1
|
Moutachi D, Hyzewicz J, Roy P, Lemaitre M, Bachasson D, Amthor H, Ritvos O, Li Z, Furling D, Agbulut O, Ferry A. Treadmill running and mechanical overloading improved the strength of the plantaris muscle in the dystrophin-desmin double knockout (DKO) mouse. J Physiol 2024; 602:3641-3660. [PMID: 38980963 DOI: 10.1113/jp286425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
Limited knowledge exists regarding the chronic effect of muscular exercise on muscle function in a murine model of severe Duchenne muscular dystrophy (DMD). Here we determined the effects of 1 month of voluntary wheel running (WR), 1 month of enforced treadmill running (TR) and 1 month of mechanical overloading resulting from the removal of the synergic muscles (OVL) in mice lacking both dystrophin and desmin (DKO). Additionally, we examined the effect of activin receptor administration (AR). DKO mice, displaying severe muscle weakness, atrophy and greater susceptibility to contraction-induced functional loss, were exercised or treated with AR at 1 month of age and in situ force production of lower leg muscle was measured at the age of 2 months. We found that TR and OVL increased absolute maximal force and the rate of force development of the plantaris muscle in DKO mice. In contrast, those of the tibialis anterior (TA) muscle remained unaffected by TR and WR. Furthermore, the effects of TR and OVL on plantaris muscle function in DKO mice closely resembled those in mdx mice, a less severe murine DMD model. AR also improved absolute maximal force and the rate of force development of the TA muscle in DKO mice. In conclusion, exercise training improved plantaris muscle weakness in severely affected dystrophic mice. Consequently, these preclinical results may contribute to fostering further investigations aimed at assessing the potential benefits of exercise for DMD patients, particularly resistance training involving a low number of intense muscle contractions. KEY POINTS: Very little is known about the effects of exercise training in a murine model of severe Duchenne muscular dystrophy (DMD). One reason is that it is feared that chronic muscular exercise, particularly that involving intense muscle contractions, could exacerbate the disease. In DKO mice lacking both dystrophin and desmin, characterized by severe lower leg muscle weakness, atrophy and fragility in comparison to the less severe DMD mdx model, we found that enforced treadmill running improved absolute maximal force of the plantaris muscle, while that of tibialis anterior muscle remained unaffected by both enforced treadmill and voluntary wheel running. Furthermore, mechanical overloading, a non-physiological model of chronic resistance exercise, reversed plantaris muscle weakness. Consequently, our findings may have the potential to alleviate concerns and pave the way for exploring the prescription of endurance and resistance training as a viable therapeutic approach for the treatment of dystrophic patients. Additionally, such interventions may serve in mitigating the pathophysiological mechanisms induced by physical inactivity.
Collapse
Affiliation(s)
- Dylan Moutachi
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Janek Hyzewicz
- Integrare Research Unit UMRS951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Pauline Roy
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Damien Bachasson
- Institute of Myology, Neuromuscular Investigation Center, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1179, Montigny-le-Bretonneux, France
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Denis Furling
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Monceau A, Moutachi D, Lemaitre M, Garcia L, Trollet C, Furling D, Klein A, Ferry A. Dystrophin Restoration after Adeno-Associated Virus U7-Mediated Dmd Exon Skipping Is Modulated by Muscular Exercise in the Severe D2-Mdx Duchenne Muscular Dystrophy Murine Model. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1604-1618. [PMID: 36113555 DOI: 10.1016/j.ajpath.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by Dmd mutations, resulting in the absence of dystrophin in skeletal muscle, and a greater susceptibility to damage during contraction (exercise). The current study evaluated whether voluntary exercise impacts a Dmd exon skipping and muscle physiology in a severe DMD murine model. D2-mdx mice were intramuscularly injected with an adeno-associated virus (AAV) U7 snRNA to correct Dmd reading frame, and allowed to voluntary run on a wheel for 1 month. Voluntary running did not induce muscle fiber regeneration, as indicated by the percentage of centronucleated fibers, Myh3 and Myh4 expression, and maximal force production, and thus possibly did not compromise the gene therapy approach. Voluntary running did not impact the number of viral genomes and the expression of U7 and Dmd 1 month after injection of AAV-U7 injected just before exercise initiation, but reduced the amount of dystrophin in dystrophin-expressing fibers from 80% to 65% of the muscle cross-sectional area. In conclusion, voluntary running did not induce muscle damage and had no drastic detrimental effect on the AAV gene therapy exon skipping approach in a severe murine DMD model. Moreover, these results suggest considering exercise as an additional element in the design and conception of future therapeutic approaches for DMD.
