1
|
Delbreil P, Dhondt S, Kenaan El Rahbani RM, Banquy X, Mitchell JJ, Brambilla D. Current Advances and Material Innovations in the Search for Novel Treatments of Phenylketonuria. Adv Healthc Mater 2024; 13:e2401353. [PMID: 38801163 DOI: 10.1002/adhm.202401353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Phenylketonuria (PKU) is a genetically inherited disease caused by a mutation of the gene encoding phenylalanine hydroxylase (PAH) and is the most common inborn error of amino acid metabolism. A deficiency of PAH leads to increased blood and brain levels of phenylalanine (Phe), which may cause permanent neurocognitive symptoms and developmental delays if untreated. Current management strategies for PKU consist of early detection through neonatal screening and implementation of a restrictive diet with minimal amounts of natural protein in combination with Phe-free supplements and low-protein foods to meet nutritional requirements. For milder forms of PKU, oral treatment with synthetic sapropterin (BH4), the cofactor of PAH, may improve metabolic control of Phe and allow for more natural protein to be included in the patient's diet. For more severe forms, daily injections of pegvaliase, a PEGylated variant of phenylalanine ammonia-lyase (PAL), may allow for normalization of blood Phe levels. However, the latter treatment has considerable drawbacks, notably a strong immunogenicity of the exogenous enzyme and the attached polymeric chains. Research for novel therapies of PKU makes use of innovative materials for drug delivery and state-of-the-art protein engineering techniques to develop treatments which are safer, more effective, and potentially permanent.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - Sofie Dhondt
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | | | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - John J Mitchell
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Québec, H4A 3J1, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
2
|
O'Brien M, Whyte S, Doyle S, McAuliffe FM. Genetic disorders in maternal medicine. Best Pract Res Clin Obstet Gynaecol 2024; 97:102546. [PMID: 39265229 DOI: 10.1016/j.bpobgyn.2024.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
The role of genetic testing within maternal medicine is expanding. Advancing technology and the increasing availability of genetic testing have seen more patients receiving a genetic diagnosis than ever before. Improved healthcare and understanding of these rare diseases means that many patients are living well into their reproductive years and starting families. Individual diseases are considered by their patterns of inheritance i.e. autosomal recessive, autosomal dominant and chromosomal diseases. This chapter specifically addresses the following examples and outlines an approach to pre-conceptual and pregnancy management; autosomal recessive (cystic fibrosis, phenylketonuria), autosomal dominant (osteogenesis imperfecta, vascular Ehlers-Danlos syndrome) and chromosomal (Turner syndrome). For many rare and ultrarare genetic diseases, there may be no clear guidelines or consensus on the correct management in pregnancy. This chapter seeks to provide a framework for the clinician to use to address the unique needs and risk profile of these patients in pregnancy and pre-conceptually and plan accordingly. The role of pharmacogenetics in maternal medicine, the future of education in genetics for patients and clinicians and the important role of genetic counselling are all considered in this chapter. This overview highlights the important role of genetics in maternal medicine and how this can inform management and planning for the safe care of mother and baby.
Collapse
Affiliation(s)
- Maggie O'Brien
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland.
| | - Sinead Whyte
- The Department of Perinatal Genetics, National Maternity Hospital, Dublin, Ireland
| | - Sam Doyle
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland; The Department of Perinatal Genetics, National Maternity Hospital, Dublin, Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Martinez M, Harding CO, Schwank G, Thöny B. State-of-the-art 2023 on gene therapy for phenylketonuria. J Inherit Metab Dis 2024; 47:80-92. [PMID: 37401651 PMCID: PMC10764640 DOI: 10.1002/jimd.12651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Phenylketonuria (PKU) or hyperphenylalaninemia is considered a paradigm for an inherited (metabolic) liver defect and is, based on murine models that replicate all human pathology, an exemplar model for experimental studies on liver gene therapy. Variants in the PAH gene that lead to hyperphenylalaninemia are never fatal (although devastating if untreated), newborn screening has been available for two generations, and dietary treatment has been considered for a long time as therapeutic and satisfactory. However, significant shortcomings of contemporary dietary treatment of PKU remain. A long list of various gene therapeutic experimental approaches using the classical model for human PKU, the homozygous enu2/2 mouse, witnesses the value of this model to develop treatment for a genetic liver defect. The list of experiments for proof of principle includes recombinant viral (AdV, AAV, and LV) and non-viral (naked DNA or LNP-mRNA) vector delivery methods, combined with gene addition, genome, gene or base editing, and gene insertion or replacement. In addition, a list of current and planned clinical trials for PKU gene therapy is included. This review summarizes, compares, and evaluates the various approaches for the sake of scientific understanding and efficacy testing that may eventually pave the way for safe and efficient human application.
Collapse
Affiliation(s)
- Michael Martinez
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children’s Hospital Zurich and Children’s Research Centre, Zurich, Switzerland
| |
Collapse
|
4
|
Chen A, Pan Y, Chen J. Clinical, genetic, and experimental research of hyperphenylalaninemia. Front Genet 2023; 13:1051153. [PMID: 36685931 PMCID: PMC9845280 DOI: 10.3389/fgene.2022.1051153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Hyperphenylalaninemia (HPA) is the most common amino acid metabolism defect in humans. It is an autosomal-recessive disorder of the phenylalanine (Phe) metabolism, in which high Phe concentrations and low tyrosine (Tyr) concentrations in the blood cause phenylketonuria (PKU), brain dysfunction, light pigmentation and musty odor. Newborn screening data of HPA have revealed that the prevalence varies worldwide, with an average of 1:10,000. Most cases of HPA result from phenylalanine hydroxylase (PAH) deficiency, while a small number of HPA are caused by defects in the tetrahydrobiopterin (BH4) metabolism and DnaJ heat shock protein family (Hsp40) member C12 (DNAJC12) deficiency. Currently, the molecular pathophysiology of the neuropathology associated with HPA remains incompletely understood. Dietary restriction of Phe has been highly successful, although outcomes are still suboptimal and patients find it difficult to adhere to the treatment. Pharmacological treatments, such as BH4 and phenylalanine ammonia lyase, are available. Gene therapy for HPA is still in development.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yukun Pan
- Barbell Therapeutics Co. Ltd., Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| |
Collapse
|
5
|
Li Y, Tan Z, Zhang Y, Zhang Z, Hu Q, Liang K, Jun Y, Ye Y, Li YC, Li C, Liao L, Xu J, Xing Z, Pan Y, Chatterjee SS, Nguyen TK, Hsiao H, Egranov SD, Putluri N, Coarfa C, Hawke DH, Gunaratne PH, Tsai KL, Han L, Hung MC, Calin GA, Namour F, Guéant JL, Muntau AC, Blau N, Sutton VR, Schiff M, Feillet F, Zhang S, Lin C, Yang L. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science 2021; 373:662-673. [PMID: 34353949 PMCID: PMC9714245 DOI: 10.1126/science.aba4991] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/31/2020] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
The functional role of long noncoding RNAs (lncRNAs) in inherited metabolic disorders, including phenylketonuria (PKU), is unknown. Here, we demonstrate that the mouse lncRNA Pair and human HULC associate with phenylalanine hydroxylase (PAH). Pair-knockout mice exhibited excessive blood phenylalanine (Phe), musty odor, hypopigmentation, growth retardation, and progressive neurological symptoms including seizures, which faithfully models human PKU. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell-differentiated hepatocytes. Mechanistically, HULC modulated the enzymatic activities of PAH by facilitating PAH-substrate and PAH-cofactor interactions. To develop a therapeutic strategy for restoring liver lncRNAs, we designed GalNAc-tagged lncRNA mimics that exhibit liver enrichment. Treatment with GalNAc-HULC mimics reduced excessive Phe in Pair -/- and Pah R408W/R408W mice and improved the Phe tolerance of these mice.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yao Jun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yi-Chuan Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Liao
- Genetically Engineered Mouse Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yinghong Pan
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Sujash S Chatterjee
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heidi Hsiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Preethi H Gunaratne
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fares Namour
- Department of Molecular Medicine and Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy F-54000, France
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Jean-Louis Guéant
- Department of Molecular Medicine and Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy F-54000, France
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics Department, University of Paris, Paris 75007, France
- Inserm UMR_S1163, Institut Imagine, Paris 75015, France
| | - François Feillet
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France.
