lines and animal model. The results proved that the novel GOLPH2-regulated GD55 conferred higher adenovirus replication and infectivity for liver cancer cells than oncolytic adenovirus ZD55. The GOLPH2-regulated GD55 exerted a significant grow-suppressing effect on HCC cells in vitro but little damage to normal liver cells. In animal experiment, antitumor effect of GD55 was more effective in HCC xenograft of nude mice than that of ZD55. Thus GOLPH2-regulated GD55 may be a promising oncolytic virus agent for future liver cancer treatment.
Collapse
Affiliation(s)
- Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tao Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Panpan Huang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongfang Zhao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rong Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Buyun Ma
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Kan Chen
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fang Huang
- School of Public Health, Zhejiang University, Hangzhou 310058, PR China
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Caixia Cui
- Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, PR China
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| |
Collapse
|
33
|
Ma B, Wang Y, Zhou X, Huang P, Zhang R, Liu T, Cui C, Liu X, Wang Y. Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin. J Cancer Res Clin Oncol 2015; 141:419-29. [PMID: 25240826 DOI: 10.1007/s00432-014-1835-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/11/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE The potent anticancer efficacy of oncolytic viruses has been verified in Clinic in recent years. Cisplatin (DDP) is one of most common chemotherapeutic drugs, but is accompanied by side effects and drug resistance. Our previous studies have shown the strategy of cancer -targeting gene-viro-therapy (CTGVT) mediated by the oncolytic virus ZD55 containing the XAF1 cDNA (ZD55-XAF1), which exhibited potent antitumor effects in various tumor cells and no apparent toxicities on normal cells. In the study, the CTGVT strategy is broadened by combining DDP with ZD55-XAF1 for growth inhibition of hepatocellular carcinoma (HCC) cells. METHODS The transgenic expression was evaluated by both in vitro and in vivo experiments, and the enhanced inhibitory effect of ZD55-XAF1 combined with cisplatin was assessed in HCC cells. The cytotoxicity on normal liver cells was evaluated by MTT assay and apoptotic cell staining. Activation of caspase-9 and PARP for apoptosis was further detected by Western blot analysis. The in vivo antitumor efficacy of combination treatment with cisplatin and ZD55-XAF1 was estimated in an HCC xenograft mouse model. RESULTS We found that the combination of ZD55-XAF1 and cisplatin showed enhanced inhibitory effects on the proliferation of HCC cells in vitro and tumor growth in mice. Furthermore, the combined treatment of ZD55-XAF1 and DDP decreases the chemotherapy dose needed to achieve the same inhibitory effect without overlapping toxicities on normal liver cells and induces tumor cell apoptosis via the activation of caspase-9/PARP pathway. CONCLUSION Thus, these data suggest that the chemo-gene-viro-therapeutic strategy by combining ZD55-XAF1 and DDP reveals a novel therapeutic strategy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Buyun Ma
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang Y, Xu H, Huang W, Ding M, Xiao J, Yang D, Li H, Liu XY, Chu L. Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus. J Cell Mol Med 2015; 19:915-23. [PMID: 25683371 PMCID: PMC4420595 DOI: 10.1111/jcmm.12397] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/18/2014] [Indexed: 12/11/2022] Open
Abstract
