1
|
Schenk E, Essand M, Kraaij R, Adamson R, Maitland NJ, Bangma CH. Preclinical safety assessment of Ad[I/PPT-E1A], a novel oncolytic adenovirus for prostate cancer. HUM GENE THER CL DEV 2014; 25:7-15. [PMID: 24649837 DOI: 10.1089/humc.2013.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prostate cancer is the most common malignancy in the Western world. Patients can be cured only when the tumor has not metastasized outside the prostate. However, treatment with curative intent fails in a significant number of men, often resulting in untreatable progressive disease with a fatal outcome. Oncolytic adenovirus therapy may be a promising adjuvant treatment to reduce local failure or the outgrowth of micrometastatic disease. Within the European gene therapy consortium GIANT, we have developed a novel prostate-specific oncolytic adenovirus: Ad[I/PPT-E1A]. This adenovirus specifically kills prostate cells via prostate-specific replication. This article describes the clinical development of Ad[I/PPT-E1A] with particular reference to the preclinical safety assessment of this novel virus. The preclinical safety assessment involved an efficacy study in a human orthotopic xenograft mouse model, a specificity study in human primary cells, and a toxicity study in normal mice. These studies confirmed that Ad[I/PPT-E1A] efficiently kills prostate tumor cells in vivo, is not harmful to other organs, and is well tolerated in mice after systemic delivery. The safety, as well as the immunological effects of Ad[I/PPT-E1A] as a local adjuvant therapy, will now be studied in a phase I dose-escalating trial in patients with localized prostate cancer who are scheduled for curative radical prostatectomy and can be used as an updated paradigm for similar therapeutic viruses.
Collapse
Affiliation(s)
- Ellen Schenk
- 1 Department of Urology, Erasmus MC , 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
2
|
Schenk E, Essand M, Kraaij R, Adamson R, Maitland N, Bangma CH. Pre-clinical safety assessment of Ad[I/PPT-E1A], a novel oncolytic adenovirus for prostate cancer. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2013.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Swift SL, Rivera GC, Dussupt V, Leadley RM, Hudson LC, MA de Ridder C, Kraaij R, Burns JE, Maitland NJ, Georgopoulos LJ. Evaluating baculovirus as a vector for human prostate cancer gene therapy. PLoS One 2013; 8:e65557. [PMID: 23755250 PMCID: PMC3675042 DOI: 10.1371/journal.pone.0065557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
Abstract
Gene therapy represents an attractive strategy for the non-invasive treatment of prostate cancer, where current clinical interventions show limited efficacy. Here, we evaluate the use of the insect virus, baculovirus (BV), as a novel vector for human prostate cancer gene therapy. Since prostate tumours represent a heterogeneous environment, a therapeutic approach that achieves long-term regression must be capable of targeting multiple transformed cell populations. Furthermore, discrimination in the targeting of malignant compared to non-malignant cells would have value in minimising side effects. We employed a number of prostate cancer models to analyse the potential for BV to achieve these goals. In vitro, both traditional prostate cell lines as well as primary epithelial or stromal cells derived from patient prostate biopsies, in two- or three-dimensional cultures, were used. We also evaluated BV in vivo in murine prostate cancer xenograft models. BV was capable of preferentially transducing invasive malignant prostate cancer cell lines compared to early stage cancers and non-malignant samples, a restriction that was not a function of nuclear import. Of more clinical relevance, primary patient-derived prostate cancer cells were also efficiently transduced by BV, with robust rates observed in epithelial cells of basal phenotype, which expressed BV-encoded transgenes faster than epithelial cells of a more differentiated, luminal phenotype. Maximum transduction capacity was observed in stromal cells. BV was able to penetrate through three-dimensional structures, including in vitro spheroids and in vivo orthotopic xenografts. BV vectors containing a nitroreductase transgene in a gene-directed enzyme pro-drug therapy approach were capable of efficiently killing malignant prostate targets following administration of the pro-drug, CB1954. Thus, BV is capable of transducing a large proportion of prostate cell types within a heterogeneous 3-D prostate tumour, can facilitate cell death using a pro-drug approach, and shows promise as a vector for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Stephanie L. Swift