- Pediatric Department Reference Center for Inborn Errors of Metabolism Children University Hospital Nancy, Nancy F-54000, France
| | - Shuxing Zhang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Abstract
Phenylketonuria (PKU; also known as phenylalanine hydroxylase (PAH) deficiency) is an autosomal recessive disorder of phenylalanine metabolism, in which especially high phenylalanine concentrations cause brain dysfunction. If untreated, this brain dysfunction results in severe intellectual disability, epilepsy and behavioural problems. The prevalence varies worldwide, with an average of about 1:10,000 newborns. Early diagnosis is based on newborn screening, and if treatment is started early and continued, intelligence is within normal limits with, on average, some suboptimal neurocognitive function. Dietary restriction of phenylalanine has been the mainstay of treatment for over 60 years and has been highly successful, although outcomes are still suboptimal and patients can find the treatment difficult to adhere to. Pharmacological treatments are available, such as tetrahydrobiopterin, which is effective in only a minority of patients (usually those with milder PKU), and pegylated phenylalanine ammonia lyase, which requires daily subcutaneous injections and causes adverse immune responses. Given the drawbacks of these approaches, other treatments are in development, such as mRNA and gene therapy. Even though PAH deficiency is the most common defect of amino acid metabolism in humans, brain dysfunction in individuals with PKU is still not well understood and further research is needed to facilitate development of pathophysiology-driven treatments.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
| | - Nenad Blau
- University Children's Hospital in Zurich, Zurich, Switzerland
| | - Cary Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health & Science University, Oregon, USA
| | | | - Nicola Longo
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Annet M Bosch
- University of Amsterdam, Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Chen W, Yao S, Wan J, Tian Y, Huang L, Wang S, Akter F, Wu Y, Yao Y, Zhang X. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment. J Control Release 2021; 333:129-138. [PMID: 33775685 DOI: 10.1016/j.jconrel.2021.03.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
The presence of the blood-brain barrier (BBB) remains a challenge in the treatment of central nervous system (CNS) diseases, as it hinders the infiltration of many therapeutic drugs into the brain parenchyma. Therefore, developing efficacious pharmacological agents that can traverse the BBB is crucial for optimal treatment of diseases of the CNS such as neurodegenerative conditions and brain tumors. Adeno-associated virus (AAV), one of the most promising gene therapy vectors, has been shown to cross the BBB safely and is non-pathogenic in nature and therefore has been utilized for numerous diseases of the CNS. Along with the development of protein engineering techniques such as directed evolution including DNA shuffling, a great number of BBB-crossing AAVs have been developed, that could be systemically injected for therapeutic benefit. In this review, we discuss several feasible approaches to improve transportation of therapeutic agents to the CNS. We also discuss the advantages of using BBB-crossing AAVs, their role as a gene delivery agent and highlight the different types of BBB-AAV vectors that have been developed in order to provide a greater insight into how they can be used in diseases of the CNS.
Collapse
Affiliation(s)
- Wenli Chen
- Center for Pituitary Tumor Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shun Yao
- Center for Pituitary Tumor Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Wang
- Department of TCM, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China
| | - Farhana Akter
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; School of Medicine, Yangzhou University, Yangzhou 225600, China; Department of Nuclear Medicine, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou 225600, China; Department of Oncology, Yangzhou Traditional Chinese Medical Hospital, Yangzhou 225600, China.
| |
Collapse
|
8
|
Study of the l-Phenylalanine Ammonia-Lyase Penetration Kinetics and the Efficacy of Phenylalanine Catabolism Correction Using In Vitro Model Systems. Pharmaceutics 2021; 13:pharmaceutics13030383. [PMID: 33805682 PMCID: PMC7999051 DOI: 10.3390/pharmaceutics13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/02/2022] Open
Abstract
The kinetics of l-phenylalanine ammonia-lyase (PAL) penetration into the monolayer of liver cells after its release from capsules was studied. The studies showed the absence of the effect of the capsule shell based on plant hydrocolloids on the absorption of l-phenylalanine ammonia-lyase in systems simulating the liver surface. After 120 min of incubation, in all variants of the experiment, from 87.0 to 96.8% of the enzyme penetrates the monolayer of liver cells. The combined analysis of the results concludes that the developed encapsulated form of l-phenylalanine ammonia-lyase is characterized by high efficiency in correcting the disturbed catabolism of phenylalanine in phenylketonuria, which is confirmed by the results of experiments carried out on in vitro model systems. PAL is approved for the treatment of adult patients with phenylketonuria. The encapsulated l-phenylalanine ammonia-lyase form can find therapeutic application in the phenylketonuria treatment after additional in vitro and in vivo studies, in particular, the study of preparation safety indicators. Furthermore, it demonstrated high efficacy in tumor regression and the treatment of tyrosine-related metabolic disorders such as tyrosinemia. Several therapeutically valuable metabolites biosynthesized by PAL via its catalytic action are included in food supplements, antimicrobial peptides, drugs, amino acids, and their derivatives. PAL, with improved pharmacodynamic and pharmacokinetic properties, is a highly effective medical drug.
Collapse
|
9
|
Tao R, Xiao L, Zhou L, Zheng Z, Long J, Zhou L, Tang M, Dong B, Yao S. Long-Term Metabolic Correction of Phenylketonuria by AAV-Delivered Phenylalanine Amino Lyase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:507-517. [PMID: 33335942 PMCID: PMC7733040 DOI: 10.1016/j.omtm.2019.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
Phenylketonuria (PKU) is an inherited metabolic disorder caused by mutation within phenylalanine hydroxylase (PAH) gene. Loss-of-function of PAH leads to accumulation of phenylalanine in the blood/body of an untreated patient, which damages the developing brain, causing severe mental retardation. Current gene therapy strategies based on adeno-associated vector (AAV) delivery of PAH gene were effective in male animals but had little long-term effects on blood hyperphenylalaninemia in females. Here, we designed a gene therapy strategy using AAV to deliver a human codon-optimized phenylalanine amino lyase in a liver-specific manner. It was shown that PAL was active in lysing phenylalanine when it was expressed in mammalian cells. We produced a recombinant adeno-associated vector serotype 8 (AAV8) viral vector expressing the humanized PAL under the control of human antitrypsin (hAAT) promoter (AAV8-PAL). A single intravenous administration of AAV8-PAL caused long-term correction of hyperphenylalaninemia in both male and female PKU mice (strain Pahenu2). Besides, no obvious liver injury was observed throughout the treatment process. Thus, our results established that AAV-mediated liver delivery of PAL gene is a promising strategy in the treatment of PKU.