Lung cancer stem cell (LCSC) is critical in cancer initiation, progression, drug resistance and relapse. Disadvantages showed in conventional lung cancer therapy probably because of its existence. In this study, lung cancer cell line A549 cells propagated as spheroid bodies (named as A549 sphere cells) in growth factors-defined serum-free medium. A549 sphere cells displayed CSC properties, including chemo-resistance, increased proportion of G0/G1 cells, slower proliferation rate, ability of differentiation and enhanced tumour formation ability in vivo. Oncolytic adenovirus ZD55 carrying EGFP gene, ZD55-EGFP, infected A549 sphere cells and inhibited cell growth. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) armed oncolytic adenovirus, ZD55-TRAIL, exhibited enhanced cytotoxicity and induced A549 sphere cells apoptosis through mitochondrial pathway. Moreover, small molecules embelin, LY294002 and resveratrol improved the cytotoxicity of ZD55-TRAIL. In the A549 sphere cells xenograft models, ZD55-TRAIL significantly inhibited tumour growth and improved survival status of mice. These results suggested that gene armed oncolytic adenovirus is a potential approach for lung cancer therapy through targeting LCSCs.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang G, Sun C, Li RH, Wei ZP, Zheng JN, Liu YQ. Enhanced antitumor efficacy of a novel oncolytic adenovirus combined with temozolomide in the treatment of melanoma in vivo. J Cancer Res Clin Oncol 2015; 141:75-85. [PMID: 25103017 DOI: 10.1007/s00432-014-1763-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/21/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE The aim of this study was to investigate the effect of Ki67-ZD55-IL-24 with temozolomide (TMZ) against melanoma in mice. METHODS Seventy-eight mice with subcutaneous injection of A375 cells (2 × 10(6)) into the right flank were randomized to receive phosphate buffered saline (PBS), Ki67-ZD55, Ki67-ZD55-IL-24, TMZ, TMZ + Ki67-ZD55, and TMZ + Ki67-ZD55-IL-24. Six mice were killed in each group 10 days after intervention for detecting IL-24 mRNA and protein expression. The remaining mice were monitored to draw the body weight change curve and tumor growth curve, and killed 30 days after intervention. Tumors were excised and weighted. The morphology of tumor tissues was determined by hematoxylin and eosin (HE) staining, and the apoptosis index and rate of apoptotic cells were determined by TUNEL assay and AnnexinV-FITC/PI double staining, respectively. RESULTS The Ki67-ZD55-IL-24-treated group generated much more reactive oxygen species than the untreated group. There was no significant difference in IL-24 expression between Ki67-ZD55-IL-24 and TMZ + Ki67-ZD55-IL-24 groups. Immunohistochemical analysis and Western blot revealed that both the Ki67-ZD55 and Ki67-ZD55-IL-24 could significantly reduce the expression of MGMT. Toxicity assessments demonstrated that mice in the three groups that received TMZ exhibited significant body weight loss following treatment. HE staining showed that TMZ + Ki67-ZD55-IL-24 group had much fewer karyokinesis in the tumors, compared with other groups. The apoptosis index of tumor tissues and the rate of apoptotic cells were significantly higher in TMZ + Ki67-ZD55-IL-24 group than in other groups (all P < 0.05). CONCLUSIONS These findings indicate this novel strategy holds promising potentials for treatment of malignant melanoma.
Collapse
Affiliation(s)
- Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
36
|
Chen RF, Li YY, Li LT, Cheng Q, Jiang G, Zheng JN. Novel oncolytic adenovirus sensitizes renal cell carcinoma cells to radiotherapy via mitochondrial apoptotic cell death. Mol Med Rep 2014; 11:2141-6. [PMID: 25411768 DOI: 10.3892/mmr.2014.2987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma is the most frequent kidney malignancy and patients with metastatic disease have a poor prognosis. Suppressed apoptosis and marked invasiveness are distinctive features of renal cell carcinoma. In the present study, a dual‑regulated oncolytic adenovirus expressing the interluekin (IL)‑24 gene (Ki67‑ZD55‑IL‑24) was constructed utilizing the Ki67 promoter to replace the native viral promoter of the E1A gene. Whether the combination of Ki67‑ZD55‑IL‑24‑mediated gene virotherapy and radiotherapy produced increased cytotoxicity in renal cell carcinoma cells via mitochondrial apoptotic cell death was investigated. The data indicated that this novel strategy has the potential to be further developed into an effective approach to treat renal cell carcinoma. The results showed that the combination of Ki67‑ZD55‑IL‑24 and radiotherapy significantly enhanced anti‑tumour activity via increasing the induction of apoptosis in melanoma cells compared with the other agents.
