1
|
Potter RA, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. Expression and function of four AAV-based constructs for dystrophin restoration in the mdx mouse model of Duchenne muscular dystrophy. Biol Open 2023; 12:bio059797. [PMID: 37670674 PMCID: PMC10538294 DOI: 10.1242/bio.059797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Robust expression of shortened, functional dystrophin provided impetus to develop adeno-associated virus (AAV)-based constructs for clinical application. Because several cassettes are being tested in clinical trials, this study compared the efficacies of four shortened dystrophin-promoter combinations with implications for outcomes in clinical trials: MHCK7 or MCK promoter with a shortened dystrophin transgene containing the N-terminus and spectrin repeats R1, R2, R3 and R24 (rAAVrh74.MHCK7.micro-dystrophin and rAAVrh74.MCK.micro-dystrophin, respectively); shortened dystrophin construct containing the neuronal nitric oxide (nNOS) binding site (rAAVrh74.MHCK7.DV.mini-dystrophin); and shortened dystrophin containing the C-terminus (rAAVrh74.MHCK7.micro-dystrophin.Cterm). Functional and histological benefit were examined at 4 weeks following intramuscular delivery in mdx mice. rAAVrh74.MHCK7.micro-dystrophin provided the most robust transgene expression and significantly increased specific force output in the tibialis anterior muscle. Muscle environment was normalized (i.e. reductions in central nucleation), indicating functional and histological advantages of rAAVrh74.MHCK7.micro-dystrophin. Thus, promoter choice and transgene design are critical for optimal dystrophin expression/distribution for maximal functional improvement.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
3
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
4
|
Róg J, Oksiejuk A, Gosselin MRF, Brutkowski W, Dymkowska D, Nowak N, Robson S, Górecki DC, Zabłocki K. Dystrophic mdx mouse myoblasts exhibit elevated ATP/UTP-evoked metabotropic purinergic responses and alterations in calcium signalling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1138-1151. [PMID: 30684640 DOI: 10.1016/j.bbadis.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023]
Abstract
Pathophysiology of Duchenne Muscular Dystrophy (DMD) is still elusive. Although progressive wasting of muscle fibres is a cause of muscle deterioration, there is a growing body of evidence that the triggering effects of DMD mutation are present at the earlier stage of muscle development and affect myogenic cells. Among these abnormalities, elevated activity of P2X7 receptors and increased store-operated calcium entry myoblasts have been identified in mdx mouse. Here, the metabotropic extracellular ATP/UTP-evoked response has been investigated. Sensitivity to antagonist, effect of gene silencing and cellular localization studies linked these elevated purinergic responses to the increased expression of P2Y2 but not P2Y4 receptors. These alterations have physiological implications as shown by reduced motility of mdx myoblasts upon treatment with P2Y2 agonist. However, the ultimate increase in intracellular calcium in dystrophic cells reflected complex alterations of calcium homeostasis identified in the RNA seq data and with significant modulation confirmed at the protein level, including a decrease of Gq11 subunit α, plasma membrane calcium ATP-ase, inositol-2,4,5-trisphosphate-receptor proteins and elevation of phospholipase Cβ, sarco-endoplamatic reticulum calcium ATP-ase and sodium‑calcium exchanger. In conclusion, whereas specificity of dystrophic myoblast excitation by extracellular nucleotides is determined by particular receptor overexpression, the intensity of such altered response depends on relative activities of downstream calcium regulators that are also affected by Dmd mutations. Furthermore, these phenotypic effects of DMD emerge as early as in undifferentiated muscle. Therefore, the pathogenesis of DMD and the relevance of current therapeutic approaches may need re-evaluation.
Collapse
Affiliation(s)
- Justyna Róg
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Aleksandra Oksiejuk
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maxime R F Gosselin
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Wojciech Brutkowski
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Neurobiology Center Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Samuel Robson
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
6
|
Reza M, Laval SH, Roos A, Carr S, Lochmüller H. Optimization of Internally Deleted Dystrophin Constructs. Hum Gene Ther Methods 2016; 27:174-186. [PMID: 27477497 DOI: 10.1089/hgtb.2016.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, genetic muscle disease caused by the absence of the sarcolemmal protein dystrophin. Gene replacement therapy is considered a potential strategy for the treatment of DMD, aiming to restore the missing protein. Although the elements of the dystrophin molecule have been identified and studies in transgenic mdx mice have explored the importance of a number of these structural domains, the resulting modified dystrophin protein products that have been developed so far are only partially characterized in relation to their structure and function in vivo. To optimize a dystrophin cDNA construct for therapeutic application we designed and produced four human minidystrophins within the packaging capacity of lentiviral vectors. Two novel minidystrophins retained the centrally located neuronal nitric oxide synthase (nNOS)-anchoring domain in order to achieve sarcolemmal nNOS restoration, which is lost in most internally deleted dystrophin constructs. Functionality of the resulting truncated dystrophin proteins was investigated in muscle of adult dystrophin-deficient mdx mice followed by a battery of detailed immunohistochemical and morphometric tests. This initial assessment aimed to determine the overall suitability of various constructs for cloning into lentiviral vectors for ex vivo gene delivery to stem cells for future preclinical studies.
