1
|
Abstract
INTRODUCTION More than 5% of the world's population have a disabling hearing loss which can be managed by hearing aids or implanted electrical devices. However, outcomes are highly variable, and the sound perceived by recipients is far from perfect. Sparked by the discovery of progenitor cells in the cochlea and rapid progress in drug delivery to the cochlea, biological and pharmaceutical therapies are currently in development to improve the function of the cochlear implant or eliminate the need for it altogether. AREAS COVERED This review highlights progress in emerging regenerative strategies to restore hearing and adjunct therapies to augment the cochlear implant. Novel approaches include the reprogramming of progenitor cells to restore the sensory hair cell population in the cochlea, gene therapy and gene editing to treat hereditary and acquired hearing loss. A detailed review of optogenetics is also presented as a technique that could enable optical stimulation of the spiral ganglion neurons, replacing or complementing electrical stimulation. EXPERT OPINION Increasing evidence of substantial reversal of hearing loss in animal models, alongside rapid advances in delivery strategies to the cochlea and learnings from clinical trials will amalgamate into a biological or pharmaceutical therapy to replace or complement the cochlear implant.
Collapse
Affiliation(s)
- Elise Ajay
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Department of Engineering
| | | | - Rachael Richardson
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Medical Bionics Department, Parkville, Victoria, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), East Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Xu S, Yang N. Research Progress on the Mechanism of Cochlear Hair Cell Regeneration. Front Cell Neurosci 2021; 15:732507. [PMID: 34489646 PMCID: PMC8417573 DOI: 10.3389/fncel.2021.732507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian inner ear hair cells do not have the ability to spontaneously regenerate, so their irreversible damage is the main cause of sensorineural hearing loss. The damage and loss of hair cells are mainly caused by factors such as aging, infection, genetic factors, hypoxia, autoimmune diseases, ototoxic drugs, or noise exposure. In recent years, research on the regeneration and functional recovery of mammalian auditory hair cells has attracted more and more attention in the field of auditory research. How to regenerate and protect hair cells or auditory neurons through biological methods and rebuild auditory circuits and functions are key scientific issues that need to be resolved in this field. This review mainly summarizes and discusses the recent research progress in gene therapy and molecular mechanisms related to hair cell regeneration in the field of sensorineural hearing loss.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Zhao X, Jin C, Dong T, Sun Z, Zheng X, Feng B, Cheng Z, Li X, Tao Y, Wu H. Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae. Hear Res 2020; 394:107999. [PMID: 32611519 DOI: 10.1016/j.heares.2020.107999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 11/27/2022]
Abstract
CRISPR/Cas9 gene editing enables the treatment of hearing loss in congenitally deaf neonatal mice via both viral and non-viral delivery. While adeno-associated virus (AAV)-mediated gene delivery systems have been shown to be effective tools for gene replacement in the inner ear, application of the AAV-mediated CRISPR/Cas9 gene-editing approach for this purpose is yet to be documented. Based on our previous findings, we focused on the effects of several AAVs delivered via canalostomy injection in adult mice. Among the AAVs examined, AAV8 showed the greatest efficiency and specificity in transducing inner hair cells (IHC). The ability of Cre-expressing AAV8 to activate Cas9 in floxed-Cas9 knock-in (Cas9 KI) mice was further evaluated. We compared the effects of six different promoters (CMV, CAG, hSyn, CaMKIIa, GFAP, and ALB) of AAV8 delivered to the inner ear of adult Cas9 KI mice. Our findings showed that three AAV groups (CMV, CAG and hSyn promoters) infected the inner ear efficiently with different tropisms. Notably, AAVs with CMV, CAG, and hSyn promoters infected diverse cell types in mature murine cochleae, including IHCs. In particular, AAV8-hSyn showed high affinity to IHCs and spiral ganglion neurons (SGN). Neither the AAV8 virus itself (except AAV8-CAG) nor the surgical procedures used caused damage to HCs or impaired normal hearing. Our findings indicated that injection of AAV-Cre into mature inner ear efficiently induces Cas9 activation to achieve safe and efficient gene editing and different constituent promoters confer diverse infection patterns in cochlea, expanding the repertoire of gene-editing tools for regulating gene expression in target cells of the inner ear as part of the collective effort to rescue genetic hearing loss and develop effective gene therapy techniques.
Collapse
Affiliation(s)
- Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Tingting Dong
- Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China; Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| |
Collapse
|
4
|
Lee S, Dondzillo A, Gubbels SP, Raphael Y. Practical aspects of inner ear gene delivery for research and clinical applications. Hear Res 2020; 394:107934. [PMID: 32204962 DOI: 10.1016/j.heares.2020.107934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
The application of gene therapy is widely expanding in research and continuously improving in preparation for clinical applications. The inner ear is an attractive target for gene therapy for treating environmental and genetic diseases in both the auditory and vestibular systems. With the lack of spontaneous cochlear hair cell replacement, hair cell regeneration in adult mammals is among the most important goals of gene therapy. In addition, correcting gene defects can open up a new era for treating inner ear diseases. The relative isolation and small size of the inner ear dictate local administration routes and carefully calculated small volumes of reagents. In the current review, we will cover effective timing, injection routes and types of vectors for successful gene delivery to specific target cells within the inner ear. Differences between research purposes and clinical applications are also discussed.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA
| | - Anna Dondzillo
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae. Gene Ther 2020; 27:392-405. [PMID: 32005950 DOI: 10.1038/s41434-020-0124-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/30/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV)-mediated gene delivery systems have been shown to be effective tools for gene manipulation in the inner ear. For example, hair cells (HCs) and multiple other cell types can be transduced by the local injection of AAVs into the inner ear. However, application of the AAV-mediated CRISPR/Cas9 gene-editing approach to the inner ear in adult mice has not yet been studied. Based on our previous work, we investigated several AAV serotypes in neonatal and adult mice in parallel, and found that AAV8 had the top efficiency to transduce inner HCs. We then tested the ability of Cre-expressing AAV8 to activate Cas9 in floxed-Cas9 knockin mice, and observed significant Cas9 activation in the inner ear of both neonatal and adult animals. Neither the AAV8 virus itself nor the surgical procedures used to deliver it-cochleostomy for neonatal mice and canalostomy for adult mice-caused any damage to HCs or impaired normal hearing. Our studies indicate that the local injection of AAV8-Cre can induce Cas9 activation to perform safe and efficient gene editing in the inner ear, expanding the repertoire of gene-editing tools for regulating gene expression in the inner ear as a part of efforts to rescue genetic hearing loss, initiate regeneration of HCs, or develop gene therapy techniques.