Collapse
Affiliation(s)
- Alexandra Monceau
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Dylan Moutachi
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | | | - Luis Garcia
- U1179 INSERM, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, Paris, France
| | - Capucine Trollet
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Denis Furling
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Arnaud Klein
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France
| | - Arnaud Ferry
- UMRS974 INSERM, Association of Myology Institute, Myology Center of Research, UMRS974, Sorbonne Université, Paris, France; Faculty of Science Sport, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Alonso-Pérez J, Carrasco-Rozas A, Borrell-Pages M, Fernández-Simón E, Piñol-Jurado P, Badimon L, Wollin L, Lleixà C, Gallardo E, Olivé M, Díaz-Manera J, Suárez-Calvet X. Nintedanib Reduces Muscle Fibrosis and Improves Muscle Function of the Alpha-Sarcoglycan-Deficient Mice. Biomedicines 2022; 10:2629. [PMID: 36289891 PMCID: PMC9599168 DOI: 10.3390/biomedicines10102629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sarcoglycanopathies are a group of recessive limb-girdle muscular dystrophies, characterized by progressive muscle weakness. Sarcoglycan deficiency produces instability of the sarcolemma during muscle contraction, leading to continuous muscle fiber injury eventually producing fiber loss and replacement by fibro-adipose tissue. Therapeutic strategies aiming to reduce fibro-adipose expansion could be effective in muscular dystrophies. We report the positive effect of nintedanib in a murine model of alpha-sarcoglycanopathy. We treated 14 Sgca-/- mice, six weeks old, with nintedanib 50 mg/kg every 12 h for 10 weeks and compared muscle function and histology with 14 Sgca-/- mice treated with vehicle and six wild-type littermate mice. Muscle function was assessed using a treadmill and grip strength. A cardiac evaluation was performed by echocardiography and histological study. Structural analysis of the muscles, including a detailed study of the fibrotic and inflammatory processes, was performed using conventional staining and immunofluorescence. In addition, proteomics and transcriptomics studies were carried out. Nintedanib was well tolerated by the animals treated, although we observed weight loss. Sgca-/- mice treated with nintedanib covered a longer distance on the treadmill, compared with non-treated Sgca-/- mice, and showed higher strength in the grip test. Moreover, nintedanib improved the muscle architecture of treated mice, reducing the degenerative area and the fibrotic reaction that was associated with a reversion of the cytokine expression profile. Nintedanib improved muscle function and muscle architecture by reducing muscle fibrosis and degeneration and reverting the chronic inflammatory environment suggesting that it could be a useful therapy for patients with alpha-sarcoglycanopathy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Esther Fernández-Simón
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Patricia Piñol-Jurado
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Lina Badimon
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Lutz Wollin
- Boehringer Ingelheim, 88400 Biberach, Germany
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Montse Olivé
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| |
Collapse
|
4
|
Alqallaf A, Engelbeen S, Palo A, Cutrupi F, Tanganyika-de Winter C, Plomp J, Vaiyapuri S, Aartsma-Rus A, Patel K, van Putten M. The therapeutic potential of soluble activin type receptor IIB treatment in a limb girdle muscular dystrophy type 2D mouse model. Neuromuscul Disord 2022; 32:419-435. [DOI: 10.1016/j.nmd.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
|
5
|
Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice. Biomedicines 2022; 10:biomedicines10020304. [PMID: 35203514 PMCID: PMC8869250 DOI: 10.3390/biomedicines10020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Muscular dystrophies constitute a broad group of genetic disorders leading to muscle wasting. We have previously demonstrated that treating a muscular atrophy mouse model with growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne mouse model mdx for 12 weeks with myogenic growth factors peri- and post-onset of muscular degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion of the study. In the post-onset group, the functional improvement by means of electrophysiological examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a molecular level but did not improve functionally. Histopathology revealed signs of inflammation at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a functional level.
Collapse
|
6
|
Barbé C, Loumaye A, Lause P, Ritvos O, Thissen JP. p21-Activated Kinase 1 Is Permissive for the Skeletal Muscle Hypertrophy Induced by Myostatin Inhibition. Front Physiol 2021; 12:677746. [PMID: 34220542 PMCID: PMC8247767 DOI: 10.3389/fphys.2021.677746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle, the most abundant tissue in the body, plays vital roles in locomotion and metabolism. Understanding the cellular processes that govern regulation of muscle mass and function represents an essential step in the development of therapeutic strategies for muscular disorders. Myostatin, a member of the TGF-β family, has been identified as a negative regulator of muscle development. Indeed, its inhibition induces an extensive skeletal muscle hypertrophy requiring the activation of Smad 1/5/8 and the Insulin/IGF-I signaling pathway, but whether other molecular mechanisms are involved in this process remains to be determined. Using transcriptomic data from various Myostatin inhibition models, we identified Pak1 as a potential mediator of Myostatin action on skeletal muscle mass. Our results show that muscle PAK1 levels are systematically increased in response to Myostatin inhibition, parallel to skeletal muscle mass, regardless of the Myostatin inhibition model. Using Pak1 knockout mice, we investigated the role of Pak1 in the skeletal muscle hypertrophy induced by different approaches of Myostatin inhibition. Our findings show that Pak1 deletion does not impede the skeletal muscle hypertrophy magnitude in response to Myostatin inhibition. Therefore, Pak1 is permissive for the skeletal muscle mass increase caused by Myostatin inhibition.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Clinical and Experimental Research, Catholic University of Louvain, Brussels, Belgium