Collapse
Affiliation(s)
- Rui Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lifang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhaoyue Zheng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Long
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lixing Zhou
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Lee C, Choi M, MacKay JA. Live long and active: Polypeptide-mediated assembly of antibody variable fragments. Adv Drug Deliv Rev 2020; 167:1-18. [PMID: 33129938 DOI: 10.1016/j.addr.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Antibodies possess multiple biologically relevant features that have been engineered into new therapeutic formats. Two examples include the adaptable specificity of their variable (Fv) region and the extension of plasma circulation times through their crystallizable (Fc) region. Since the invention of the single chain variable fragment (scFv) in 1988, antibody variable regions have been re-engineered into a wide variety of multifunctional nanostructures. Among these strategies, peptide-mediated self-assembly of variable regions through heterologous expression has become a powerful method to produce homogenous, functional biomaterials. This manuscript reviews recent reports of antibody fragments assembled through fusion with peptides and proteins, including elastin-like polypeptides (ELPs), collagen-like polypeptides (CLPs), albumin, transmembrane proteins, leucine zippers, silk protein, and viruses. This review further discusses the current clinical status of engineered antibody fragments and challenges to overcome.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
11
|
Richards DY, Winn SR, Dudley S, Fedorov L, Rimann N, Thöny B, Harding CO. A novel Pah-exon1 deleted murine model of phenylalanine hydroxylase (PAH) deficiency. Mol Genet Metab 2020; 131:306-315. [PMID: 33051130 PMCID: PMC8173763 DOI: 10.1016/j.ymgme.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022]
Abstract
Phenylalanine hydroxylase (PAH) deficiency, colloquially known as phenylketonuria (PKU), is among the most common inborn errors of metabolism and in the past decade has become a target for the development of novel therapeutics such as gene therapy. PAH deficient mouse models have been key to new treatment development, but all prior existing models natively express liver PAH polypeptide as inactive or partially active PAH monomers, which complicates the experimental assessment of protein expression following therapeutic gene, mRNA, protein, or cell transfer. The mutant PAH monomers are able to form hetero-tetramers with and inhibit the overall holoenzyme activity of wild type PAH monomers produced from a therapeutic vector. Preclinical therapeutic studies would benefit from a PKU model that completely lacks both PAH activity and protein expression in liver. In this study, we employed CRISPR/Cas9-mediated gene editing in fertilized mouse embryos to generate a novel mouse model that lacks exon 1 of the Pah gene. Mice that are homozygous for the Pah exon 1 deletion are viable, severely hyperphenylalaninemic, accurately replicate phenotypic features of untreated human classical PKU and lack any detectable liver PAH activity or protein. This model of classical PKU is ideal for further development of gene and cell biologics to treat PKU.
Collapse
Affiliation(s)
- Daelyn Y Richards
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Portland, USA
| | - Shelley R Winn
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Portland, USA
| | - Sandra Dudley
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Portland, USA
| | - Lev Fedorov
- Transgenic Mouse Models Core, Oregon Health and Science University, Portland, USA
| | - Nicole Rimann
- Division of Metabolism, University Children's Hospital, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Cary O Harding
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Portland, USA.
| |
Collapse
|
12
|
Sarodaya N, Suresh B, Kim KS, Ramakrishna S. Protein Degradation and the Pathologic Basis of Phenylketonuria and Hereditary Tyrosinemia. Int J Mol Sci 2020; 21:ijms21144996. [PMID: 32679806 PMCID: PMC7404301 DOI: 10.3390/ijms21144996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| |
Collapse
|
13
|
Grisch-Chan HM, Schwank G, Harding CO, Thöny B. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Hum Gene Ther 2019; 30:1274-1283. [PMID: 31364419 PMCID: PMC6763965 DOI: 10.1089/hum.2019.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Phenylketonuria (PKU) is considered to be a paradigm for a monogenic metabolic disorder but was never thought to be a primary application for human gene therapy due to established alternative treatment. However, somewhat unanticipated improvement in neuropsychiatric outcome upon long-term treatment of adults with PKU with enzyme substitution therapy might slowly change this assumption. In parallel, PKU was for a long time considered to be an excellent test system for experimental gene therapy of a Mendelian autosomal recessive defect of the liver due to an outstanding mouse model and the easy to analyze and well-defined therapeutic end point, that is, blood l-phenylalanine concentration. Lifelong treatment by targeting the mouse liver (or skeletal muscle) was achieved using different approaches, including (1) recombinant adeno-associated viral (rAAV) or nonviral naked DNA vector-based gene addition, (2) genome editing using base editors delivered by rAAV vectors, and (3) by delivering rAAVs for promoter-less insertion of the PAH-cDNA into the Pah locus. In this article we summarize the gene therapeutic attempts of correcting a mouse model for PKU and discuss the future implications for human gene therapy.
Collapse
Affiliation(s)
- Hiu Man Grisch-Chan
- Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Gerald Schwank
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science and Health University, Portland, Oregon
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| |
Collapse
|
14
|
Scherer T, Allegri G, Sarkissian CN, Ying M, Grisch-Chan HM, Rassi A, Winn SR, Harding CO, Martinez A, Thöny B. Tetrahydrobiopterin treatment reduces brain L-Phe but only partially improves serotonin in hyperphenylalaninemic ENU1/2 mice. J Inherit Metab Dis 2018; 41:709-718. [PMID: 29520738 PMCID: PMC6041158 DOI: 10.1007/s10545-018-0150-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Hyperphenylalaninemia (HPA) caused by hepatic phenylalanine hydroxylase (PAH) deficiency has severe consequences on brain monoamine neurotransmitter metabolism. We have studied monoamine neurotransmitter status and the effect of tetrahydrobiopterin (BH4) treatment in Pahenu1/enu2 (ENU1/2) mice, a model of partial PAH deficiency. These mice exhibit elevated blood L-phenylalanine (L-Phe) concentrations similar to that of mild hyperphenylalaninemia (HPA), but brain levels of L-Phe are still ~5-fold elevated compared to wild-type. We found that brain L-tyrosine, L-tryptophan, BH4 cofactor and catecholamine concentrations, and brain tyrosine hydroxylase (TH) activity were normal in these mice but that brain serotonin, 5-hydroxyindolacetic acid (5HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) content, and brain TH protein, as well as tryptophan hydroxylase type 2 (TPH2) protein levels and activity were reduced in comparison to wild-type mice. Parenteral L-Phe loading conditions did not lead to significant changes in brain neurometabolite concentrations. Remarkably, enteral BH4 treatment, which normalized brain L-Phe levels in ENU1/2 mice, lead to only partial recovery of brain serotonin and 5HIAA concentrations. Furthermore, indirect evidence indicated that the GTP cyclohydrolase I (GTPCH) feedback regulatory protein (GFRP) complex may be a sensor for brain L-Phe elevation to ameliorate the toxic effects of HPA. We conclude that BH4 treatment of HPA toward systemic L-Phe lowering reverses elevated brain L-Phe content but the recovery of TPH2 protein and activity as well as serotonin levels is suboptimal, indicating that patients with mild HPA and mood problems (depression or anxiety) treated with the current diet may benefit from supplementation with BH4 and 5-OH-tryptophan.