Collapse
|
6
|
Talaei S, Schnee ME, Aaron KA, Ricci AJ. Dye Tracking Following Posterior Semicircular Canal or Round Window Membrane Injections Suggests a Role for the Cochlea Aqueduct in Modulating Distribution. Front Cell Neurosci 2019; 13:471. [PMID: 31736710 PMCID: PMC6833940 DOI: 10.3389/fncel.2019.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critical to understanding function at the systems level. Additionally, there is a growing need for drug delivery to the inner ear for preventive and restorative treatments to the pathologies associated with hearing and balance dysfunction. We compare drug delivery to neonatal and adult inner ear by injection into the posterior semicircular canal (PSCC) or through the round window membrane (RWM). PSCC injections produced higher levels of dye delivery within the cochlea than did RWM injections. Neonatal PSCC injections produced a gradient in dye distribution; however, adult distributions were relatively uniform. RWM injections resulted in an early base to apex gradient that became more uniform over time, post injection. RWM injections lead to higher levels of dye distributions in the brain, likely demonstrating that injections can traverse the cochlea aqueduct. We hypothesize the relative position of the cochlear aqueduct between injection site and cochlea is instrumental in dictating dye distribution within the cochlea. Dye distribution is further compounded by the ability of some chemicals to cross inner ear membranes accessing the blood supply as demonstrated by the rapid distribution of gentamicin-conjugated Texas red (GTTR) throughout the body. These data allow for a direct evaluation of injection mode and age to compare strengths and weaknesses of the two approaches.
Collapse
Affiliation(s)
- Sara Talaei
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael E Schnee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ksenia A Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Atkinson PJ, Kim GS, Cheng AG. Direct cellular reprogramming and inner ear regeneration. Expert Opin Biol Ther 2019; 19:129-139. [PMID: 30584811 DOI: 10.1080/14712598.2019.1564035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Sound is integral to communication and connects us to the world through speech and music. Cochlear hair cells are essential for converting sounds into neural impulses. However, these cells are highly susceptible to damage from an array of factors, resulting in degeneration and ultimately irreversible hearing loss in humans. Since the discovery of hair cell regeneration in birds, there have been tremendous efforts to identify therapies that could promote hair cell regeneration in mammals. AREAS COVERED Here, we will review recent studies describing spontaneous hair cell regeneration and direct cellular reprograming as well as other factors that mediate mammalian hair cell regeneration. EXPERT OPINION Numerous combinatorial approaches have successfully reprogrammed non-sensory supporting cells to form hair cells, albeit with limited efficacy and maturation. Studies on epigenetic regulation and transcriptional network of hair cell progenitors may accelerate discovery of more promising reprogramming regimens.
Collapse
Affiliation(s)
- Patrick J Atkinson
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Grace S Kim
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Alan G Cheng
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
8
|
Wang J, Yin S, Chen H, Shi L. Noise-Induced Cochlear Synaptopathy and Ribbon Synapse Regeneration: Repair Process and Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:37-57. [PMID: 30915700 DOI: 10.1007/978-981-13-6123-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synapse between the inner hair cells (IHCs) and the spiral ganglion neurons (SGNs) in mammalian cochleae is characterized as having presynaptic ribbons and therefore is called ribbon synapse. The special molecular organization is reviewed in this chapter in association with the functional feature of this synapse in signal processing. This is followed by the review on noise-induced damage to this synapse with a focus on recent reports in animal models in which the effect of brief noise exposures is observed without causing significant permanent threshold shift (PTS). In this regard, the potential mechanism of the synaptic damage by noise and the impact of this damage on hearing are summarized to clarify the concept of noise-induced hidden hearing loss, which is defined as the functional deficits in hearing without threshold elevation. A controversial issue is addressed in this review as whether the disrupted synapses can be regenerated. Moreover, the review summarizes the work of therapeutic research to protect the synapses or to promote the regeneration of the synapse after initial disruption. Lastly, several unresolved issues are raised for investigation in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, NS, Canada.
| | - Shankai Yin
- Otolaryngology Research Institute, 6th Affiliated Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Hengchao Chen
- Otolaryngology Research Institute, 6th Affiliated Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| |
Collapse
|
9
|
Calvet C, Lahlou G, Safieddine S. [Gene therapy progress: hopes for Usher syndrome]. Med Sci (Paris) 2018; 34:842-848. [PMID: 30451679 DOI: 10.1051/medsci/2018210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hearing and balance impairment are major concerns and a serious public health burden, as it affects millions of people worldwide, but still lacks an effective curative therapy. Recent breakthroughs in preclinical and clinical studies using viral gene therapy suggest that such an approach might succeed in curing many genetic diseases. Our actual understanding and the comprehensive analysis of the molecular bases of genetic deafness forms have provided the multiple bridges toward gene therapy to correct, replace, or modify the expression of defective endogenous genes involved in deafness. The aim of this review article is to summarize the recent advances in the restoration of cochlear and vestibular functions by local gene therapy in mouse models of Usher syndrome, the leading genetic cause of deafness associated with blindness in the world. We focus herein on therapeutic approaches with the highest potential for clinical application.