| | - Audrey Loumaye
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Clinical and Experimental Research, Catholic University of Louvain, Brussels, Belgium
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Clinical and Experimental Research, Catholic University of Louvain, Brussels, Belgium
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Clinical and Experimental Research, Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
8
|
Rybalka E, Timpani CA, Debruin DA, Bagaric RM, Campelj DG, Hayes A. The Failed Clinical Story of Myostatin Inhibitors against Duchenne Muscular Dystrophy: Exploring the Biology behind the Battle. Cells 2020; 9:E2657. [PMID: 33322031 PMCID: PMC7764137 DOI: 10.3390/cells9122657] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Myostatin inhibition therapy has held much promise for the treatment of muscle wasting disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD). Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several clinical trials were initiated in DMD patients using different modality myostatin inhibition therapies. All failed to show modification of disease course as dictated by the primary and secondary outcome measures selected: the myostatin inhibition story, thus far, is a failed clinical story. These trials have recently been extensively reviewed and reasons why pre-clinical data collected in animal models have failed to translate into clinical benefit to patients have been purported. However, the biological mechanisms underlying translational failure need to be examined to ensure future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore the biology which could explain the failed translation of myostatin inhibitors in the treatment of DMD.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Danielle A. Debruin
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Ryan M. Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Dean G. Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, 3021 Victoria, Australia
| |
Collapse
|
9
|
Łoboda A, Dulak J. Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacol Rep 2020; 72:1227-1263. [PMID: 32691346 PMCID: PMC7550322 DOI: 10.1007/s43440-020-00134-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration and results in functional decline, loss of ambulation and early death of young men due to cardiac or respiratory failure. Although the major cause of the disease has been known for many years-namely mutation in the DMD gene encoding dystrophin, one of the largest human genes-DMD is still incurable, and its treatment is challenging. METHODS A comprehensive and systematic review of literature on the gene, cell, and pharmacological experimental therapies aimed at restoring functional dystrophin or to counteract the associated processes contributing to disease progression like inflammation, fibrosis, calcium signaling or angiogenesis was carried out. RESULTS Although some therapies lead to satisfying effects in skeletal muscle, they are highly ineffective in the heart; therefore, targeting defective cardiac and respiratory systems is vital in DMD patients. Unfortunately, most of the pharmacological compounds treat only the symptoms of the disease. Some drugs addressing the underlying cause, like eteplirsen, golodirsen, and ataluren, have recently been conditionally approved; however, they can correct only specific mutations in the DMD gene and are therefore suitable for small sub-populations of affected individuals. CONCLUSION In this review, we summarize the possible therapeutic options and describe the current status of various, still imperfect, strategies used for attenuating the disease progression.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
10
|
Vaughan D, Ritvos O, Mitchell R, Kretz O, Lalowski M, Amthor H, Chambers D, Matsakas A, Pasternack A, Collins-Hooper H, Ballesteros R, Huber TB, Denecke B, Widera D, Mukherjee A, Patel K. Inhibition of Activin/Myostatin signalling induces skeletal muscle hypertrophy but impairs mouse testicular development. Eur J Transl Myol 2020; 30:8737. [PMID: 32499882 PMCID: PMC7254437 DOI: 10.4081/ejtm.2019.8737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/22/2023] Open
Abstract
Numerous approaches are being developed to promote post-natal muscle growth based on attenuating Myostatin/Activin signalling for clinical uses such as the treatment neuromuscular diseases, cancer cachexia and sarcopenia. However there have been concerns about the effects of inhibiting Activin on tissues other than skeletal muscle. We intraperitoneally injected mice with the Activin ligand trap, sActRIIB, in young, adult and a progeric mouse model. Treatment at any stage in the life of the mouse rapidly increased muscle mass. However at all stages of life the treatment decreased the weights of the testis. Not only were the testis smaller, but they contained fewer sperm compared to untreated mice. We found that the hypertrophic muscle phenotype was lost after the cessation of sActRIIB treatment but abnormal testis phenotype persisted. In summary, attenuation of Myostatin/Activin signalling inhibited testis development. Future use of molecules based on a similar mode of action to promote muscle growth should be carefully profiled for adverse side-effects on the testis. However the effectiveness of sActRIIB as a modulator of Activin function provides a possible therapeutic strategy to alleviate testicular seminoma development.