Collapse
Affiliation(s)
- Ren-Fu Chen
- Department of Urology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Yue-Yan Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Lian-Tao Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qian Cheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Guan Jiang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
37
|
Jiang G, Yang CS, Xu D, Sun C, Zheng JN, Lei TC, Liu YQ. Potent anti-tumour activity of a novel conditionally replicating adenovirus for melanoma via inhibition of migration and invasion. Br J Cancer 2014; 110:2496-505. [PMID: 24714752 PMCID: PMC4021521 DOI: 10.1038/bjc.2014.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/09/2022] Open
Abstract
Background: Conditionally replicating adenoviruses (CRAds) represent a novel class of oncological therapeutic agents. One strategy to ensure tumour targeting is to place the essential viral genes under the control of tumour-specific promoters. Ki67 has been selected as a cancer gene therapy target, as it is expressed in most malignant cells but is barely detectable in most normal cells. This study aimed to investigate the effects of a Ki67 promoter-controlled CRAd (Ki67-ZD55-IL-24) on the proliferation and apoptosis of melanoma cells. Methods: Melanoma cells were independently treated with Ki67-ZD55-IL-24, ZD55-IL-24, Ki67-ZD55, and ZD55-EGFP. The cytotoxic potential of each treatment was assessed using cell viability measurements. Cell migration and invasion were assayed using cell migration and invasion assays. Apoptosis was assayed using the annexin V-FITC assay, western blotting, reverse transcriptase PCR (RT–PCR), haematoxylin and eosin (H&E) staining, and the TUNEL assay. Results: Our results showed that Ki67-ZD55-IL-24 had significantly enhanced anti-tumour activity as it more effectively induced apoptosis in melanoma cells than the other agents. Ki67-ZD55-IL-24 also caused the most significant inhibition of cell migration and invasion of melanoma cells. Furthermore, apoptosis was induced more effectively in melanoma xenografts in nude mice. Conclusions: This strategy holds promising potential for the further development of an effective approach to treat malignant melanoma.
Collapse
Affiliation(s)
- G Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - C-S Yang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - D Xu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - C Sun
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - J-N Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - T-C Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Y-Q Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| |
Collapse
|
38
|
Replication-competent adenovirus expressing TRAIL synergistically potentiates the antitumor effect of gemcitabine in bladder cancer cells. Tumour Biol 2014; 35:5937-44. [PMID: 24604329 DOI: 10.1007/s13277-014-1787-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/21/2014] [Indexed: 12/22/2022] Open
Abstract
Replication-competent adenovirus armed with therapeutic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene has been shown to sensitize cancer cells to chemotherapy and radiotherapy. However, the synergistic antitumor effect of replication-competent adenovirus expressing TRAIL and the cytotoxic chemotherapy in bladder cancer remains to be determined. Bladder cancer T24 cells or mouse tumor xenografts were infected with replication-competent adenovirus armed with human TRAIL (ZD55-TRAIL) alone or in combination with gemcitabine. The mRNA and protein levels of TRAIL were determined by "Reverse transcription polymerase chain reaction" and Western blotting, respectively. Cell viability was tested by CCK8 assay. Tumor growth in the mice was monitored every week by measuring tumor size. Cell apoptosis was detected by Annexin V-FITC staining and TUNEL assay. We found that adenovirus ZD55-TRAIL efficiently replicated both in cultured bladder cancer T24 cells and T24 mouse tumor xenograft as demonstrated by the overexpression of TRAIL and E1A. Gemcitabine did not affect the expression of TRAIL. In cultured T24 cells, ZD55-TRAIL enhanced the growth inhibitory effects of gemcitabine, accompanied by increased apoptosis. Similarly, ZD55-TRAIL synergistically enhanced the antitumor effect and induction of apoptosis following gemcitabine treatment in mouse T24 xenografts. In conclusion, replicative adenovirus armed with TRAIL synergistically potentiates the antitumor effect of gemcitabine in human bladder cancer. Our study provides the basis for the development of ZD55-TRAIL in combination with conventional chemotherapy for the treatment of bladder cancer.