Collapse
Affiliation(s)
- Charlotte Calvet
- Institut Pasteur, Unité de génétique et physiologie de l'audition, 25, rue du Docteur Roux, 75724 Paris, Cedex 15, France - Inserm UMRS 1120, 75015 Paris, France - Sorbonne Universités, 75005 Paris, France
| | - Ghizlene Lahlou
- Institut Pasteur, Unité de génétique et physiologie de l'audition, 25, rue du Docteur Roux, 75724 Paris, Cedex 15, France - Inserm UMRS 1120, 75015 Paris, France - Sorbonne Universités, 75005 Paris, France
| | - Saaid Safieddine
- Institut Pasteur, Unité de génétique et physiologie de l'audition, 25, rue du Docteur Roux, 75724 Paris, Cedex 15, France - Inserm UMRS 1120, 75015 Paris, France - Sorbonne Universités, 75005 Paris, France - CNRS, UMRS 1120, 75015 Paris, France
| |
Collapse
|
10
|
Kanzaki S. Gene Delivery into the Inner Ear and Its Clinical Implications for Hearing and Balance. Molecules 2018; 23:molecules23102507. [PMID: 30274337 PMCID: PMC6222543 DOI: 10.3390/molecules23102507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 11/16/2022] Open
Abstract
The inner ear contains many types of cell, including sensory hair cells and neurons. If these cells are damaged, they do not regenerate. Inner ear disorders have various etiologies. Some are related to aging or are idiopathic, as in sudden deafness. Others occur due to acoustic trauma, exposure to ototoxic drugs, viral infections, immune responses, or endolymphatic hydrops (Meniere's disease). For these disorders, inner ear regeneration therapy is expected to be a feasible alternative to cochlear implants for hearing recovery. Recently, the mechanisms underlying inner ear regeneration have been gradually clarified. Inner ear cell progenitors or stem cells have been identified. Factors necessary for regeneration have also been elucidated from the mechanism of hair cell generation. Inducing differentiation of endogenous stem cells or inner ear stem cell transplantation is expected. In this paper, we discuss recent approaches to hair cell proliferation and differentiation for inner ear regeneration. We discuss the future road map for clinical application. The therapies mentioned above require topical administration of transgenes or drug onto progenitors of sensory cells. Developing efficient and safe modes of administration is clinically important. In this regard, we also discuss our development of an inner ear endoscope to facilitate topical administration.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, KEIO University, Tokyo 160-8582, Japan.
| |
Collapse
|
11
|
Tao Y, Huang M, Shu Y, Ruprecht A, Wang H, Tang Y, Vandenberghe LH, Wang Q, Gao G, Kong WJ, Chen ZY. Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Hum Gene Ther 2018; 29:492-506. [PMID: 29130354 PMCID: PMC5909114 DOI: 10.1089/hum.2017.120] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023] Open
Abstract
Hearing loss, including genetic hearing loss, is one of the most common forms of sensory deficits in humans with limited options of treatment. Adeno-associated virus (AAV)-mediated gene transfer has been shown to recover auditory functions effectively in mouse models of genetic deafness when delivered at neonatal stages. However, the mouse cochlea is still developing at those time points, whereas in humans, the newborn inner ears are already fully mature. For effective gene therapy to treat genetic deafness, it is necessary to determine whether AAV-mediated therapy can be equally effective in the fully mature mouse inner ear without causing damage to the inner ear. This study tested several AAV serotypes by canalostomy in adult mice. It is shown that most AAVs transduce the sensory inner hair cells efficiently, but are less efficient at transducing outer hair cells. A subset of AAVs also transduces non-sensory cochlear cell types. Neither the surgical procedure of canalostomy nor the AAV serotypes damage hair cells or impair normal hearing. The studies indicate that canalostomy can be a viable route for safe and efficient gene delivery, and they expand the repertoire of AAVs to target diverse cell types in the adult inner ear.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingqian Huang
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Yilai Shu
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Otolaryngology—Head and Neck Surgery, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Adam Ruprecht
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Hongyang Wang
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Yong Tang
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ear, Nose and Throat, People's Hospital of Jilin Province, Changchun, China
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Guangping Gao
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Yi Chen
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
12
|
Kurihara S, Fujioka M, Yoshida T, Koizumi M, Ogawa K, Kojima H, Okano HJ. A Surgical Procedure for the Administration of Drugs to the Inner Ear in a Non-Human Primate Common Marmoset (Callithrix jacchus). J Vis Exp 2018. [PMID: 29553522 DOI: 10.3791/56574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hearing research has long been facilitated by rodent models, although in some diseases, human symptoms cannot be recapitulated. The common marmoset (Callithrix jacchus) is a small, easy-to-handle New World monkey which has a similar anatomy of the temporal bone, including the middle ear ossicular chains and inner ear to humans, than in comparison with that of rodents. Here, we report a reproducible, safe, and rational surgical approach to the cochlear round window niche for the drug delivery to the inner ear of the common marmoset. We adopted posterior tympanotomy, a procedure used clinically in human surgery, to avoid manipulation of the tympanic membrane that may cause conductive hearing loss. This surgical procedure did not lead to any significant hearing loss. This approach was possible due to the large bulla structure of the common marmoset, although the lateral semicircular canal and vertical portion of the facial nerve should be carefully considered. This surgical method allows us to perform the safe and accurate administration of drugs without hearing loss, which is of great importance in obtaining pre-clinical proof of concept for translational research.