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Guillermo C. Rivera
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Vincent Dussupt
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Regina M. Leadley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Lucy C. Hudson
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | | | - Robert Kraaij
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Julie E. Burns
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Norman J. Maitland
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
- * E-mail:
| | - Lindsay J. Georgopoulos
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
4
|
Rivera-Gonzalez GC, Swift SL, Dussupt V, Georgopoulos LJ, Maitland NJ. Baculoviruses as gene therapy vectors for human prostate cancer. J Invertebr Pathol 2011; 107 Suppl:S59-70. [PMID: 21784232 DOI: 10.1016/j.jip.2011.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in ageing men in the western world. While the primary cancers can be treated with androgen ablation, radiotherapy and surgery, recurrent castration resistant cancers have an extremely poor prognosis, hence promoting research that could lead to a better treatment. Targeted therapeutic gene therapy may provide an attractive option for these patients. By exploiting the natural ability of viruses to target and transfer their genes into cancer cells, either naturally or after genetic manipulation, new generations of biological control can be developed. In this review we present the advantages and practicalities of using baculovirus as a vector for prostate cancer gene therapy and provide evidence for the potential of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) as a safer alternative vehicle for targeting cancer cells. Strategies to target baculovirus binding specifically to prostate cell surfaces are also presented. The large insertion capacity of baculoviruses also permits restricted, prostate-specific gene expression of therapeutic genes by cloning extended human transcriptional control sequences into the baculovirus genome.
Collapse
|
5
|
Magnusson MK, Kraaij R, Leadley RM, De Ridder CMA, van Weerden WM, Van Schie KAJ, Van der Kroeg M, Hoeben RC, Maitland NJ, Lindholm L. A transductionally retargeted adenoviral vector for virotherapy of Her2/neu-expressing prostate cancer. Hum Gene Ther 2011; 23:70-82. [PMID: 21875358 DOI: 10.1089/hum.2011.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The efficacy of adenovirus (Ad)-based gene therapy of solid tumors, such as prostate cancer, is limited. One of the many problems is that the virus infects many different cell types in the body, resulting in high toxicity, whereas the target cancer cells are often less prone to wild-type Ad infection. Our aim was to develop genetically de- and retargeted Ad vectors to reduce off-target effects and increase target infection for prostate cancer. We have previously reported an Ad5 vector specific for the cancer-associated receptor Her2/neu, created by inserting Her2/neu-reactive Affibody(®) molecules (ZH) into the HI loop of a coxsackievirus and adenovirus receptor binding-ablated fiber (Ad[ZH/1]). In addition to virus retargeting to Her2/neu, this virus was further modified from wild-type Ad by changing the RGD motif in the penton base to EGD and by substitution of the KKTK motif in the third shaft repeat to RKSK, resulting in the vector Ad[ZH/3]. The ZH-containing vectors could be produced to high titers and were specific for their target, resulting in efficient infection and killing of Her2/neu-positive androgen-dependent PC346C prostate cancer cells in vitro. Here we show that the oncolytic Ad[ZH/3] vector significantly prolonged survival time and reduced serum prostate-specific antigen levels in an orthotopic prostate tumor model in nude mice to the same extent as wild-type Ad5. Our results show that Her2/neu targeting using Ad-based vectors for prostate cancer is feasible and may serve as a basis for the development of gene therapy of human prostate cancer as well as other Her2/neu-expressing cancers.