Collapse
Affiliation(s)
- Tanja Scherer
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Gabriella Allegri
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | | | - Ming Ying
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Hiu Man Grisch-Chan
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Anahita Rassi
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Shelley R Winn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science & Health University, Portland, OR, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science & Health University, Portland, OR, USA
| | - Aurora Martinez
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Beat Thöny
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Fiori E, Oddi D, Ventura R, Colamartino M, Valzania A, D’Amato FR, Bruinenberg V, van der Zee E, Puglisi-Allegra S, Pascucci T. Early-onset behavioral and neurochemical deficits in the genetic mouse model of phenylketonuria. PLoS One 2017; 12:e0183430. [PMID: 28850618 PMCID: PMC5574541 DOI: 10.1371/journal.pone.0183430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/01/2017] [Indexed: 11/19/2022] Open
Abstract
Phenylketonuria (PKU) is one of the most common human inborn errors of metabolism, caused by phenylalanine hydroxylase deficiency, leading to high phenylalanine and low tyrosine levels in blood and brain causing profound cognitive disability, if untreated. Since 1960, population is screened for hyperphenylalaninemia shortly after birth and submitted to early treatment in order to prevent the major manifestations of the disease. However, the dietetic regimen (phenylalanine free diet) is difficult to maintain, and despite the recommendation to a strict and lifelong compliance, up to 60% of adolescents partially or totally abandons the treatment. The development and the study of new treatments continue to be sought, taking advantage of preclinical models, the most used of which is the PAHenu2 (BTBR ENU2), the genetic murine model of PKU. To date, adult behavioral and neurochemical alterations have been mainly investigated in ENU2 mice, whereas there are no clear indications about the onset of these deficiencies. Here we investigated and report, for the first time, a comprehensive behavioral and neurochemical assay of the developing ENU2 mice. Overall, our findings demonstrate that ENU2 mice are significantly smaller than WT until pnd 24, present a significant delay in the acquisition of tested developmental reflexes, impaired communicative, motor and social skills, and have early reduced biogenic amine levels in several brain areas. Our results extend the understanding of behavioral and cerebral abnormalities in PKU mice, providing instruments to an early preclinical evaluation of the effects of new treatments.
Collapse
Affiliation(s)
- Elena Fiori
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Cell Biology and Neurobiology Institute, National Research Council, Rome, Italy
- European Brain Research Institute EBRI, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Diego Oddi
- Cell Biology and Neurobiology Institute, National Research Council, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marco Colamartino
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Alessandro Valzania
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Francesca Romana D’Amato
- Cell Biology and Neurobiology Institute, National Research Council, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Vibeke Bruinenberg
- Molecular Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Eddy van der Zee
- Molecular Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Stefano Puglisi-Allegra
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Tiziana Pascucci
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
16
|
Low-Dose Gene Therapy for Murine PKU Using Episomal Naked DNA Vectors Expressing PAH from Its Endogenous Liver Promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624210 PMCID: PMC5423318 DOI: 10.1016/j.omtn.2017.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Limited duration of transgene expression, insertional mutagenesis, and size limitations for transgene cassettes pose challenges and risk factors for many gene therapy vectors. Here, we report on physiological expression of liver phenylalanine hydroxylase (PAH) by delivery of naked DNA/minicircle (MC)-based vectors for correction of homozygous enu2 mice, a model of human phenylketonuria (PKU). Because MC vectors lack a defined size limit, we constructed a MC vector expressing a codon-optimized murine Pah cDNA that includes a truncated intron and is under the transcriptional control of a 3.6-kb native Pah promoter/enhancer sequence. This vector, delivered via hydrodynamic injection, yielded therapeutic liver PAH activity and sustained correction of blood phenylalanine comparable to viral or synthetic liver promoters. Therapeutic efficacy was seen with vector copy numbers of <1 vector genome per diploid hepatocyte genome and was achieved at a vector dose that was significantly lowered. Partial hepatectomy and subsequent liver regeneration was associated with >95% loss of vector genomes and PAH activity in liver, demonstrating that MC vectors had not integrated into the liver genome. In conclusion, MC vectors, which do not have a defined size-limitation, offer a favorable safety profile for hepatic gene therapy due to their non-integration in combination with native promoters.
Collapse
|
17
|
Sumaily KM, Mujamammi AH. Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis, and therapeutic strategies. Int J Health Sci (Qassim) 2017; 11:63-70. [PMID: 29114196 PMCID: PMC5669513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disorders of protein metabolism are the most common diseases among discovered inherited metabolic disorders. Phenylketonuria (PKU), a relatively common disorder that is responsive to treatment, is an inherited autosomal recessive disorder caused by a deficiency in phenylalanine hydroxylase (PAH) or one of several enzymes mediating biosynthesis or regeneration of the PAH cofactor tetrahydrobiopterin. The objective of this review is to discuss therapeutic strategies that have recently emerged for curing patients with PKU, which have demonstrated promising improvements in managing these patients. Data sourcing included a systematic literature review of PubMed with a focus on emerging knowledge pertaining to this well-studied disease. Recent advances in laboratory diagnosis and therapeutic strategies were described. Collectively, promising and rapid enhancements in neonatal diagnostic technologies and recently emerged therapeutic strategies are paving the way for early diagnosis and treating many inborn errors of metabolism, such as PKU.
Collapse
Affiliation(s)
- Khalid M. Sumaily
- Department of Pathology, Clinical Biochemistry Unit, King Saud University Medical City, King Saud University, Riyadh Saudi Arabia,Address for correspondence: Khalid M. Sumaily, Consultant in Medical Biochemistry and Biochemical Genetics, Department of Pathology, Clinical Biochemistry Unit, College of Medicine, King Saud University Medical City, King Saud University, P.O. Box 2925 (30), Riyadh 11461, Saudi Arabia. Phone: +00966114698502. Mobile: 00966540904761. E-mail:
| | - Ahmed H. Mujamammi
- Department of Pathology, Clinical Biochemistry Unit, King Saud University Medical City, King Saud University, Riyadh Saudi Arabia
| |
Collapse
|
18
|
Abstract
Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.