Collapse
|
39
|
Overexpression of MDA-7/IL-24 as an anticancer cytokine in gene therapy of thyroid carcinoma. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Wei X, Wang G, Li W, Hu X, Huang Q, Xu K, Lou W, Wu J, Liang C, Lou Q, Qian C, Liu L. Activation of the JAK-STAT3 pathway is associated with the growth of colorectal carcinoma cells. Oncol Rep 2013; 31:335-41. [PMID: 24253664 DOI: 10.3892/or.2013.2858] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/21/2013] [Indexed: 11/05/2022] Open
Abstract
Excessive activation of inflammatory signaling pathways facilitates colorectal carcinoma (CRC) malignancy. Continuous activation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway plays a central role in the development and progression of CRC. With the intent to explore whether attenuation of the JAK-STAT3 signaling axis inhibits cancer cell proliferation or induces apoptosis, a sophisticated oncolytic adenoviral vector, AdCN305, carrying the SOCS3 gene was used to treat CRC cells. Our data revealed that i) in CRC cells, STAT3 was continuously activated by phosphorylation, and SOCS3 was at a relative low expression level; and ii) AdCN305-cppSOCS3 inhibited the continuous activation of the JAK/STAT3 pathway, suppressed CRC cell growth and induced apoptosis, in vitro and in vivo. We proved that SOCS3, a negative regulator of the JAK-STAT3 pathway, efficiently inhibited the activation of the pathway and decreased levels of downstream factors which regulate cell proliferation and the cell cycle.
Collapse
Affiliation(s)
- Xubin Wei
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cancer targeting gene-viro-therapy for pancreatic cancer using oncolytic adenovirus ZD55-IL-24 in immune-competent mice. Mol Biol Rep 2013; 40:5397-405. [PMID: 23666064 DOI: 10.1007/s11033-013-2638-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Cancer targeting gene-viro-therapy (CTGVT) may prove to be an effective treatment for pancreatic cancer (PC). This study was intended to explore the anti-tumor effect of ZD55-IL-24 (oncolytic adenovirus ZD55 harboring IL-24) on PC in immune-competent mice. The expression of gene harbored by oncolytic adenovirus ZD55 in PC cells was detected by reporter-gene assays. The in vitro anti PC ability of ZD55-IL-24 was tested by MTT, crystal violet staining and apoptosis assays. The in vivo anti PC effect of ZD55-IL-24 was further observed in an immune-competent mice model by detecting anti-tumor immunity and induction of apoptosis. The expression of gene harbored by ZD55 in PC cells was significantly higher than that harbored by the replicated-deficient adenovirus, and the amount of gene expression was time-dependent and dose-dependent. Both ZD55-IL-24 and ZD55 inhibited PC cells growth, but the anti-tumor effect of ZD55-IL-24 was significantly stronger than that of ZD55, and the ability of ZD55-IL-24 in inducing PC apoptosis was significantly stronger than that of ZD55. The tumor-forming rate of group ZD55-IL-24 was the lowest, and the tumor-growing rate was also significantly lower than that of group ZD55 in immune-competent PC models. Moreover, ZD55-IL-24 mediated more anti-cancer immunity effects by induction of stronger T-lymphocytes response to PC cells, higher levels of γ-IFN and IL-6 cytokines. ZD55-IL-24-mediated CTGVT could inhibit PC growth not only by inducing oncolysis and apoptosis but enhancing the anti-cancer immune effects by inducing T cell response to PC and up-regulating γ-IFN and IL-6 cytokine in immune-competent mice. This may serve as a candidate therapeutic approach for the treatment of PC.