Collapse
Affiliation(s)
- Sho Kurihara
- Division of Regenerative Medicine, Jikei University School of Medicine; Department of Otorhinolaryngology, Jikei University School of Medicine
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine;
| | - Tomohiko Yoshida
- Division of Regenerative Medicine, Jikei University School of Medicine; Department of Otorhinolaryngology, Jikei University School of Medicine
| | - Makoto Koizumi
- Laboratory Animal Facilities, Jikei University School of Medicine
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine
| | | |
Collapse
|
13
|
Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G. Proc Natl Acad Sci U S A 2017; 114:9695-9700. [PMID: 28835534 DOI: 10.1073/pnas.1708894114] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.
Collapse
|
14
|
In vivo genetic manipulation of inner ear connexin expression by bovine adeno-associated viral vectors. Sci Rep 2017; 7:6567. [PMID: 28779115 PMCID: PMC5544751 DOI: 10.1038/s41598-017-06759-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/19/2017] [Indexed: 01/03/2023] Open
Abstract
We have previously shown that in vitro transduction with bovine adeno–associated viral (BAAV) vectors restores connexin expression and rescues gap junction coupling in cochlear organotypic cultures from connexin–deficient mice that are models DFNB1 nonsyndromic hearing loss and deafness. The aims of this study were to manipulate inner ear connexin expression in vivo using BAAV vectors, and to identify the optimal route of vector delivery. Injection of a BAAV vector encoding a bacterial Cre recombinase via canalostomy in adult mice with floxed connexin 26 (Cx26) alleles promoted Cre/LoxP recombination, resulting in decreased Cx26 expression, decreased endocochlear potential, increased hearing thresholds, and extensive loss of outer hair cells. Injection of a BAAV vector encoding GFP-tagged Cx30 via canalostomy in P4 mice lacking connexin 30 (Cx30) promoted formation of Cx30 gap junctions at points of contacts between adjacent non-sensory cells of the cochlear sensory epithelium. Levels of exogenous Cx30 decayed over time, but were still detectable four weeks after canalostomy. Our results suggest that persistence of BAAV-mediated gene replacement in the cochlea is limited by the extensive remodeling of the organ of Corti throughout postnatal development and associated loss of non-sensory cells.
Collapse
|
15
|
Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo. Neural Plast 2016; 2016:9409846. [PMID: 28116172 PMCID: PMC5225386 DOI: 10.1155/2016/9409846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/08/2016] [Indexed: 01/24/2023] Open
Abstract
Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction.
Collapse
|
16
|
Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, Gao G, Chen ZY. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes. Hum Gene Ther 2016; 27:687-99. [PMID: 27342665 DOI: 10.1089/hum.2016.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss.
Collapse
Affiliation(s)
- Yilai Shu
- 1 Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts.,2 Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China .,3 Key Laboratory of Hearing Medicine, National Health and Family Planning Commission, Shanghai, China
| | - Yong Tao
- 1 Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts
| | - Zhengmin Wang
- 2 Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China .,3 Key Laboratory of Hearing Medicine, National Health and Family Planning Commission, Shanghai, China
| | - Yong Tang
- 1 Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts.,4 Department of Ear, Nose and Throat, People's Hospital of Jilin Province, Changchun, Jilin Province, China
| | - Huawei Li
- 2 Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China .,3 Key Laboratory of Hearing Medicine, National Health and Family Planning Commission, Shanghai, China
| | - Pu Dai
- 5 Department of Otolaryngology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Guangping Gao
- 6 Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts.,7 State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Zheng-Yi Chen
- 1 Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
17
|
Chien WW, McDougald DS, Roy S, Fitzgerald TS, Cunningham LL. Cochlear gene transfer mediated by adeno-associated virus: Comparison of two surgical approaches. Laryngoscope 2015; 125:2557-64. [PMID: 25891801 DOI: 10.1002/lary.25317] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Gene therapy offers the possibility of delivering corrective genetic materials to the cochlea, potentially improving hearing. In animals, the most commonly used surgical methods for viral gene therapy delivery to the cochlea are the round window and the cochleostomy approaches. However, the patterns of viral infection and the effects on hearing have not been directly compared between these two approaches. In this study, we compare the patterns of cochlear infection and effects on hearing between these two surgical approaches using adeno-associated virus serotype 2/8 (AAV8) as the gene delivery vehicle. STUDY DESIGN Animal study and basic science research. METHODS One- to two-month-old CBA/J mice were used in this study. AAV8-green fluorescent protein (GFP) was delivered to the cochlea by either the round window or the cochleostomy approach (described below). Auditory brainstem response was used to examine hearing thresholds before and after surgery. Animals were examined at 1, 2, 3, and 4 weeks after surgery for the patterns of cochlear infection and hearing loss. RESULTS Cochlear gene transfer was successful through both surgical approaches. In both approaches, AAV8-GFP mostly infected the inner hair cells. There was occasional low-level infection of the outer hair cells and supporting cells. The two surgical approaches resulted in comparable viral infection efficiencies. The round window approach resulted in less surgical trauma, as indicated by hearing loss, than the cochleostomy approach. CONCLUSIONS Adeno-associated virus-mediated gene transfer to the cochlea can be accomplished using either the round window or the cochleostomy surgical approach. The round window approach resulted in less hearing loss compared to the cochleostomy approach. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Wade W Chien
- National Institute on Deafness and Other Communication Disorders (w.w.c., d.s.m., s.r., t.s.f., l.l.c), National Institutes of Health, Bethesda, Maryland, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Devin S McDougald
- National Institute on Deafness and Other Communication Disorders (w.w.c., d.s.m., s.r., t.s.f., l.l.c), National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Soumen Roy
- National Institute on Deafness and Other Communication Disorders (w.w.c., d.s.m., s.r., t.s.f., l.l.c), National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Tracy S Fitzgerald
- National Institute on Deafness and Other Communication Disorders (w.w.c., d.s.m., s.r., t.s.f., l.l.c), National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Lisa L Cunningham
- National Institute on Deafness and Other Communication Disorders (w.w.c., d.s.m., s.r., t.s.f., l.l.c), National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
18
|
Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, Minowa O, Ikeda K. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 2015; 24:3651-61. [PMID: 25801282 DOI: 10.1093/hmg/ddv109] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 11/12/2022] Open
Abstract
Hearing loss is the most widespread sensory disorder, with an incidence of congenital genetic deafness of 1 in 1600 children. For many ethnic populations, the most prevalent form of genetic deafness is caused by recessive mutations in the gene gap junction protein, beta 2, 26 kDa (GJB2), which is also known as connexin 26 (Cx26). Despite this knowledge, existing treatment strategies do not completely recover speech perception. Here we used a gene delivery system to rescue hearing in a mouse model of Gjb2 deletion. Mice lacking Cx26 are characterized by profound deafness from birth and improper development of cochlear cells. Cochlear delivery of Gjb2 using an adeno-associated virus significantly improved the auditory responses and development of the cochlear structure. Using gene replacement to restore hearing in a new mouse model of Gjb2-related deafness may lead to the development of therapies for human hereditary deafness.