Collapse
Affiliation(s)
- Dominic J Gessler
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA
| | - Guangping Gao
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA.
| |
Collapse
|
19
|
Kochhar JS, Chan SY, Ong PS, Kang L. Clinical therapeutics for phenylketonuria. Drug Deliv Transl Res 2015; 2:223-37. [PMID: 25787029 DOI: 10.1007/s13346-012-0067-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylketonuria was amongst the first of the metabolic disorders to be characterised, exhibiting an inborn error in phenylalanine metabolism due to a functional deficit of the enzyme phenylalanine hydroxylase. It affects around 700,000 people around the globe. Mutations in the gene coding for hepatic phenylalanine hydroxylase cause this deficiency resulting in elevated plasma phenylalanine concentrations, leading to cognitive impairment, neuromotor disorders and related behavioural symptoms. Inception of low phenylalanine diet in the 1950s marked a revolution in the management of phenylketonuria and has since been a vital element of all therapeutic regimens. However, compliance to dietary therapy has been found difficult and newer supplement approaches are being examined. The current development of gene therapy and enzyme replacement therapeutics may offer promising alternatives for the management of phenylketonuria. This review outlines the pathological basis of phenylketonuria, various treatment regimes, their associated challenges and the future prospects of each approach. Briefly, novel drug delivery systems which can potentially deliver therapeutic strategies in phenylketonuria have been discussed.
Collapse
Affiliation(s)
- Jaspreet Singh Kochhar
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4 Level 2, Singapore, Singapore, 117543
| | | | | | | |
Collapse
|
20
|
New Strategies for the Treatment of Phenylketonuria (PKU). Metabolites 2014; 4:1007-17. [PMID: 25375236 PMCID: PMC4279156 DOI: 10.3390/metabo4041007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022] Open
Abstract
Phenylketonuria (PKU) was the first inherited metabolic disease in which dietary treatment was found to prevent the disease's clinical features. Treatment of phenylketonuria remains difficult due to progressive decrease in adherence to diet and the presence of neurocognitive defects despite therapy. This review aims to summarize the current literature on new treatment strategies. Additions to treatment include new, more palatable foods based on glycomacropeptide that contains very limited amount of aromatic amino acids, the administration of large neutral amino acids to prevent phenylalanine entry into the brain or tetrahydropterina cofactor capable of increasing residual activity of phenylalanine hydroxylase. Moreover, human trials have recently been performed with subcutaneous administration of phenylalanine ammonia-lyase, and further efforts are underway to develop an oral therapy containing phenylanine ammonia-lyase. Gene therapy also seems to be a promising approach in the near future.
Collapse
|
21
|
Viecelli HM, Harbottle RP, Wong SP, Schlegel A, Chuah MK, Vanden Driessche T, Harding CO, Thöny B. Treatment of phenylketonuria using minicircle-based naked-DNA gene transfer to murine liver. Hepatology 2014; 60:1035-43. [PMID: 24585515 PMCID: PMC4449723 DOI: 10.1002/hep.27104] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/25/2014] [Indexed: 02/03/2023]
Abstract
UNLABELLED Host immune response to viral vectors, persistence of nonintegrating vectors, and sustained transgene expression are among the major challenges in gene therapy. To overcome these hurdles, we successfully used minicircle (MC) naked-DNA vectors devoid of any viral or bacterial sequences for the long-term treatment of murine phenylketonuria, a model for a genetic liver defect. MC-DNA vectors expressed the murine phenylalanine hydroxylase (Pah) complementary DNA (cDNA) from a liver-specific promoter coupled to a de novo designed hepatocyte-specific regulatory element, designated P3, which is a cluster of evolutionary conserved transcription factor binding sites. MC-DNA vectors were subsequently delivered to the liver by a single hydrodynamic tail vein (HTV) injection. The MC-DNA vector normalized blood phenylalanine concomitant with reversion of hypopigmentation in a dose-dependent manner for more than 1 year, whereas the corresponding parental plasmid did not result in any phenylalanine clearance. MC vectors persisted in an episomal state in the liver consistent with sustained transgene expression and hepatic PAH enzyme activity without any apparent adverse effects. Moreover, 14-20% of all hepatocytes expressed transgenic PAH, and the expression was observed exclusively in the liver and predominately around pericentral areas of the hepatic lobule, while there was no transgene expression in periportal areas. CONCLUSION This study demonstrates that MC technology offers an improved safety profile and has the potential for the genetic treatment of liver diseases.
Collapse
Affiliation(s)
- Hiu Man Viecelli
- Division of Metabolism, Department of Pediatrics, University of Zurich, Zurich, Switzerland; and affiliated with the Children’s Research Center Zurich
| | - Richard P. Harbottle
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Suet Ping Wong
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrea Schlegel
- Swiss HPB and Transplant Center, Department of Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thierry Vanden Driessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Cary O. Harding
- Departments of Molecular and Medical Genetics and Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Beat Thöny
- Division of Metabolism, Department of Pediatrics, University of Zurich, Zurich, Switzerland; and affiliated with the Children’s Research Center Zurich
| |
Collapse
|
22
|
Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, Bodamer OA, Brosco JP, Brown CS, Burlina AB, Burton BK, Chang CS, Coates PM, Cunningham AC, Dobrowolski SF, Ferguson JH, Franklin TD, Frazier DM, Grange DK, Greene CL, Groft SC, Harding CO, Howell RR, Huntington KL, Hyatt-Knorr HD, Jevaji IP, Levy HL, Lichter-Konecki U, Lindegren ML, Lloyd-Puryear MA, Matalon K, MacDonald A, McPheeters ML, Mitchell JJ, Mofidi S, Moseley KD, Mueller CM, Mulberg AE, Nerurkar LS, Ogata BN, Pariser AR, Prasad S, Pridjian G, Rasmussen SA, Reddy UM, Rohr FJ, Singh RH, Sirrs SM, Stremer SE, Tagle DA, Thompson SM, Urv TK, Utz JR, van Spronsen F, Vockley J, Waisbren SE, Weglicki LS, White DA, Whitley CB, Wilfond BS, Yannicelli S, Young JM. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol Genet Metab 2014; 112:87-122. [PMID: 24667081 DOI: 10.1016/j.ymgme.2014.02.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/17/2023]
Abstract
New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 μmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 μmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.
Collapse
Affiliation(s)
- Kathryn M Camp
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Gerard T Berry
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Deborah A Bilder
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA.
| | - Nenad Blau
- University Children's Hospital, Heidelberg, Germany; University Children's Hospital, Zürich, Switzerland.
| | - Olaf A Bodamer
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Jeffrey P Brosco
- University of Miami Mailman Center for Child Development, Miami, FL 33101, USA.
| | | | | | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | - Christine S Chang
- Agency for Healthcare Research and Quality, Rockville, MD 20850, USA.
| | - Paul M Coates
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Amy C Cunningham
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - John H Ferguson
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | | | | | - Dorothy K Grange
- Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Carol L Greene
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Stephen C Groft
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Cary O Harding
- Oregon Health & Science University, Portland, OR 97239, USA.
| | - R Rodney Howell
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | - Henrietta D Hyatt-Knorr
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Indira P Jevaji
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD 20817, USA.
| | - Harvey L Levy
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Uta Lichter-Konecki
- George Washington University, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | | | | | | - Melissa L McPheeters
- Vanderbilt Evidence-based Practice Center, Institute for Medicine and Public Health, Nashville, TN 37203, USA.
| | - John J Mitchell
- McGill University Health Center, Montreal, Quebec H3H 1P3, Canada.
| | - Shideh Mofidi
- Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, NY 10595, USA.
| | - Kathryn D Moseley
- University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Christine M Mueller
- Office of Orphan Products Development, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Andrew E Mulberg
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Lata S Nerurkar
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Beth N Ogata
- University of Washington, Seattle, WA 98195, USA.