Collapse
|
42
|
Lei W, Liu HB, Wang SB, Zhou XM, Zheng SD, Guo KN, Ma BY, Xia YL, Tan WS, Liu XY, Wang YG. Tumor suppressor in lung cancer-1 (TSLC1) mediated by dual-regulated oncolytic adenovirus exerts specific antitumor actions in a mouse model. Acta Pharmacol Sin 2013; 34:531-40. [PMID: 23503473 DOI: 10.1038/aps.2012.196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM The tumor suppressor in lung cancer-1 (TSLC1) is a candidate tumor suppressor of lung cancer, and frequently inactivated in primary non-small cell lung cancer (NSCLC). In this study, we investigated the effects of TSLC1 mediated by a dual-regulated oncolytic adenovirus on lung cancer, and the mechanisms underlying the antitumor actions. METHODS The recombinant virus Ad·sp-E1A(Δ24)-TSLC1 was constructed by inserting the TSLC1 gene into the dual-regulated Ad·sp-E1A(Δ24) vector, which contained the survivin promoter and a 24 bp deletion within E1A. The antitumor effects of Ad·sp-E1A(Δ24)-TSLC1 were evaluated in NCI-H460, A549, and H1299 lung cancer cell lines and the normal fibroblast cell line MRC-5, as well as in A549 xenograft model in nude mice. Cell viability was assessed using MTT assay. The expression of TSLC1 and activation of the caspase signaling pathway were detected by Western blot analyses. The tumor tissues from the xenograft models were examined using H&E staining, IHC, TUNEL, and TEM analyses. RESULTS Infection of A549 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced high level expression of TSLC1. Furthermore, the Ad·sp-E1A(Δ24)-TSLC1 virus dose-dependently suppressed the viability of NCI-H460, A549, and H1299 lung cancer cells, and did not affect MRC-5 normal fibroblast cells. Infection of NCI-H460, A549, and H1299 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced apoptosis, and increased activation of caspase-8, caspase-3 and PARP. In A549 xenograft model in nude mice, intratumoral injection of Ad·sp-E1A(Δ24)-TSLC1 significantly suppressed the tumor volume, and increased the survival rate (from less than 15% to 87.5% at d 60). Histological studies showed that injection of Ad·sp-E1A(Δ24)-TSLC1 caused tumor cell apoptosis and virus particle propagation in tumor tissues. CONCLUSION The oncolytic adenovirus Ad·sp-E1A(Δ24)-TSLC1 exhibits specific antitumor effects, and is a promising agent for the treatment of lung cancer.
Collapse
|
43
|
Xu B, Zheng WY, Feng JF, Huang XY, Ge HY. One potential oncolytic adenovirus expressing Lipocalin-2 for colorectal cancer therapy. Cancer Biother Radiopharm 2013; 28:415-22. [PMID: 23464854 DOI: 10.1089/cbr.2012.1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is an aggressive malignancy with a high mortality rate; however, effective therapies are currently lacking. Cancer-targeting gene-virotherapy (CTGVT) has been proposed to be a promising strategy for cancer therapy. The purpose of this study was to investigate the antitumor activity of the oncolytic adenovirus harboring Lipocalin-2 (ZD55-Lipocalin-2, an example of CTGVT) in colorectal cancer. ZD55-Lipocalin-2 was generated by deleting E1B55-KD and inserting the Lipocalin-2 gene. Its cytopathic effects and cell growth inhibition were detected in vitro, and antitumor effects were examined in a nude mouse model of human colorectal cancer xenografts. Results showed that ZD55-Lipocalin-2 significantly inhibited the colorectal cancer growth by selective cytolysis, inducing apoptosis and decreasing the microvessel density in tumors. The anticancer potential of ZD55-Lipocalin-2 showed stronger than that of the isolated Lipocalin-2 gene therapy or isolated ZD55 oncolytic adenovirus therapy. ZD55-Lipocalin-2 may serve as a potential anticancer agent for colorectal cancer treatment.