Collapse
Affiliation(s)
| | - Olli Ritvos
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | | | - Oliver Kretz
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maciej Lalowski
- Department of Biochemistry and Developmental Biology, HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Helge Amthor
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux 78180, France
| | | | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, Hull, UK
| | - Arja Pasternack
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | | | | | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Ketan Patel
- School of Biological Sciences, University of Reading, UK
| |
Collapse
|
11
|
Hentilä J, Nissinen TA, Korkmaz A, Lensu S, Silvennoinen M, Pasternack A, Ritvos O, Atalay M, Hulmi JJ. Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver. Front Physiol 2019; 9:1917. [PMID: 30713500 PMCID: PMC6345696 DOI: 10.3389/fphys.2018.01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1–2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1–2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p < 0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 (p < 0.05), phosphorylated eIF2α (p < 0.01) and HSP47 (p < 0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p < 0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-eIF2α, HSP47, p-JNK; p < 0.05) and antioxidant GSH (p < 0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p < 0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p < 0.05), Beclin-1 (p < 0.01), and P62 (p < 0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-eIF2α and GRP78, increased (p < 0.05), whereas ATF4 was strongly decreased (p < 0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
Collapse
Affiliation(s)
- Jaakko Hentilä
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tuuli A Nissinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mika Silvennoinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Gueugneau M, d'Hose D, Barbé C, de Barsy M, Lause P, Maiter D, Bindels LB, Delzenne NM, Schaeffer L, Gangloff YG, Chambon C, Coudy-Gandilhon C, Béchet D, Thissen JP. Increased Serpina3n release into circulation during glucocorticoid-mediated muscle atrophy. J Cachexia Sarcopenia Muscle 2018; 9:929-946. [PMID: 29989354 PMCID: PMC6204594 DOI: 10.1002/jcsm.12315] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glucocorticoids (GC) play a major role in muscle atrophy. As skeletal muscle is a secretory organ, characterization of the muscle secretome elicited by muscle atrophy should allow to better understand the cellular mechanisms and to identify circulating biomarkers of this condition. Our project aimed to identify the changes in the muscle secretome associated with GC-induced muscle atrophy and susceptible to translate into circulation. METHODS We have identified the GC-induced changes in the secretome of C2 C12 muscle cells by proteomic analysis, and then, we have determined how these changes translate into the circulation of mice or human subjects exposed to high concentrations of GC. RESULTS This approach led us to identify Serpina3n as one of the most markedly secreted protein in response to GC. Our original in vitro results were confirmed in vivo by an increased expression of Serpina3n in skeletal muscle (3.9-fold; P < 0.01) and in the serum (two-fold; P < 0.01) of mice treated with GC. We also observed increased levels of the human orthologue Serpina3 in the serum of Cushing's syndrome patients compared with healthy controls matched for age and sex (n = 9/group, 2.5-fold; P < 0.01). An increase of Serpina3n was also demonstrated in muscle atrophy models mediated by GC such as cancer cachexia (four-fold; P < 0.01), sepsis (12.5-fold; P < 0.001), or diabetes (two-fold; P < 0.01). In contrast, levels of Serpina3n both in skeletal muscle and in the circulation were reduced in several models of muscle hypertrophy induced by myostatin inhibition (P < 0.01). Furthermore, a cluster of data suggests that the regulation of muscle Serpina3n involves mTOR, an essential determinant of the muscle cell size. CONCLUSIONS Taken together, these data suggest that Serpina3n may represent a circulating biomarker of muscle atrophy associated to GC and, broadly, a reflection of dynamic changes in muscle mass.
Collapse
Affiliation(s)
- Marine Gueugneau
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.,INRA, UMR1019, Université Clermont Auvergne, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Donatienne d'Hose
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Marie de Barsy
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Maiter
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels, Belgium
| | - Laurent Schaeffer
- INMG, CNRS, UMR 5310, INSERM U1217, LBMC, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Yann-Gaël Gangloff
- INMG, CNRS, UMR 5310, INSERM U1217, LBMC, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme Composante Protéomique, Saint Genès Champanelle, France
| | - Cécile Coudy-Gandilhon
- INRA, UMR1019, Université Clermont Auvergne, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Daniel Béchet
- INRA, UMR1019, Université Clermont Auvergne, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Delacroix C, Hyzewicz J, Lemaitre M, Friguet B, Li Z, Klein A, Furling D, Agbulut O, Ferry A. Improvement of Dystrophic Muscle Fragility by Short-Term Voluntary Exercise through Activation of Calcineurin Pathway in mdx Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2662-2673. [PMID: 30142334 DOI: 10.1016/j.ajpath.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Dystrophin deficiency in mdx mice, a model for Duchenne muscular dystrophy, leads to muscle weakness revealed by a reduced specific maximal force as well as fragility (ie, higher susceptibility to contraction-induced injury, as shown by a greater force decrease after lengthening contractions). Both symptoms could be improved with dystrophin restoration-based therapies and long-term (months) voluntary exercise. Herein, we evaluated the effect of short-term (1-week) voluntary wheel running. We found that running improved fragility of tibialis anterior muscle (TA), but not plantaris muscle, independently of utrophin up-regulation, without affecting weakness. Moreover, TA muscle excitability was also preserved by running, as shown by compound muscle action potential measurements after lengthening contractions. Of interest, the calcineurin inhibitor cyclosporin A prevented the effect of running on both muscle fragility and excitability. Cyclosporin also prevented the running-induced changes in expression of genes involved in excitability (Scn4a and Cacna1s) and slower contractile phenotype (Myh2 and Tnni1) in TA muscle. In conclusion, short-term voluntary exercise improves TA muscle fragility in mdx mice, without worsening weakness. Its effect was related to preserved excitability, calcineurin pathway activation, and changes in the program of genes involved in excitability and slower contractile phenotype. Thus, remediation of muscle fragility of Duchenne muscular dystrophy patients through appropriate exercise training deserves to be explored in more detail.