| | - Anne R Pariser
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Suyash Prasad
- BioMarin Pharmaceutical Inc., San Rafael, CA 94901, USA.
| | - Gabriella Pridjian
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - Uma M Reddy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | - Sandra M Sirrs
- Vancouver General Hospital, University of British Columbia, Vancouver V5Z 1M9, Canada.
| | | | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Susan M Thompson
- The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.
| | - Tiina K Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jeanine R Utz
- University of Minnesota, Minneapolis, MN 55455, USA.
| | - Francjan van Spronsen
- University of Groningen, University Medical Center of Groningen, Beatrix Children's Hospital, Netherlands.
| | - Jerry Vockley
- University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Susan E Waisbren
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Linda S Weglicki
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Desirée A White
- Department of Psychology, Washington University, St. Louis, MO 63130, USA.
| | | | - Benjamin S Wilfond
- Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA.
| | | | - Justin M Young
- The Young Face, Facial Plastic and Reconstructive Surgery, Cumming, GA 30041, USA.
| |
Collapse
|
23
|
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism of the amino acid phenylalanine. It is an autosomal recessive disorder with a rate of incidence of 1 in 10,000 in Caucasian populations. Mutations in the phenylalanine hydroxylase (PAH) gene are the major cause of PKU, due to the loss of the catalytic activity of the enzyme product PAH. Newborn screening for PKU allows early intervention, avoiding irreparable neurological damage and intellectual disability that would arise from untreated PKU. The current primary treatment of PKU is the limitation of dietary protein intake, which in the long term may be associated with poor compliance in some cases and other health problems due to malnutrition. The only alternative therapy currently approved is the supplementation of BH4, the requisite co-factor of PAH, in the orally-available form of sapropterin dihydrochloride. This treatment is not universally available, and is only effective for a proportion (estimated 30%) of PKU patients. Research into novel therapies for PKU has taken many different approaches to address the lack of PAH activity at the core of this disorder: enzyme replacement via virus-mediated gene transfer, transplantation of donor liver and recombinant PAH protein, enzyme substitution using phenylalanine ammonia lyase (PAL) to provide an alternative pathway for the metabolism of phenylalanine, and restoration of native PAH activity using chemical chaperones and nonsense read-through agents. It is hoped that continuing efforts into these studies will translate into a significant improvement in the physical outcome, as well as quality of life, for patients with PKU.
Collapse
Affiliation(s)
- Gladys Ho
- 1 Genetic Metabolic Disorders Research Unit; 2 Disciplines of Paediatrics and Child Health and 3 Genetic Medicine, University of Sydney, Sydney, NSW, Australia ; 4 Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - John Christodoulou
- 1 Genetic Metabolic Disorders Research Unit; 2 Disciplines of Paediatrics and Child Health and 3 Genetic Medicine, University of Sydney, Sydney, NSW, Australia ; 4 Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
24
|
Sen D, Balakrishnan B, Gabriel N, Agrawal P, Roshini V, Samuel R, Srivastava A, Jayandharan GR. Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy. Sci Rep 2013; 3:1832. [PMID: 23665951 PMCID: PMC3652085 DOI: 10.1038/srep01832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/22/2013] [Indexed: 12/19/2022] Open
Abstract
Despite significant advancements with recombinant AAV2 or AAV8 vectors for liver directed gene therapy in humans, it is well-recognized that host and vector-related immune challenges need to be overcome for long-term gene transfer. To overcome these limitations, alternate AAV serotypes (1–10) are being rigorously evaluated. AAV5 is the most divergent (55% similarity vs. other serotypes) and like AAV1 vector is known to transduce liver efficiently. AAV1 and AAV5 vectors are also immunologically distinct by virtue of their low seroprevalence and minimal cross reactivity against pre-existing AAV2 neutralizing antibodies. Here, we demonstrate that targeted bio-engineering of these vectors, augment their gene expression in murine hepatocytes in vivo (up to 16-fold). These studies demonstrate the feasibility of the use of these novel AAV1 and AAV5 vectors for potential gene therapy of diseases like hemophilia.
Collapse
Affiliation(s)
- Dwaipayan Sen
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Igarashi T, Miyake K, Asakawa N, Miyake N, Shimada T, Takahashi H. Direct comparison of administration routes for AAV8-mediated ocular gene therapy. Curr Eye Res 2013; 38:569-77. [PMID: 23489150 DOI: 10.3109/02713683.2013.779720] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE We recently demonstrated that direct subretinal (SR) injection of adeno-associated virus (AAV) type 8 (AAV8) into photoreceptor cells and retinal pigment epithelium (RPE) is a highly efficient model of gene delivery. The current study compared transduction efficiency and expression patterns associated with various routes of vector administration. METHOD The efficacy of intravitreal (VT), SR and subconjunctival (SC) injections for delivery of AAV8-derived vectors, i.e. those expressing luciferase (Luc) and enhanced green fluorescent protein (GFP) - AAV8/Luc and AAV8/GFP, respectively - were compared in an animal (mouse) model (n = 8 mice/group). Transduction efficiency and expression patterns were examined at post-injection weeks 1 and 2, and months 1, 3, 6 and 12 via in vivo imaging. RESULTS One year after AAV injection, AAV8/Luc-treated mice exhibited stable and sustained high expression of vector in the VT and SR groups, but not in the SC group (VT:SR:SC = 3,218:2,923:115; 1 × 10(5 )photons/s). Histological analysis showed that GFP expression was observed in the inner retina of VT group mice, and in photoreceptor cells and RPE of SR group mice, whereas no GFP expression was noted in the SC group. Electroretinography (ERG) revealed adverse effects following SR delivery. CONCLUSIONS Results suggest that both SR and VT injections of AAV8 vectors are useful routes for administering ocular gene therapy, and stress the importance of selecting an appropriate administration route, i.e. one that targets specific cells, for treating ocular disorders.
Collapse
Affiliation(s)
- Tsutomu Igarashi
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Stéphenne X, Debray FG, Smets F, Jazouli N, Sana G, Tondreau T, Menten R, Goffette P, Boemer F, Schoos R, Gersting SW, Najimi M, Muntau AC, Goyens P, Sokal EM. Hepatocyte Transplantation Using the Domino Concept in a Child with Tetrabiopterin Nonresponsive Phenylketonuria. Cell Transplant 2012; 21:2765-70. [DOI: 10.3727/096368912x653255] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phenylketonuria is a metabolic disease caused by phenylalanine hydroxylase deficiency. Treatment is based on a strict natural protein-restricted diet that is associated with the risk of malnutrition and severe psychosocial burden. Oral administration of tetrahydrobiopterin can increase residual enzyme activity, but most patients with severe clinical phenotypes are nonresponders. We performed liver cell transplantation in a 6-year-old boy with severe tetrahydrobiopterin nonresponsive phenylketonuria who failed to comply with diet prescriptions. The transplanted hepatocytes were obtained in part from an explanted glycogen storage type 1b liver. Following two infusions, blood phenylalanine levels returned within the therapeutic target while the phenylalanine half-life assessed by loading tests decreased from 43 to 19 h. However, 3 months later, blood phenylalanine concentrations increased and the phenylalanine intake had to be reduced. Cell-based therapy is a promising therapeutic option in phenylketonuria, and the domino concept may solve the issue of cell sources for hepatocyte transplantation.