Collapse
Affiliation(s)
- Takashi Iizuka
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Satoru Gotoh
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan
| | - Yoshinobu Sugitani
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan
| | - Masaaki Suzuki
- Department of Otolaryngology, Teikyo University Chiba Medical Center, Ichihara 299-0111, Japan and
| | - Tetsuo Noda
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan, Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Osamu Minowa
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan, Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan,
| |
Collapse
|
19
|
Akil O, Rouse SL, Chan DK, Lustig LR. Surgical method for virally mediated gene delivery to the mouse inner ear through the round window membrane. J Vis Exp 2015:52187. [PMID: 25867531 PMCID: PMC4401361 DOI: 10.3791/52187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene therapy, used to achieve functional recovery from sensorineural deafness, promises to grant better understanding of the underlying molecular and genetic mechanisms that contribute to hearing loss. Introduction of vectors into the inner ear must be done in a way that widely distributes the agent throughout the cochlea while minimizing injury to the existing structures. This manuscript describes a post-auricular surgical approach that can be used for mouse cochlear therapy using molecular, pharmacologic, and viral delivery to mice postnatal day 10 and older via the round window membrane (RWM). This surgical approach enables rapid and direct delivery into the scala tympani while minimizing blood loss and avoiding animal mortality. This technique involves negligible or no damage to essential structures of the inner and middle ear as well as neck muscles while wholly preserving hearing. To demonstrate the efficacy of this surgical technique, the vesicular glutamate transporter 3 knockout (VGLUT3 KO) mice will be used as an example of a mouse model of congenital deafness that recovers hearing after delivery of VGLUT3 to the inner ear using an adeno-associated virus (AAV-1).
Collapse
Affiliation(s)
- Omar Akil
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco;
| | - Stephanie L Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| | - Lawrence R Lustig
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| |
Collapse
|
20
|
Kanzaki S. Gene and drug delivery system and potential treatment into inner ear for protection and regeneration. Front Pharmacol 2014; 5:222. [PMID: 25339903 PMCID: PMC4189539 DOI: 10.3389/fphar.2014.00222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
The most common type of hearing loss results from damage to the cochlea including lost hair cells (HCs) and spiral ganglion neurons (SGNs). In mammals, cochlear HC loss causes irreversible hearing impairment because this type of sensory cell cannot regenerate. The protection from SGN from degeneration has implications for cochlear implant to patients with severe deafness. This review summarizes the several treatments for HC regeneration based on experiments. We discuss how transgene expression of the neurotrophic factor can protect SGN from degeneration and describe potential new therapeutic interventions to reduce hearing loss. We also summarized viral vectors and introduced the gene and drug delivery system for regeneration and protection of cochlear HCs. Finally, we introduce the novel endoscopy we developed for local injection into cochlea.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otorhinolaryngology, Keio University Tokyo, Japan
| |
Collapse
|
21
|
Kikkawa YS, Nakagawa T, Ying L, Tabata Y, Tsubouchi H, Ido A, Ito J. Growth factor-eluting cochlear implant electrode: impact on residual auditory function, insertional trauma, and fibrosis. J Transl Med 2014; 12:280. [PMID: 25280483 PMCID: PMC4189752 DOI: 10.1186/s12967-014-0280-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background A cochlear implant (CI) is an artificial hearing device that can replace a damaged cochlea. The present study examined the use of growth factor-eluting gelatin hydrogel coatings on the electrodes to minimize inner ear trauma during electrode insertion. Insulin-like growth factor 1 (IGF1) and/or hepatocyte growth factor (HGF) were chosen as the agents to be administered. Methods Silicone CI electrode analogs were prepared and coated with gelatin hydrogels. Adsorption/release profile of the hydrogel was measured using 125I-radiolabeled IGF. Hydrogel-coated electrodes were absorbed with IGF1, HGF, IGF1 plus HGF, or saline (control) and implanted into the basal turns of guinea pig cochleae (n = 5). Auditory sensitivity was determined pre-operatively, immediately after, and 3, 7, 14, 21, and 28 days post-operatively by using auditory brainstem response (ABR; 4–16 kHz). In addition, histological analysis was performed and auditory hair cell (HC) survival, spiral ganglion neuron (SGN) densities, and fibrous tissue thickness were measured. Results Compared to non-coated arrays, hydrogel-coated electrodes adsorbed significantly greater amounts of IGF1 and continuously released it for 48 h. Residual hearing measured by ABR thresholds after surgery were elevated by 50–70 dB in all of the electrode-implanted animals, and was maximal immediately after operation. Thresholds were less elevated after hydrogel treatment, and the hearing protection improved when IGF1 or HGF was applied. Histopathologically, hair cell survival, spiral ganglion cell survival, and fibrous tissue thickness were not different between the experimental groups. No serious adverse events were observed during the 4-week observation period. Conclusions Our findings provide the first evidence that hydrogel-coated, growth factor-releasing CI electrodes could attenuate insertional trauma and promote recovery from it, suggesting that this combination might be a new drug delivery strategy not only in cochlear implantation but also in treating clinical conditions characterized by inner ear damage.