Collapse
Affiliation(s)
- Clement Delacroix
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Janek Hyzewicz
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Megane Lemaitre
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Bertrand Friguet
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Klein
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Denis Furling
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Ferry
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
14
|
Cordova G, Negroni E, Cabello-Verrugio C, Mouly V, Trollet C. Combined Therapies for Duchenne Muscular Dystrophy to Optimize Treatment Efficacy. Front Genet 2018; 9:114. [PMID: 29692797 PMCID: PMC5902687 DOI: 10.3389/fgene.2018.00114] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
Duchene Muscular Dystrophy (DMD) is the most frequent muscular dystrophy and one of the most severe due to the absence of the dystrophin protein. Typical pathological features include muscle weakness, muscle wasting, degeneration, and inflammation. At advanced stages DMD muscles present exacerbated extracellular matrix and fat accumulation. Recent progress in therapeutic approaches has allowed new strategies to be investigated, including pharmacological, gene-based and cell-based therapies. Gene and cell-based therapies are still limited by poor targeting and low efficiency in fibrotic dystrophic muscle, therefore it is increasingly evident that future treatments will have to include “combined therapies” to reach maximal efficiency. The scope of this mini-review is to provide an overview of the current literature on such combined therapies for DMD. By “combined therapies” we mean those that include both a therapy to correct the genetic defect and an additional one to address one of the secondary pathological features of the disease. In this mini-review, we will not provide a comprehensive view of the literature on therapies for DMD, since many such reviews already exist, but we will focus on the characteristics, efficiency, and potential of such combined therapeutic strategies that have been described so far for DMD.
Collapse
Affiliation(s)
- Gonzalo Cordova
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Claudio Cabello-Verrugio
- Laboratorio de Patologías Musculares, Fragilidad y Envejecimiento, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Vincent Mouly
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| |
Collapse
|
15
|
Leonhard WN, Kunnen SJ, Plugge AJ, Pasternack A, Jianu SBT, Veraar K, El Bouazzaoui F, Hoogaars WMH, Ten Dijke P, Breuning MH, De Heer E, Ritvos O, Peters DJM. Inhibition of Activin Signaling Slows Progression of Polycystic Kidney Disease. J Am Soc Nephrol 2016; 27:3589-3599. [PMID: 27020852 PMCID: PMC5118473 DOI: 10.1681/asn.2015030287] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 02/10/2016] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by the formation of numerous kidney cysts, is caused by PKD1 or PKD2 mutations and affects 0.1% of the population. Although recent clinical studies indicate that reduction of cAMP levels slows progression of PKD, this finding has not led to an established safe and effective therapy for patients, indicating the need to find new therapeutic targets. The role of TGF-β in PKD is not clearly understood, but nuclear accumulation of phosphorylated SMAD2/3 in cyst-lining cells suggests the involvement of TGF-β signaling in this disease. In this study, we ablated the TGF-β type 1 receptor (also termed activin receptor-like kinase 5) in renal epithelial cells of PKD mice, which had little to no effect on the expression of SMAD2/3 target genes or the progression of PKD. Therefore, we investigated whether alternative TGF-β superfamily ligands account for SMAD2/3 activation in cystic epithelial cells. Activins are members of the TGF-β superfamily and drive SMAD2/3 phosphorylation via activin receptors, but activins have not been studied in the context of PKD. Mice with PKD had increased expression of activin ligands, even at early stages of disease. In addition, treatment with a soluble activin receptor IIB fusion (sActRIIB-Fc) protein, which acts as a soluble trap to sequester activin ligands, effectively inhibited cyst formation in three distinct mouse models of PKD. These data point to activin signaling as a key pathway in PKD and a promising target for therapy.