Collapse
Affiliation(s)
- Mojgan Reza
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| | - Steve H Laval
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| | - Andreas Roos
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom .,2 Leibniz-Institut für Analytische Wissenschaften (ISAS) , Dortmund, Germany
| | - Stephanie Carr
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
|
8
|
Onopiuk M, Brutkowski W, Young C, Krasowska E, Róg J, Ritso M, Wojciechowska S, Arkle S, Zabłocki K, Górecki DC. Store-operated calcium entry contributes to abnormal Ca²⁺ signalling in dystrophic mdx mouse myoblasts. Arch Biochem Biophys 2015; 569:1-9. [PMID: 25659883 DOI: 10.1016/j.abb.2015.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 01/13/2023]
Abstract
Sarcolemma damage and activation of various calcium channels are implicated in altered Ca(2+) homeostasis in muscle fibres of both Duchenne muscular dystrophy (DMD) sufferers and in the mdx mouse model of DMD. Previously we have demonstrated that also in mdx myoblasts extracellular nucleotides trigger elevated cytoplasmic Ca(2+) concentrations due to alterations of both ionotropic and metabotropic purinergic receptors. Here we extend these findings to show that the mdx mutation is associated with enhanced store-operated calcium entry (SOCE). Substantially increased rate of SOCE in mdx myoblasts in comparison to that in control cells correlated with significantly elevated STIM1 protein levels. These results reveal that mutation in the dystrophin-encoding Dmd gene may significantly impact cellular calcium response to metabotropic stimulation involving depletion of the intracellular calcium stores followed by activation of the store-operated calcium entry, as early as in undifferentiated myoblasts. These data are in agreement with the increasing number of reports showing that the dystrophic pathology resulting from dystrophin mutations may be developmentally regulated. Moreover, our results showing that aberrant responses to extracellular stimuli may contribute to DMD pathogenesis suggest that treatments inhibiting such responses might alter progression of this lethal disease.
Collapse
Affiliation(s)
- Marta Onopiuk
- Nencki Institute of Experimental Biology, Warsaw, Poland; Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA(1)
| | - Wojciech Brutkowski
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Christopher Young
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Elżbieta Krasowska
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Róg
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Morten Ritso
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Stephen Arkle
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
9
|
Berardi E, Annibali D, Cassano M, Crippa S, Sampaolesi M. Molecular and cell-based therapies for muscle degenerations: a road under construction. Front Physiol 2014; 5:119. [PMID: 24782779 PMCID: PMC3986550 DOI: 10.3389/fphys.2014.00119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/12/2014] [Indexed: 12/25/2022] Open
Abstract
Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in animal models of muscular degeneration are reported. Since non coding RNAs, including microRNAs (miRNAs), are emerging as prominent players in the regulation of stem cell fates we also provides an outline of the role of microRNAs in the control of myogenic commitment. Finally, based on our current knowledge and the rapid advance in stem cell biology, a prediction of clinical translation for cell therapy protocols combined with molecular treatments is discussed.
Collapse
Affiliation(s)
- Emanuele Berardi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy
| | - Daniela Annibali
- Laboratory of Cell Metabolism and Proliferation, Vesalius Research Center, Vlaamse Institute voor Biotechnologie Leuven, Belgium
| | - Marco Cassano
- Interuniversity Institute of Myology Italy ; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Stefania Crippa
- Interuniversity Institute of Myology Italy ; Department of Medicine, University of Lausanne Medical School Lausanne, Switzerland
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy ; Division of Human Anatomy, Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| |
Collapse
|
10
|
Lochmüller H, Bushby K. Becker and Duchenne muscular dystrophy: a two-way information process for therapies. J Neurol Neurosurg Psychiatry 2014; 85:5-6. [PMID: 23695496 DOI: 10.1136/jnnp-2013-305193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Hanns Lochmüller
- Newcastle University, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | | |
Collapse
|
11
|
Schinkel S, Bauer R, Bekeredjian R, Stucka R, Rutschow D, Lochmüller H, Kleinschmidt JA, Katus HA, Müller OJ. Long-term preservation of cardiac structure and function after adeno-associated virus serotype 9-mediated microdystrophin gene transfer in mdx mice. Hum Gene Ther 2012; 23:566-75. [PMID: 22248393 DOI: 10.1089/hum.2011.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dystrophin plays an important role in muscle contraction, linking the intracellular cytoskeleton to the extracellular matrix. Mutations of the dystrophin gene leading to a complete loss of the protein cause Duchenne muscular dystrophy (DMD), frequently associated with severe cardiomyopathy. Early clinical trials in DMD using gene transfer to skeletal muscle are underway, but gene transfer to dystrophic cardiac muscle has not yet been tested in humans. The aim of this study was to develop an optimized protocol for cardiac gene therapy in the mouse model of dystrophin deficiency (mdx), using a cardiac promoter for expression of a microdystrophin (μDys) transgene packaged into an adeno-associated virus serotype 9 vector (AAV9). In this study adult mdx mice were intravenously injected with 1×10(12) genomic particles of AAV9 vectors carrying a cDNA encoding μDys under the control of either a ubiquitously active cytomegalovirus (CMV) promoter or a cardiac-specific CMV-enhanced myosin light chain (MLC0.26) promoter. After 10 months, both AAV9 vectors led to sustained μDys expression in cardiac muscle, but the MLC promoter conferred about 4-fold higher protein levels. AAV9-CMV-MLC0.26-μDys resulted in significant protection of cardiac morphology and function as assessed by histopathology, echocardiography, and left ventricular catheterization. In conclusion, we established an AAV9-mediated gene transfer approach for efficient and specific long-term μDys expression in the hearts of mdx mice, resulting in a sustained therapeutic effect. Thus, this approach might be a basis for further translation into a treatment strategy for DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Stefanie Schinkel
- Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|