Collapse
|
22
|
Kohrman DC, Raphael Y. Gene therapy for deafness. Gene Ther 2013; 20:1119-23. [PMID: 23864018 PMCID: PMC4113964 DOI: 10.1038/gt.2013.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/18/2022]
Abstract
Hearing loss is the most common sensory deficit in humans and can result from genetic, environmental or combined etiologies that prevent normal function of the cochlea, the peripheral sensory organ. Recent advances in understanding the genetic pathways that are critical for the development and maintenance of cochlear function, as well as the molecular mechanisms that underlie cell trauma and death, have provided exciting opportunities for modulating these pathways to correct genetic mutations, to enhance the endogenous protective pathways for hearing preservation and to regenerate lost sensory cells with the possibility of ameliorating hearing loss. A number of recent animal studies have used gene-based therapies in innovative ways toward realizing these goals. With further refinement, some of the protective and regenerative approaches reviewed here may become clinically applicable.
Collapse
Affiliation(s)
- D C Kohrman
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
23
|
Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, Lin X. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 2013; 21:71-80. [PMID: 24225640 PMCID: PMC3881370 DOI: 10.1038/gt.2013.59] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/09/2013] [Accepted: 09/23/2013] [Indexed: 02/03/2023]
Abstract
Mutations in GJB2, which codes for the gap junction protein connexin26, are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous connexin26 expression. We found extensive virally-expressed connexin26 in cells lining the scala media, and intercellular gap junction network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic connexin26 expression neither formed ectopic gap junctions nor affected normal hearing thresholds in wild type mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously-expressed connexin26 and govern the functional manifestation of them. Functional recovery of gap-junction-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally-mediated gene therapy restored extensive gap junction intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice.
Collapse
Affiliation(s)
- Q Yu
- 1] Department of Otolaryngology Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2] Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Y Wang
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Q Chang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Wang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - S Gong
- Department of Otolaryngology Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - H Li
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - X Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Wang Y, Sun Y, Chang Q, Ahmad S, Zhou B, Kim Y, Li H, Lin X. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 2013; 15:123-33. [PMID: 23413036 DOI: 10.1002/jgm.2701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. METHODS We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. RESULTS Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. CONCLUSIONS Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention.
Collapse
Affiliation(s)
- Yunfeng Wang
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
XIA LI, YIN SHANKAI. Local gene transfection in the cochlea (Review). Mol Med Rep 2013; 8:3-10. [DOI: 10.3892/mmr.2013.1496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
|
26
|
Kanzaki S. [Feasibility of drug and gene therapy for sensorineural hearing loss]. Nihon Yakurigaku Zasshi 2013; 141:188-90. [PMID: 23575422 DOI: 10.1254/fpj.141.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Abstract
Animal studies on inner ear development, repair and regeneration provide understanding of molecular pathways that can be harnessed for treating inner ear disease. Use of transgenic mouse technology, in particular, has contributed knowledge of genes that regulate development of hair cells and innervation, and of molecular players that can induce regeneration, but this technology is not applicable for human treatment, for practical and ethical reasons. Therefore other means for influencing gene expression in the inner ear are needed. We describe several gene vectors useful for inner ear gene therapy and the practical aspects of introducing these vectors into the ear. We then review the progress toward using gene transfer for therapies in both auditory and balance systems, and discuss the technological milestones needed to advance to clinical application of these methods.