Collapse
Affiliation(s)
| | | | | | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; and
| | | | | | | | - Willem M H Hoogaars
- Department of Human Movement Sciences, Faculty of Behavior and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute, Amsterdam, The Netherlands
| | - Peter Ten Dijke
- Molecular Cell Biology and Cancer Genomics Centre Netherlands at the Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; and
| | | |
Collapse
|
16
|
Hulmi JJ, Hentilä J, DeRuisseau KC, Oliveira BM, Papaioannou KG, Autio R, Kujala UM, Ritvos O, Kainulainen H, Korkmaz A, Atalay M. Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress. Free Radic Biol Med 2016; 99:308-322. [PMID: 27554968 DOI: 10.1016/j.freeradbiomed.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, a model of DMD, under basal conditions and in response to seven weeks of voluntary exercise and/or activin receptor IIB ligand blocking using soluble activin receptor-Fc (sAcvR2B-Fc) administration. In conjunction with reduced muscle strength, mdx muscle displayed greater levels of UPR/ER-pathway indicators including greater protein levels of IRE1α, PERK and Atf6b mRNA. Downstream to IRE1α and PERK, spliced Xbp1 mRNA and phosphorylation of eIF2α, were also increased. Most of the cytoplasmic and ER chaperones and mitochondrial UPR markers were unchanged in mdx muscle. Oxidized glutathione was greater in mdx and was associated with increases in lysine acetylated proteome and phosphorylated sirtuin 1. Exercise increased oxidative stress when performed independently or combined with sAcvR2B-Fc administration. Although neither exercise nor sAcvR2B-Fc administration imparted a clear effect on ER stress/UPR pathways or heat shock proteins, sAcvR2B-Fc administration increased protein expression levels of GRP78/BiP, a triggering factor for ER stress/UPR activation and TxNIP, a redox-regulator of ER stress-induced inflammation. In conclusion, the ER stress and UPR are increased in mdx muscle. However, these processes are not distinctly improved by voluntary exercise or blocking activin receptor IIB ligands and thus do not appear to be optimal therapeutic choices for improving proteostasis in DMD.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Gene Expression Regulation
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Phosphorylation/drug effects
- Physical Conditioning, Animal
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteostasis/drug effects
- Proteostasis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Thioredoxins/genetics
- Thioredoxins/metabolism
- Unfolded Protein Response/drug effects
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Juha J Hulmi
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.
| | - Jaakko Hentilä
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Keith C DeRuisseau
- Syracuse University, Department of Exercise Science, 820 Comstock Ave., 201 WB, Syracuse, NY, USA; Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Bernardo M Oliveira
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Konstantinos G Papaioannou
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Medisiinarinkatu 3, FI-33014, Finland
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, FI-40014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Heikki Kainulainen
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| |
Collapse
|
17
|
Roy P, Rau F, Ochala J, Messéant J, Fraysse B, Lainé J, Agbulut O, Butler-Browne G, Furling D, Ferry A. Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle. Skelet Muscle 2016; 6:23. [PMID: 27441081 PMCID: PMC4952281 DOI: 10.1186/s13395-016-0096-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/11/2016] [Indexed: 12/16/2022] Open
Abstract
Background The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear. Methods To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle. Results We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions. Conclusion We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.
Collapse
Affiliation(s)
- Pauline Roy
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France
| | - Fredérique Rau
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, Guy's Campus, SE3 8TL London, UK
| | - Julien Messéant
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France
| | - Bodvael Fraysse
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France
| | - Jeanne Lainé
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France
| | - Onnik Agbulut
- Biological Adaptation and Ageing, UMR CNRS 8256, Institut de Biologie Paris-Seine (IBPS), UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75005 France
| | - Gillian Butler-Browne
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France
| | - Denis Furling
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France
| | - Arnaud Ferry
- Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France ; Sorbonne Paris Cité, Université Paris Descartes, Paris, F-75006 France ; Groupe Hospitalier Pitié-Salpétrière, Institut de Myologie, F-75013 Paris, France
| |
Collapse
|
18
|
Barbé C, Kalista S, Loumaye A, Ritvos O, Lause P, Ferracin B, Thissen JP. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 2015. [PMID: 26219865 PMCID: PMC4572457 DOI: 10.1152/ajpendo.00098.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Stéphanie Kalista
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Audrey Loumaye
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Benjamin Ferracin
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| |
Collapse
|
19
|
Ferry A, Benchaouir R, Joanne P, Peat RA, Mougenot N, Agbulut O, Butler-Browne G. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders. Muscle Nerve 2015; 52:788-94. [PMID: 25704632 DOI: 10.1002/mus.24604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. METHODS We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. RESULTS We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. CONCLUSION These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender.