Collapse
Affiliation(s)
- X. Stéphenne
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - F. G. Debray
- CHU & Université de Liège, Centre de Génétique Humaine, Liège, Belgium
| | - F. Smets
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - N. Jazouli
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - G. Sana
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - T. Tondreau
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - R. Menten
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Unité de Radiologie Pédiatrique, Bruxelles, Belgium
| | - P. Goffette
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Unité de Radiologie Pédiatrique, Bruxelles, Belgium
| | - F. Boemer
- CHU & Université de Liège, Genetic Biochemistry Laboratory, Liège, Belgium
| | - R. Schoos
- CHU & Université de Liège, Genetic Biochemistry Laboratory, Liège, Belgium
| | - S. W. Gersting
- Dr. von Hauner Children's Hospital, Division of Molecular Pediatrics, Munich, Germany
| | - M. Najimi
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| | - A. C. Muntau
- Dr. von Hauner Children's Hospital, Division of Molecular Pediatrics, Munich, Germany
| | - P. Goyens
- Université Libre de Bruxelles, Unité de Nutrition et Métabolisme & Laboratoire de Pédiatrie, Bruxelles, Belgium
| | - E. M. Sokal
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Banque D'hépatocytes, Bruxelles, Belgium
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratoire D'hépatologie Pédiatrique & Thérapie Cellulaire, Brussels, Belgium
| |
Collapse
|
27
|
Paulk NK, Loza LM, Finegold MJ, Grompe M. AAV-mediated gene targeting is significantly enhanced by transient inhibition of nonhomologous end joining or the proteasome in vivo. Hum Gene Ther 2012; 23:658-65. [PMID: 22486314 DOI: 10.1089/hum.2012.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have clear potential for use in gene targeting but low correction efficiencies remain the primary drawback. One approach to enhancing efficiency is a block of undesired repair pathways like nonhomologous end joining (NHEJ) to promote the use of homologous recombination. The natural product vanillin acts as a potent inhibitor of NHEJ by inhibiting DNA-dependent protein kinase (DNA-PK). Using a homology containing rAAV vector, we previously demonstrated in vivo gene repair frequencies of up to 0.1% in a model of liver disease hereditary tyrosinemia type I. To increase targeting frequencies, we administered vanillin in combination with rAAV. Gene targeting frequencies increased up to 10-fold over AAV alone, approaching 1%. Fah(-/-)Ku70(-/-) double knockout mice also had increased gene repair frequencies, genetically confirming the beneficial effects of blocking NHEJ. A second strategy, transient proteasomal inhibition, also increased gene-targeting frequencies but was not additive to NHEJ inhibition. This study establishes the benefit of transient NHEJ inhibition with vanillin, or proteasome blockage with bortezomib, for increasing hepatic gene targeting with rAAV. Functional metabolic correction of a clinically relevant disease model was demonstrated and provided evidence for the feasibility of gene targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Nicole K Paulk
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
28
|
Santos-Sierra S, Kirchmair J, Perna AM, Reiss D, Kemter K, Röschinger W, Glossmann H, Gersting SW, Muntau AC, Wolber G, Lagler FB. Novel pharmacological chaperones that correct phenylketonuria in mice. Hum Mol Genet 2012; 21:1877-87. [PMID: 22246293 DOI: 10.1093/hmg/dds001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Phenylketonuria (PKU) is caused by inherited phenylalanine-hydroxylase (PAH) deficiency and, in many genotypes, it is associated with protein misfolding. The natural cofactor of PAH, tetrahydrobiopterin (BH(4)), can act as a pharmacological chaperone (PC) that rescues enzyme function. However, BH(4) shows limited efficacy in some PKU genotypes and its chemical synthesis is very costly. Taking an integrated drug discovery approach which has not been applied to this target before, we identified alternative PCs for the treatment of PKU. Shape-focused virtual screening of the National Cancer Institute's chemical library identified 84 candidate molecules with potential to bind to the active site of PAH. An in vitro evaluation of these yielded six compounds that restored the enzymatic activity of the unstable PAHV106A variant and increased its stability in cell-based assays against proteolytic degradation. During a 3-day treatment study, two compounds (benzylhydantoin and 6-amino-5-(benzylamino)-uracil) substantially improved the in vivo Phe oxidation and blood Phe concentrations of PKU mice (Pah(enu1)). Notably, benzylhydantoin was twice as effective as tetrahydrobiopterin. In conclusion, we identified two PCs with high in vivo efficacy that may be further developed into a more effective drug treatment of PKU.
Collapse
Affiliation(s)
- Sandra Santos-Sierra
- Sections of Biochemical and Clinical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bélanger-Quintana A, Burlina A, Harding CO, Muntau AC. Up to date knowledge on different treatment strategies for phenylketonuria. Mol Genet Metab 2011; 104 Suppl:S19-25. [PMID: 21967857 PMCID: PMC4437510 DOI: 10.1016/j.ymgme.2011.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/23/2011] [Accepted: 08/05/2011] [Indexed: 11/18/2022]
Abstract
Dietary management for phenylketonuria was established over half a century ago, and has rendered an immense success in the prevention of the severe mental retardation associated with the accumulation of phenylalanine. However, the strict low-phenylalanine diet has several shortcomings, not the least of which is the burden it imposes on the patients and their families consequently frequent dietary non-compliance. Imperfect neurological outcome of patients in comparison to non-PKU individuals and nutritional deficiencies associated to the PKU diet are other important reasons to seek alternative therapies. In the last decade there has been an impressive effort in the investigation of other ways to treat PKU that might improve the outcome and quality of life of these patients. These studies have lead to the commercialization of sapropterin dihydrochloride, but there are still many questions regarding which patients to challenge with sapropterin what is the best challenge protocol and what could be the implications of this treatment in the long-term. Current human trials of PEGylated phenylalanine ammonia lyase are underway, which might render an alternative to diet for those patients non-responsive to sapropterin dihydrochloride. Preclinical investigation of gene and cell therapies for PKU is ongoing. In this manuscript, we will review the current knowledge on novel pharmacologic approaches to the treatment of phenylketonuria.
Collapse
Affiliation(s)
- Amaya Bélanger-Quintana
- Division of Metabolic Diseases, Pediatrics Department, Ramon y Cajal Hospital, Madrid, Spain.
| | | | | | | |
Collapse
|
30
|
Yagi H, Ogura T, Mizukami H, Urabe M, Hamada H, Yoshikawa H, Ozawa K, Kume A. Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self-complementary adeno-associated virus vector. J Gene Med 2011; 13:114-22. [PMID: 21322099 DOI: 10.1002/jgm.1543] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classical phenylketonuria (PKU) arises from a deficiency of phenylalanine hydroxylase (PAH) that catalyses phenylalanine oxidation in the liver. Lack of PAH activity causes massive hyperphenylalaninemia and consequently severe brain damage. Preclinical studies showed that conventional adeno-associated virus (AAV) vectors could correct hyperphenylalaninemia in a mouse model of PKU, although limitations such as very large dose requirement and relative inefficiency in female animals were recognized. METHOD An AAV8-pseudotyped vector was constructed with a self-complementary AAV (scAAV) genome for efficient liver transduction and expression. Following vector injection to PKU mice, blood Phe was periodically measured by an enzymatic fluorometric assay. In vivo Phe oxidation was evaluated by a non-invasive breath test using [1-(13) C]Phe. Vector copy number in the host tissues was determined by quantitative polymerase chain reaction. RESULTS A single injection of 1 × 10(11) -1 × 10(12) particles of the scAAV8 vector resulted in a reduction of blood Phe to normal or near-normal levels for more than 1 year in both genders. The treated animals showed normal level of in vivo Phe oxidation. The presence of > 1 copy of vector DNA per diploid genome in the liver was associated with normal blood Phe in the AAV-treated PKU mice. CONCLUSIONS Complete phenotypic correction of PKU mice was achieved by the scAAV8 vector for the longest duration reported to date. The vector overcame the female-specific disadvantage in AAV-mediated liver transduction; thus, it offers a promising platform of long-lasting gene therapy for PKU.