Collapse
Affiliation(s)
- Hideto Fukui
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | | |
Collapse
|
28
|
Kanzaki S, Fujioka M, Yasuda A, Shibata S, Nakamura M, Okano HJ, Ogawa K, Okano H. Novel in vivo imaging analysis of an inner ear drug delivery system in mice: comparison of inner ear drug concentrations over time after transtympanic and systemic injections. PLoS One 2012; 7:e48480. [PMID: 23251331 PMCID: PMC3520978 DOI: 10.1371/journal.pone.0048480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/02/2012] [Indexed: 11/27/2022] Open
Abstract
Objective Systemic steroid injections are used to treat idiopathic sudden-onset sensorineural hearing loss (ISSHL) and some inner ear disorders. Recent studies show that transtympanic (TT) steroid injections are effective for treating ISSHL. As in vivo monitoring of drug delivery dynamics for inner ear is lacking, its time course and dispersion of drugs is unknown. Here, we used a new in vivo imaging system to monitor drug delivery in live mice and to compare drug concentrations over time after TT and systemic injections. Methods Luciferin delivered into the inner ears of GFAP-Luc transgenic mice reacted with luciferase in GFAP-expressing cells in the cochlear spiral ganglion, resulting in photon bioluminescence. We used the Xenogen IVIS® imaging system to measure how long photons continued to be emitted in the inner ear after TT or systemic injections of luciferin, and then compared the associated drug dynamics. Results The response to TT and IP injections differed significantly. Photons were detected five minutes after TT injection, peaking at ∼20 minutes. By contrast, photons were first detected 30 minutes after i.p. injection. TT and i.p. drug delivery time differed considerably. With TT injections, photons were detected earlier than with IP injections. Photon bioluminescence also disappeared sooner. Delivery time varied with TT injections. Conclusions We speculate that the drug might enter the Eustachian tube from the middle ear. We conclude that inner-ear drug concentration can be maintained longer if the two injection routes are combined. As the size of luciferin differs from that of therapeutics like dexamethasone, combining drugs with luciferin may advance our understanding of in vivo drug delivery dynamics in the inner ear.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otolaryngology Head and Neck Surgery, Keio University, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gene transfer targeting mouse vestibule using adenovirus and adeno-associated virus vectors. Otol Neurotol 2012; 33:655-9. [PMID: 22525215 DOI: 10.1097/mao.0b013e31825368d1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The present study assessed how to inject a gene into the mouse vestibule and which is the optimum gene to the mouse vestibule adenovirus (AdV) vector or adeno-associated virus (AAV) vector. BACKGROUND Loss of vestibular hair cell is seen in various balance disorder diseases. There have been some reports concerning gene delivery to the mouse vestibule in recent years. To effectively induce transgene expression at the vestibule, we assessed the efficiency of inoculating the mouse inner ear using various methods. METHODS We employed an AdV- and AAV-carrying green fluorescent protein using a semicircular canal approach (via a canalostomy) and round window approach. RESULTS AAV injection via canalostomy induced gene expression at the hair cells, supporting cells, and fibrocytes at the vestibular organs without auditory or balance dysfunction, suggesting it was the most suitable transfection method. This method is thus considered to be a promising strategy to prevent balance dysfunction. CONCLUSION AAV injection via canalostomy to the vestibule is the noninvasive and highly efficient transfection method, and this study may have the potential to repair balance disorders in human in the future.
Collapse
|
30
|
Xia L, Yin S, Wang J. Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches. PLoS One 2012; 7:e43218. [PMID: 22912830 PMCID: PMC3422324 DOI: 10.1371/journal.pone.0043218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023] Open
Abstract
Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV) is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV) has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM) has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs) and 17% of outer hair cells (OHCs) were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively) was slightly higher, but the difference was not significant.
Collapse
Affiliation(s)
- Li Xia
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (SY); (JW)
| | - Jian Wang
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- School of Human Communication Disorder, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (SY); (JW)
| |
Collapse
|
31
|
Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B. Gene transfer in inner ear cells: a challenging race. Gene Ther 2012; 20:237-47. [PMID: 22739386 DOI: 10.1038/gt.2012.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in human genomics led to the identification of numerous defective genes causing deafness, which represent novel putative therapeutic targets. Future gene-based treatment of deafness resulting from genetic or acquired sensorineural hearing loss may include strategies ranging from gene therapy to antisense delivery. For successful development of gene therapies, a minimal requirement involves the engineering of appropriate gene carrier systems. Transfer of exogenous genetic material into the mammalian inner ear using viral or non-viral vectors has been characterized over the last decade. The nature of inner ear cells targeted, as well as the transgene expression level and duration, are highly dependent on the vector type, the route of administration and the strength of the promoter driving expression. This review summarizes and discusses recent advances in inner ear gene-transfer technologies aimed at examining gene function or identifying new treatment for inner ear disorders.
Collapse
Affiliation(s)
- R Sacheli
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
32
|
Zhang W, Zhang Y, Löbler M, Schmitz KP, Ahmad A, Pyykkö I, Zou J. Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. Int J Nanomedicine 2011; 6:535-46. [PMID: 21468356 PMCID: PMC3065799 DOI: 10.2147/ijn.s16973] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Indexed: 12/16/2022] Open
Abstract
Background: Gene therapy is a potentially effective therapeutic modality for treating sensorineural hearing loss. Nonviral gene delivery vectors are expected to become extremely safe and convenient, and nanoparticles are the most promising types of vectors. However, infrequent nuclear localization in the cochlear cells limits their application for gene therapy. This study aimed to investigate the potential nuclear entry of hyperbranched polylysine nanoparticles (HPNPs) for gene delivery to cochlear targets. Methods: Rat primary cochlear cells and cochlear explants generated from newborn rats were treated with different concentrations of HPNPs. For the in vivo study, HPNPs were administered to the rats’ round window membranes. Subcellular distribution of HPNPs in different cell populations was observed with confocal microscope 24 hours after administration. Results: Nuclear entry was observed in various cochlear cell types in vitro and in vivo. In the primary cochlear cell culture, concentration-dependent internalization was observed. In the cochlear organotypic culture, abundant HPNPs were found in the modiolus, including the spiral ganglion, organ of Corti, and lateral wall tissues. In the in vivo study, a gradient distribution of HPNPs through different layers of the round window membrane was observed. HPNPs were also distributed in the cells of the middle ear tissue. Additionally, efficient internalization of HPNPs was observed in the organ of Corti and spiral ganglion cells. In primary cochlear cells, HPNPs induced higher transfection efficiency than did Lipofectamine™. Conclusion: These results suggest that HPNPs are potentially an ideal carrier for gene delivery into the cochlea.
Collapse
Affiliation(s)
- Weikai Zhang
- Department of Otolaryngology, University of Tampere, Medical School, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther 2011; 18:569-78. [PMID: 21209625 PMCID: PMC3085601 DOI: 10.1038/gt.2010.175] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.