Collapse
Affiliation(s)
- Arnaud Ferry
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM, U974, CNRS UMR 7215, Institut de Myologie, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rachid Benchaouir
- Université de Versailles Saint Quentin en Yvelines, Inflammation et thérapeutiques, Montigny-le-Bretonneux, France
| | - Pierre Joanne
- Université Pierre et Marie Curie 6, Sorbonne Universités, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Rachel A Peat
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S956, INSERM, ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Nathalie Mougenot
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, PECVM, Paris, France
| | - Onnik Agbulut
- Université Pierre et Marie Curie 6, Sorbonne Universités, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM, U974, CNRS UMR 7215, Institut de Myologie, Paris, France
| |
Collapse
|
20
|
Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2012-24. [DOI: 10.1016/j.ajpath.2015.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/30/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
21
|
Lim R, Muljadi R, Koulaeva E, Vosdoganes P, Chan ST, Acharya R, Gurusinghe S, Ritvos O, Pasternack A, Wallace EM. Activin A contributes to the development of hyperoxia-induced lung injury in neonatal mice. Pediatr Res 2015; 77:749-56. [PMID: 25760549 DOI: 10.1038/pr.2015.46] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/22/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is one of the leading causes of morbidity and mortality in babies born prematurely, yet there is no curative treatment. In recent years, a number of inhibitors against TGFβ signaling have been tested for their potential to prevent neonatal injury associated with hyperoxia, which is a contributing factor of BPD. In this study, we assessed the contribution of activin A-a member of the TGFβ superfamily-to the development of hyperoxia-induced lung injury in neonatal mice. METHODS We placed newborn C57Bl6 mouse pups in continuous hyperoxia (85% O2) to mimic many aspects of BPD including alveolar simplification and pulmonary inflammation. The pups were administered activin A receptor type IIB-Fc antagonist (ActRIIB-Fc) at 5 mg/kg or follistatin at 0.1 mg/kg on postnatal days 4, 7, 10, and 13. RESULTS Treatment with ActRIIB-Fc and follistatin protected against hyperoxia-induced growth retardation. ActRIIB-Fc also reduced pulmonary leukocyte infiltration, normalized tissue: airspace ratio and increased septal crest density. These findings were associated with reduced phosphorylation of Smad3 and decreased matrix metalloproteinase (MMP)-9 activity. CONCLUSION This study suggests that activin A signaling may contribute to the pathology of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Rebecca Lim
- 1] The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia [2] Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| | - Ruth Muljadi
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Eugenia Koulaeva
- Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| | - Patricia Vosdoganes
- Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| | - Siow Teng Chan
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Rutu Acharya
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Seshini Gurusinghe
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Euan M Wallace
- 1] The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia [2] Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| |
Collapse
|
22
|
Kainulainen H, Papaioannou KG, Silvennoinen M, Autio R, Saarela J, Oliveira BM, Nyqvist M, Pasternack A, 't Hoen PAC, Kujala UM, Ritvos O, Hulmi JJ. Myostatin/activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Mol Cell Endocrinol 2015; 399:131-42. [PMID: 25304272 DOI: 10.1016/j.mce.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023]
Abstract
Duchenne muscular dystrophy is characterized by muscle wasting and decreased aerobic metabolism. Exercise and blocking of myostatin/activin signaling may independently or combined counteract muscle wasting and dystrophies. The effects of myostatin/activin blocking using soluble activin receptor-Fc (sActRIIB-Fc) administration and wheel running were tested alone or in combination for 7 weeks in dystrophic mdx mice. Expression microarray analysis revealed decreased aerobic metabolism in the gastrocnemius muscle of mdx mice compared to healthy mice. This was not due to reduced home-cage physical activity, and was further downregulated upon sActRIIB-Fc treatment in enlarged muscles. However, exercise activated pathways of aerobic metabolism and counteracted the negative effects of sActRIIB-Fc. Exercise and sActRIIB-Fc synergistically increased expression of major urinary protein, but exercise blocked sActRIIB-Fc induced phosphorylation of STAT5 in gastrocnemius muscle. In conclusion, exercise alone or in combination with myostatin/activin blocking corrects aerobic gene expression profiles of dystrophic muscle toward healthy wild type mice profiles.
Collapse
Affiliation(s)
- Heikki Kainulainen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Konstantinos G Papaioannou
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mika Silvennoinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Reija Autio
- Department of Signal Processing, Tampere University of Technology, Korkeakoulunkatu 1, P.O. BOX 553, Tampere FI-33101, Finland
| | - Janne Saarela
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Bernardo M Oliveira
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Miro Nyqvist
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FIN-20520, Finland
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center (LUMC), Postzone S-04-P, PO Box 9600, Leiden 2300 RC, The Netherlands
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland.
| |
Collapse
|
23
|
Shabanpoor F, McClorey G, Saleh AF, Järver P, Wood MJA, Gait MJ. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy. Nucleic Acids Res 2014; 43:29-39. [PMID: 25468897 PMCID: PMC4288157 DOI: 10.1093/nar/gku1256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage (‘click chemistry’) in the other. The most active bi-specific CPP–PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP–PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Amer F Saleh
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Peter Järver
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
24
|
Myllärniemi M, Tikkanen J, Hulmi JJ, Pasternack A, Sutinen E, Rönty M, Leppäranta O, Ma H, Ritvos O, Koli K. Upregulation of activin-B and follistatin in pulmonary fibrosis - a translational study using human biopsies and a specific inhibitor in mouse fibrosis models. BMC Pulm Med 2014; 14:170. [PMID: 25361680 PMCID: PMC4271359 DOI: 10.1186/1471-2466-14-170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Background Activins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). Next, we wanted to clarify their specific role in lung fibrosis formation. Methods We used specific antibodies for activin-A and -B subunits and follistatin to measure and localize their levels in idiopathic pulmonary fibrosis and control lung biopsies. To inhibit activin signaling, we used soluble activin type IIB receptor fused to the Fc portion of human IgG1 (sActRIIB-Fc) in two different mouse models of pulmonary fibrosis. Results Activin-B and follistatin mRNA levels were elevated in the human IPF lung. Immunoreactivity to activin-A, -B and follistatin localized predominantly to the hyperplastic, activated alveolar epithelium, but was also seen in inflammatory cells. Mice treated with sActRIIB-Fc showed increased skeletal muscle mass and a clear reduction in alveolar cell counts in bronchoalveolar lavage fluid, but no significant antifibrotic effect in the lung was observed. Conclusions The upregulation of activin-B and follistatin in IPF is a novel finding. Our results indicate that activin inhibition is not an efficient tool for antifibrotic therapy, but could be useful in reducing alveolar cellular response to injury. Activin-B and follistatin levels may be useful as biomarkers of IPF.