Collapse
Affiliation(s)
- Hiroya Yagi
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Johnson MC, Wang B, Tisch R. Genetic vaccination for re-establishing T-cell tolerance in type 1 diabetes. HUMAN VACCINES 2011; 7:27-36. [PMID: 21157183 DOI: 10.4161/hv.7.1.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease resulting in the destruction of the insulin-secreting β cells. Currently, there is no established clinical approach to effectively suppress long-term the diabetogenic response. Genetic-based vaccination offers a general strategy to reestablish β-cell specific tolerance within the T-cell compartment. The transfer of genes encoding β-cell autoantigens, anti-inflammatory cytokines and/or immunomodulatory proteins has proven to be effective at preventing and suppressing the diabetogenic response in animal models of T1D. The current review will discuss genetic approaches to prevent and treat T1D with an emphasis on plasmid DNA- and adeno-associated virus-based vaccines.
Collapse
Affiliation(s)
- Mark C Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
32
|
Thöny B. Long-term correction of murine phenylketonuria by viral gene transfer: liver versus muscle. J Inherit Metab Dis 2010; 33:677-80. [PMID: 20151201 DOI: 10.1007/s10545-010-9044-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 01/23/2023]
Abstract
Current therapy for phenylketonuria (PKU) consists of life-long dietary restriction of phenylalanine (Phe), which presents problems of adherence for patients. Alternative therapies under investigation include, among others, the use of gene therapy to provide copies of wild-type, non-mutant, phenylalanine hydroxylase (PAH) enzyme. Expression of PAH in both liver (the usual metabolic source of this enzyme) and skeletal muscle is under investigation. Liver gene therapy, using a viral vector based on the adeno-associated viruses (AAVs), provided effective clearance of serum Phe that was sustained for 1 year in some mice. In order for PAH expression to be effective in skeletal muscle, the essential metabolic cofactor, tetrahydrobiopterin (BH(4)), must also be provided, either by supplementation or gene therapy. Both these approaches were effective. When transgenic PKU mice that constitutively expressed PAH in muscle were given intraperitoneal supplementation with BH(4), this produced (transient) effective clearance of Phe to normal levels. In addition, use of an AAV vector containing the genes for PAH, and for two key synthetic enzymes for BH(4), provided substantial and long-lasting correction (more than 1 year) of blood Phe levels when injected into skeletal muscle of PKU mice. These two strategies provide promising treatment alternatives for the management of PKU in patients.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Clinical Chemistry and Biochemistry, Department of Paediatrics, University of Zürich, Steinwiesstrasse 75, 8032 Zürich, Switzerland.
| |
Collapse
|
33
|
|
34
|
Abstract
Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase gene. Phenotypes can vary from a very mild increase in blood phenylalanine concentrations to a severe classic phenotype with pronounced hyperphenylalaninaemia, which, if untreated, results in profound and irreversible mental disability. Neonatal screening programmes identify individuals with phenylketonuria. The initiation of a phenylalanine-restricted diet very soon after birth prevents most of the neuropsychological complications. However, the diet is difficult to maintain and compliance is often poor, especially in adolescents, young adults, and pregnant women. Tetrahydrobiopterin stimulates phenylalanine hydroxylase activity in about 20% of patients, and in those patients serves as a useful adjunct to the phenylalanine-restricted diet because it increases phenylalanine tolerance and allows some dietary freedom. Possible future treatments include enzyme substitution with phenylalanine ammonia lyase, which degrades phenylalanine, and gene therapy to restore phenylalanine hydroxylase activity.
Collapse
Affiliation(s)
- Nenad Blau
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich, Switzerland.
| | | | | |
Collapse
|
35
|
Sullivan T, Kodali K, Rex TS. Systemic gene delivery protects the photoreceptors in the retinal degeneration slow mouse. Neurochem Res 2010; 36:613-8. [PMID: 20924671 DOI: 10.1007/s11064-010-0272-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2010] [Indexed: 01/25/2023]
Abstract
The retinal degeneration slow (rds/rds) mouse was used to test photoreceptor protection by systemic gene delivery of non-erythropoietic forms of erythropoietin (EPO). Two Epo mutants were generated and packaged into recombinant adeno-associated virus (rAAV) serotype 2/5, controls included rAAV2/5.Epo and rAAV2/5.enhanced green fluorescent protein (eGFP). Mice were injected in the quadriceps at postnatal day seven and analyses were performed at postnatal day 90. Hematocrit, serum EPO levels, and outer nuclear layer (ONL) thickness were quantified. Hematocrit and serum EPO levels in rAAV2/5.eGFP, rAAV2/5.Epo, and rAAV2/5.EpoR103E treated mice were: 46%, 8 mU/ml; 63%, 117 mU/ml; and 52%, 332 mU/ml, respectively. The ONL from rds/rds mice treated with the Epo vectors were approximately twice as thick as the negative controls. This demonstrates that the photoreceptors can be protected without performing an intraocular injection and without increasing the hematocrit to unsafe levels. Intramuscular delivery of rAAV.EpoR103E is an attractive treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Tim Sullivan
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
36
|
Abstract
Phenylketonuria is the most prevalent inherited defect in amino acid metabolism. Owing to mutations in the gene encoding the enzyme phenylalanine hydroxylase, the essential amino acid phenylalanine cannot be hydroxylated to tyrosine and blood and tissue concentrations of phenylalanine increase. Untreated, phenylketonuria causes severe mental retardation, epilepsy and behavioral problems. The combined effect of neonatal screening and treatment has, however, meant that phenylketonuria is now a biochemical rather than a clinical diagnosis. Treatment consists of stringent dietary restriction of natural protein intake and supplementation of amino acids other than phenylalanine by a chemically manufactured protein substitute. Although clinical outcome on a phenylalanine-restricted diet is good, neuropsychological deficits are now known to exist in dietary-treated patients with phenylketonuria, and quality of life, nutritional condition and psychosocial outcome could probably also be improved. The need for new therapeutic approaches is being met by supplementation with tetrahydrobiopterin or large neutral amino acids, whilst development of the use of phenylalanine ammonia lyase, and, in the longer term, gene therapy and chaperone treatment holds promise. This Review provides an overview of the history of phenylketonuria, the challenges of treatment today and the treatment possibilities in the near future.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Center of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|