Collapse
Affiliation(s)
- M K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg , 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Adamson RE, Frazier AA, Evans H, Chambers KF, Schenk E, Essand M, Birnie R, Mitry RR, Dhawan A, Maitland NJ. In vitro primary cell culture as a physiologically relevant method for preclinical testing of human oncolytic adenovirus. Hum Gene Ther 2011; 23:218-30. [PMID: 21823897 DOI: 10.1089/hum.2011.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ad[I/PPT-E1A] is an oncolytic adenovirus that specifically kills prostate cells via restricted replication by a prostate-specific regulatory element. Off-target replication of oncolytic adenoviruses would have serious clinical consequences. As a proposed ex vivo test, we describe the assessment of the specificity of Ad[I/PPT-E1A] viral cytotoxicity and replication in human nonprostate primary cells. Four primary nonprostate cell types were selected to mimic the effects of potential in vivo exposure to Ad[I/PPT-E1A] virus: bronchial epithelial cells, urothelial cells, vascular endothelial cells, and hepatocytes. Primary cells were analyzed for Ad[I/PPT-E1A] viral cytotoxicity in MTS assays, and viral replication was determined by hexon titer immunostaining assays to quantify viral hexon protein. The results revealed that at an extreme multiplicity of infection of 500, unlikely to be achieved in vivo, Ad[I/PPT-E1A] virus showed no significant cytotoxic effects in the nonprostate primary cell types apart from the hepatocytes. Transmission electron microscopy studies revealed high levels of Ad[I/PPT-E1A] sequestered in the cytoplasm of these cells. Adenoviral green fluorescent protein reporter studies showed no evidence for nuclear localization, suggesting that the cytotoxic effects of Ad[I/PPT-E1A] in human primary hepatocytes are related to viral sequestration. Also, hepatocytes had increased amounts of coxsackie adenovirus receptor surface protein. Active viral replication was only observed in the permissive primary prostate cells and LNCaP prostate cell line, and was not evident in any of the other nonprostate cells types tested, confirming the specificity of Ad[I/PPT-E1A]. Thus, using a relevant panel of primary human cells provides a convenient and alternative preclinical assay for examining the specificity of conditionally replicating oncolytic adenoviruses in vivo.
Collapse
Affiliation(s)
- R E Adamson
- YCR Cancer Research Unit, Department of Biology, University of York , Heslington, York YO10 5DD, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Frame FM, Maitland NJ. Cancer stem cells, models of study and implications of therapy resistance mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:105-18. [PMID: 21901622 DOI: 10.1007/978-1-4614-0254-1_9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is now compelling evidence for tumour initiating or cancer stem cells (CSCs) in human cancers. The current evidence of this CSC hypothesis, the CSC phenotype and methods of identification, culture and in vitro modelling will be presented, with an emphasis on prostate cancer. Inherent in the CSC hypothesis is their dual role, as a tumour-initiating cell, and as a source of treatment-resistant cells; the mechanisms behind therapeutic resistance will be discussed. Such resistance is a consequence of the unique CSC phenotype, which differs from the differentiated progeny, which make up the bulk of a tumour. It seems that to target the whole tumour, employing traditional therapies to target bulk populations alongside targeted CSC-specific drugs, provides the best hope of lasting treatment or even cure.
Collapse
Affiliation(s)
- Fiona M Frame
- Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK.
| | | |
Collapse
|
8
|
de Vrij J, Willemsen RA, Lindholm L, Hoeben RC, Bangma CH, Barber C, Behr JP, Briggs S, Carlisle R, Cheng WS, Dautzenberg IJC, de Ridder C, Dzojic H, Erbacher P, Essand M, Fisher K, Frazier A, Georgopoulos LJ, Jennings I, Kochanek S, Koppers-Lalic D, Kraaij R, Kreppel F, Magnusson M, Maitland N, Neuberg P, Nugent R, Ogris M, Remy JS, Scaife M, Schenk-Braat E, Schooten E, Seymour L, Slade M, Szyjanowicz P, Totterman T, Uil TG, Ulbrich K, van der Weel L, van Weerden W, Wagner E, Zuber G. Adenovirus-derived vectors for prostate cancer gene therapy. Hum Gene Ther 2010; 21:795-805. [PMID: 19947826 DOI: 10.1089/hum.2009.203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.
Collapse
Affiliation(s)
- Jeroen de Vrij
- Department of Molecular Cell Biology, Leiden University Medical Center , 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|