Collapse
Affiliation(s)
- Bin Xu
- Department of Hepato-Biliary-Pancreatic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | |
Collapse
|
44
|
Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther 2013; 20:70-6. [PMID: 23306610 DOI: 10.1038/cgt.2012.95] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recurrent or metastatic cancer in most cases remains an incurable disease, and thus alternative treatment strategies, such as oncolytic virotherapy, are of great interest for clinical application. Oncolytic adenoviruses (Ads) have many advantages as virotherapeutic agents and have been safely employed in the clinics. However, the efficacy of oncolytic Ads is insufficient to eradicate tumors and current clinical applications are restricted to local administration against primary tumors because of immunological obstacles and poor tumor-cell targeting. Thus, alternative viable approaches are needed to establish therapies based on oncolytic Ad that will eliminate both primary and metastatic cancers. To this end, rational design of oncolytic Ads that express immunostimulatory genes has been employed. Even when restricted to local viral delivery, these oncolytic Ad-based immunotherapeutics have been shown to exert systemic antitumor immunity and result in eradication of both primary and metastatic cancers. Moreover, oncolytic Ad-based immunotherapeutics in combination with either dendritic cell-based vaccine or radiotherapy further strengthen the systemic tumor-specific immunity, resulting in complete suppression of both local and distant tumor metastatic growth. This review will focus on the most recent updates in strategies to develop potent oncolytic Ad-based immunotherapeutics for use in cancer gene therapy.
Collapse
Affiliation(s)
- I-K Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | | |
Collapse
|
45
|
Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med (Berl) 2013; 91:715-25. [PMID: 23292172 DOI: 10.1007/s00109-012-0985-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/30/2012] [Accepted: 11/26/2012] [Indexed: 12/19/2022]
Abstract
It has been demonstrated that numerous microRNAs (miRNAs) have potent tumor-suppressing effects on a variety of cancers, implicating a possible application of miRNA in tumor therapy. Oncolytic adenovirus is a suitable vector to deliver tumor suppressor genes for treatment of cancers. However, it remains unknown whether co-expression of tumor suppressor genes and miRNAs can contribute to a more potent antitumor capacity within an oncolytic adenovirus delivery system. In this study, we found that expression of miRNA-34a was reduced in hepatocellular carcinoma (HCC), and the reduced expression of miRNA-34a was associated with worse outcome of HCC patients. Thus, we developed an oncolytic adenoviral vector, AdCN205, to co-express miRNA-34a and IL-24 driven by an adenovirus endogenous E3 promoter in HCC cells. High levels of miRNA-34a and IL-24 expression were detected in AdCN205-IL-24-miR-34a-infected HCC cells. AdCN205-IL-24-miR-34a significantly induced dramatic antitumor activity, as compared with that induced by AdCN205-IL-24 or AdCN205-miR-34a alone. Transfer of miRNA-34a into HCC cells inhibited the expression of its target genes, Bcl-2 and SIRT1. Treatment of established xenograft HCC tumors with AdCN205-IL-24-miR-34a in a mouse model resulted in complete tumor regression without recurrence. Taken together, our data provide a promising and reasonable delivery strategy of double-aimed cancer therapy, in which miRNAs and tumor-suppressing genes are used simultaneously.