Collapse
|
34
|
Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE, O'Leary SJ, Shepherd RK, Richardson RT. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther 2010; 18:1111-22. [PMID: 20216530 DOI: 10.1038/mt.2010.28] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A cochlear implant may be used to electrically stimulate spiral ganglion neurons (SGNs) in people with severe sensorineural hearing loss (SNHL). However, these neurons progressively degenerate after SNHL due to loss of neurotrophins normally supplied by sensory hair cells (HCs). Experimentally, exogenous neurotrophin administration prevents SGN degeneration but can also result in abnormal resprouting of their peripheral fibers. This study aimed to create a target-derived neurotrophin source to increase neuron survival and redirect fiber resprouting following SNHL. Adenoviral (Ad) vectors expressing green fluorescent protein (GFP) alone or in combination with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT3) were injected into the cochlear scala tympani or scala media of guinea-pigs (GPs) deafened via aminoglycosides for 1 week. After 3 weeks, cochleae were examined for gene expression, neuron survival, and the projection of peripheral fibers in response to gene expression. Injection of vectors into the scala media resulted in more localized gene expression than scala tympani injection with gene expression consistently observed within the partially degenerated organ of Corti. There was also greater neuron survival and evidence of localized fiber responses to neurotrophin-expressing cells within the organ of Corti from scala media injections (P < 0.05), a first step in promoting organized resprouting of auditory peripheral fibers via gene therapy.
Collapse
Affiliation(s)
- Andrew K Wise
- Bionic Ear Institute, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cochlear outer hair cells in a dominant-negative connexin26 mutant mouse preserve non-linear capacitance in spite of impaired distortion product otoacoustic emission. Neuroscience 2009; 164:1312-9. [PMID: 19712724 DOI: 10.1016/j.neuroscience.2009.08.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 11/23/2022]
Abstract
Mutations in the connexin26 gene (GJB2) are the most common genetic cause of congenital bilateral non-syndromic sensorineural hearing loss. Transgenic mice were established carrying human Cx26 with the R75W mutation that was identified in a deaf family with autosomal dominant negative inheritance [Kudo T et al. (2003) Hum Mol Genet 12:995-1004]. A dominant-negative Gjb2 R75W transgenic mouse model shows incomplete development of the cochlear supporting cells, resulting in profound deafness from birth [Inoshita A et al. (2008) Neuroscience 156:1039-1047]. The Cx26 defect in the Gjb2 R75W transgenic mouse is restricted to the supporting cells; it is unclear why the auditory response is severely disturbed in spite of the presence of outer hair cells (OHCs). The present study was designed to evaluate developmental changes in the in vivo and in vitro function of the OHC, and the fine structure of the OHC and adjacent supporting cells in the R75W transgenic mouse. No detectable distortion product otoacoustic emissions were observed at any frequencies in R75W transgenic mice throughout development. A characteristic phenotype observed in these mice was the absence of the tunnel of Corti, Nuel's space, and spaces surrounding the OHC; the OHC were compressed and squeezed by the surrounding supporting cells. On the other hand, the OHC developed normally. Structural features of the lateral wall, such as the membrane-bound subsurface cisterna beneath the plasma membrane, were intact. Prestin, the voltage-dependent motor protein, was observed by immunohistochemistry in the OHC basolateral membranes of both transgenic and non-transgenic mice. No significant differences in electromotility of isolated OHCs during development was observed between transgenic and control mice. The present study indicates that normal development of the supporting cells is indispensable for proper cellular function of the OHC.
Collapse
|
36
|
Yang XY, Yang Y, Zheng Y, Li R, Zhou T, Sun K, Chang XY, Chen WG. Construction of eukaryotic expression vector for rat Smad7 and its expression in hepatic stellate cell line HSC-T6. Shijie Huaren Xiaohua Zazhi 2008; 16:3146-3151. [DOI: 10.11569/wcjd.v16.i28.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct rat Smad7 eukaryotic vector, observe whether the extraneous Smad7 gene can transfect HSC-T6 effectively as an anti-fibrosis factor, and to investigate its effect on expression of TGF-β1, collagen Ⅰ and collagen Ⅲ mRNA in rat HSC-T6 cells.
METHODS: Rat Smad7 cDNA was cloned into eukaryotic plasmid pcDNA3.1(+) to construct Smad7/pcDNA3.1(+) plasmid and transfect it into HSC-T6 cells by Lipofectmine2000. The positive clone was selected by G418. The expression level of Smad7 protein was detected using Western blot, and the levels of Smad7, TGF-β1, collagen Ⅰ and Ⅲ mRNA by RT-PCR were further detected using RT-PCR, respectively.
RESULTS: Smad7 eukaryotic vector was successfully constructed and confirmed by endonuilease digestion and sequencing. And Smad7 mRNA and protein expression was significantly higher in Smad7 transfected group than either control or empty vector groups (1.053 ± 0.009 vs 0.984 ± 0.054, 0.986 ± 0.044, P < 0.01 or 0.05; 0.083 ± 0.026 vs 0.058 ± 0.050, 0.056 ± 0.064, all P < 0.05), TGF-β1 and collagen Ⅰ mRNA expression was significantly reduced in Smad7 transfected group than control and empty vector groups (0.961 ± 0.013 vs 1.039 ± 0.013, 1.032 ± 0.037; 0.592 ± 0.096 vs 0.767 ± 0.085, 0.770 ± 0.090, all P < 0.01). There were no statistically significant difference in change of collagen Ⅲ mRNA expression among the three groups. The difference of Smad7 mRNA and protein, TGF-β1, collagen Ⅰand Ⅲ mRNA expression weren't statistically significant between control and empty vector groups.
CONCLUSION: Smad7 maybe has activity of anti-fibrosis through inhibiting TGF-β/Smad signaling.
Collapse
|