Collapse
Affiliation(s)
- Marjukka Myllärniemi
- Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, PO Box 63, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sartori R, Gregorevic P, Sandri M. TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 2014; 25:464-71. [PMID: 25042839 DOI: 10.1016/j.tem.2014.06.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023]
Abstract
The transforming growth factor beta (TGFβ) superfamily comprises a large number of secreted proteins that regulate various fundamental biological processes underlying embryonic development and the postnatal regulation of many cell types and organs. Sequence similarities define two ligand subfamilies: the TGFβ/activin subfamily and the bone morphogenetic protein (BMP) subfamily. The discovery that myostatin, a member of the TGFβ/activin subfamily, negatively controls muscle mass attracted attention to this pathway. However, recent findings of a positive role for BMP-mediated signaling in muscle have challenged the model of how the TGFβ network regulates skeletal muscle phenotype. This review illustrates how this complex network integrates crosstalk among members of the TGFβ superfamily and downstream signaling elements to regulate muscle in health and disease.
Collapse
Affiliation(s)
- Roberta Sartori
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Paul Gregorevic
- Division of Cell Signaling and Metabolism, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Marco Sandri
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy.
| |
Collapse
|
26
|
Smith RC, Lin BK. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care 2013; 7:352-60. [PMID: 24157714 PMCID: PMC3819341 DOI: 10.1097/spc.0000000000000013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. RECENT FINDINGS There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. SUMMARY Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.
Collapse
Affiliation(s)
- Rosamund C Smith
- aBiotechnology Discovery Research bOncology Business Unit, Eli Lilly and Company
| | | |
Collapse
|
27
|
Hulmi JJ, Oliveira BM, Silvennoinen M, Hoogaars WMH, Pasternack A, Kainulainen H, Ritvos O. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice. Am J Physiol Endocrinol Metab 2013; 305:E171-82. [PMID: 23695214 DOI: 10.1152/ajpendo.00065.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.
Collapse
Affiliation(s)
- Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Finland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hourdé C, Joanne P, Medja F, Mougenot N, Jacquet A, Mouisel E, Pannerec A, Hatem S, Butler-Browne G, Agbulut O, Ferry A. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1509-18. [PMID: 23465861 DOI: 10.1016/j.ajpath.2013.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 12/19/2012] [Accepted: 01/14/2013] [Indexed: 12/25/2022]
Abstract
It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart.
Collapse
Affiliation(s)
- Christophe Hourdé
- Institute of Myology, INSERM U974, CNRS UMR7215, UPMC UM76, Université Pierre et Marie Curie-Paris 6, Sorbonne Universities, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schirwis E, Agbulut O, Vadrot N, Mouisel E, Hourdé C, Bonnieu A, Butler-Browne G, Amthor H, Ferry A. The beneficial effect of myostatin deficiency on maximal muscle force and power is attenuated with age. Exp Gerontol 2012. [PMID: 23201547 DOI: 10.1016/j.exger.2012.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The prolonged effect of myostatin deficiency on muscle performance in knockout mice has as yet been only poorly investigated. We have demonstrated that absolute maximal force is increased in 6-month old female and male knockout mice and 2-year old female knockout mice as compared to age- and sex-matched wildtype mice. Similarly, absolute maximal power is increased by myostatin deficiency in 6-month old female and male knockout mice but not in 2-year old female knockout mice. The increases we observed were greater in 6-month old female than in male knockout mice and can primarily result from muscle hypertrophy. In contrast, fatigue resistance was decreased in 6-month old knockout mice of both sexes as compared to age- and sex-matched wildtype mice. Moreover, in contrast to 2-year old female wildtype mice, aging in 2-year old knockout mice reduced absolute maximal force and power of both sexes as compared to their younger counterparts, although muscle weight did not change. These age-related decreases were lower in 2-year old female than in 2-year old male knockout mice. Together these results suggest that the beneficial effect of myostatin deficiency on absolute maximal force and power is greater in young (versus old) mice and female (versus male) mice. Most of these effects of myostatin deficiency are related neither to changes in the concentration of myofibrillar proteins nor to the slow to fast fiber type transition.
Collapse
Affiliation(s)
- E Schirwis
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM, U974, CNRS UMR7215, Institut de Myologie, Paris F-75013, France
| | | | | | | | | | | | | | | | | |
Collapse
|