Collapse
|
46
|
Liu XR, Cai Y, Cao X, Wei RC, Li HL, Zhou XM, Zhang KJ, Wu S, Qian QJ, Cheng B, Huang K, Liu XY. A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti-tumour effect. J Cell Mol Med 2012; 16:1298-309. [PMID: 21794078 PMCID: PMC3823082 DOI: 10.1111/j.1582-4934.2011.01396.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cancer Targeting Gene-Viro-Therapy (CTGVT) is a promising cancer therapeutical strategy that strengthens the anti-tumour effect of oncolytic virus by expressing inserted foreign anti-tumour genes. In this work, we constructed a novel adenoviral vector controlled by the tumour-specific survivin promoter on the basis of the ZD55 vector, which is an E1B55KD gene deleted vector we previously constructed. Compared with the original ZD55 vector, this new adenoviral vector (ZD55SP/E1A) showed much better ability of replication and reporter gene expression. We then combined anti-tumour gene interleukine-24 (IL-24) with an RNA polymerase III-dependent U6 promoter driving short hairpin RNA (shRNA) that targets M-phase phosphoprotein 1 (MPHOSPH1, a newly identified oncogene) by inserting the IL-24 and the shRNA of MPHOSPH1 (shMPP1) expression cassettes into the new ZD55SP/E1A vector. Our results demonstrated excellent anti-tumour effect of ZD55SP/E1A-IL-24-shMPP1 in vitro on multiple cancer cell lines such as lung cancer, liver cancer and ovarian caner. At high multiplicity-of-infection (MOI), ZD55SP/E1A-IL-24-shMPP1 triggered post-mitotic apoptosis in cancer cells by inducing prolonged mitotic arrest; while at low MOI, senescence was induced. More importantly, ZD55SP/E1A-IL-24-shMPP1 also showed excellent anti-tumour effects in vivo on SW620 xenograft nude mice. In conclusion, our strategy of constructing an IL-24 and shMPP1 dual gene expressing oncolytic adenoviral vector, which is regulated by the survivin promoter and E1B55KD deletion, could be a promising method of cancer gene therapy.
Collapse
Affiliation(s)
- Xin-Ran Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Complete eradication of hepatomas using an oncolytic adenovirus containing AFP promoter controlling E1A and an E1B deletion to drive IL-24 expression. Cancer Gene Ther 2012; 19:619-29. [PMID: 22790965 DOI: 10.1038/cgt.2012.40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin (IL)-24, a promising therapeutic gene, has been widely used for Cancer Targeting Gene-Viro-Therapy (CTGVT). In this study, IL-24 was inserted into an oncolytic adenovirus in which the E1A gene is driven by an enhanced, short α-fetoprotein (AFP) promoter and the E1B gene is completely deleted to form Ad.enAFP-E1A-ΔE1B-IL-24. This construct has a potent antitumor effect on liver cancer cell lines in vitro, but little or no effect on normal cell lines, such as L-02 and QSG-7701. In vivo, the complete elimination of Huh-7 liver cancer in nude mice with Ad.enAFP-E1A-ΔE1B-IL-24 intratumor injection was observed. The design of Ad.enAFP-E1A-ΔE1B-IL-24 and its potent antitumor effect on liver cancer have not been published previously. The mechanism of the potent antitumor effect of Ad.enAFP-E1A-ΔE1B-IL-24 is due to the upregulation of GADD34 and intrinsic and extrinsic apoptotic signaling.
Collapse
|
48
|
Cai Y, Liu X, Huang W, Zhang K, Liu XY. Synergistic antitumor effect of TRAIL and IL-24 with complete eradication of hepatoma in the CTGVT-DG strategy. Acta Biochim Biophys Sin (Shanghai) 2012; 44:535-43. [PMID: 22635106 DOI: 10.1093/abbs/gms031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ZD55-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and ZD55-interleukin (IL)-24 were constructed by inserting TRAIL or IL-24 gene separately into the oncolytic adenovirus named ZD55 (with adenovirus E1B-55kD deletion). The resulting ZD55-TRAIL and ZD55-IL-24 were used in combination to treat xenograft tumors in nude mice model. The results showed that it can not only completely eliminate BEL7404 hepatoma xenograft but also have excellent antitumor effect against gaster, lung, prostate, and breast carcinomas. It was also found that ZD55-TRAIL could not only suppress the tumor growth promoting effect by ZD55-IL-24 at lower dosage, but also substantially reduce the cancer cell viability in their combined use. This is because ZD55-IL-24 and ZD55-TRAIL could mutually enhance each other's antitumor effect greatly. All these findings conspicuously showed the synergistic antitumor effect of TRAIL and IL-24, which is also the reason for the antitumor effect by the combined use of TRAIL and IL-24 in vitro and also in vivo.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
49
|
Jiang G, Zhang K, Jiang AJ, Xu D, Xin Y, Wei ZP, Zheng JN, Liu YQ. A conditionally replicating adenovirus carrying interleukin-24 sensitizes melanoma cells to radiotherapy via apoptosis. Mol Oncol 2012; 6:383-91. [PMID: 22673233 DOI: 10.1016/j.molonc.2012.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 12/11/2022] Open
Abstract
Combinatorial therapy is the current trend of the development of novel cancer treatments due to the high heterogenous nature of solid tumors. In this study, we investigated the effects of the combined use of a conditionally replicating adenovirus carrying IL-24 (ZD55-IL-24) and radiotherapy on the proliferation and apoptosis of melanoma A375 cells in vitro and in vivo. Compared with either agent used alone, ZD55-IL-24 combined with radiotherapy significantly inhibited cell proliferation, accompanied with increased apoptosis. Radiotherapy did not affect the expression of IL-24 and E1A of ZD55-IL-24-treated cells, but increased the expression of Bax, promoted the activation of caspase-3, while decreasing Bcl-2 levels. Thus, this synergistic effect of ZD55-IL-24 in combination with radiotherapy provides a novel strategy for the development of melanoma therapies, and is a promising approach for further clinical development.
Collapse
Affiliation(s)
- Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang CJ, Xiao CW, You TG, Zheng YX, Gao W, Zhou ZQ, Chen J, Xue XB, Fan J, Zhang H. Interferon-α enhances antitumor activities of oncolytic adenovirus-mediated IL-24 expression in hepatocellular carcinoma. Mol Cancer 2012; 11:31. [PMID: 22569271 PMCID: PMC3697897 DOI: 10.1186/1476-4598-11-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/08/2012] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has a dismal 5-year-survival rate of 10%, so
novel strategies are warranted. IL-24 mediates anti-tumor activity reducing
STAT3 expression, which suggests that interferon (IFN) alpha may augment
tumor cell lysis and reduce angiogenesis. We investigated the antitumor
activity of treatment with IFN-α, with the oncolytic adenovirus
SG600-IL-24, or the combination of both in HCC in vitro and in
vivo. Results RT-PCR, ELISA assay and Western-blot confirmed that the exogenous IL-24 gene
was highly expressed in HCC cells infected with SG600-IL-24. Treatment with
combined IFN-α and SG600-IL-24 suppressed growth and promoted apoptosis
of the HepG2, MHCC97L, and HCCLM3 cell lines compared with the normal cell
line L02. The combined therapy increased STAT1 and SOCS1 and apoptosis, but
decreased the expression of the metastatic and angiogenic proteins MMP-2,
XIAP, OPN, and VEGF, which are regulated by STAT3 in HCC cells in
vitro. To assess the effects in vivo, the HCC cell line
HCCLM3 was transplanted subcutaneously into the right flanks of nude mice.
Mice in the IFN-α group, the SG600-IL-24 group, or the combined therapy
group had significantly suppressed growth of the HCC xenografted tumors
compared to the PBS control group of mice. Among the mice treated with the
combination of IFN-α and SG600-IL-24, three of those eight mice had
long-term survival and no evidence of a tumor. These mice also had decreased
expression of the metastatic and angiogenic proteins MMP-2, XIAP, OPN, and
VEGF. Conclusions The present study demonstrated for the first time the potential antitumor
activity of IFN-α combined with the oncolytic adenovirus SG600-IL-24 in
HCC both in vitro and in vivo, and suggests its further
development as a potential candidate for HCC cancer gene therapy.
Collapse
Affiliation(s)
- Cong-Jun Wang
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|