1
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs inhibition improves sequential gene insertion of the full-length CFTR cDNA in airway stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102339. [PMID: 39398224 PMCID: PMC11470261 DOI: 10.1016/j.omtn.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two-halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558, which inhibit non-homologous end-joining (NHEJ) and micro-homology mediated end-joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2- to 3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Excoffon KJDA, Smith MD, Falese L, Schulingkamp R, Lin S, Mahankali M, Narayan PKL, Glatfelter MR, Limberis MP, Yuen E, Kolbeck R. Inhalation of SP-101 Followed by Inhaled Doxorubicin Results in Robust and Durable hCFTRΔR Transgene Expression in the Airways of Wild-Type and Cystic Fibrosis Ferrets. Hum Gene Ther 2024; 35:710-725. [PMID: 39155828 DOI: 10.1089/hum.2024.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Approved small molecule therapies benefit the majority of people with CF (pwCF), but unfortunately not all. Gene addition offers a mutation agnostic treatment option for all pwCF. SP-101 is an adeno-associated virus gene therapy vector (AAV2.5T) that has been optimized for efficient human airway cell transduction, and that contains a functional and regulated shortened human CFTR minigene (hCFTRΔR) with a small synthetic promoter/enhancer. To understand SP-101 airway distribution, activity, and the associated immune response, in vivo studies were performed in wild-type and CF ferrets. After single dose inhaled delivery of SP-101, followed by single dose inhaled doxorubicin (an AAV transduction augmenter) or saline, SP-101 vector genomes were detected throughout the respiratory tract. hCFTRΔR mRNA expression was highest in ferrets also receiving doxorubicin and persisted for the duration of the study (13 weeks). Pre-existing mucus in the CF ferrets did not present a barrier to effective transduction. Binding and neutralizing antibodies to the AAV2.5T capsid were observed regardless of doxorubicin exposure. Only a portion of ferrets exhibited a weak T-cell response to AAV2.5T and no T-cell response was seen against hCFTRΔR. These data strongly support the continued development of inhaled SP-101, followed by inhaled doxorubicin, for the treatment of CF.
Collapse
Affiliation(s)
| | - Mark D Smith
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | - Lillian Falese
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | | | - Shen Lin
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Eric Yuen
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | - Roland Kolbeck
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs Inhibition Improves Sequential Gene Insertion of the Full-Length CFTR cDNA in Airway Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607571. [PMID: 39185207 PMCID: PMC11343149 DOI: 10.1101/2024.08.12.607571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558 which inhibit non-homologous end joining (NHEJ) and micro-homology mediated end joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2-3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | | | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Guérin M, Lepeltier E. Nanomedicines via the pulmonary route: a promising strategy to reach the target? Drug Deliv Transl Res 2024; 14:2276-2297. [PMID: 38587757 DOI: 10.1007/s13346-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Over the past decades, research on nanomedicines as innovative tools in combating complex pathologies has increased tenfold, spanning fields from infectiology and ophthalmology to oncology. This process has further accelerated since the introduction of SARS-CoV-2 vaccines. When it comes to human health, nano-objects are designed to protect, transport, and improve the solubility of compounds to allow the delivery of active ingredients on their targets. Nanomedicines can be administered by different routes, such as intravenous, oral, intramuscular, or pulmonary routes. In the latter route, nanomedicines can be aerosolized or nebulized to reach the deep lung. This review summarizes existing nanomedicines proposed for inhalation administration, from their synthesis to their potential clinical use. It also outlines the respiratory organs, their structure, and particularities, with a specific emphasis on how these factors impact the administration of nanomedicines. Furthermore, the review addresses the organs accessible through pulmonary administration, along with various pathologies such as infections, genetic diseases, or cancer that can be addressed through inhaled nanotherapeutics. Finally, it examines the existing devices suitable for the aerosolization of nanomedicines and the range of nanomedicines in clinical development.
Collapse
Affiliation(s)
- Mélina Guérin
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France
| | - Elise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Li Y, Qiu B, Li Z, Wang X, He Z, Sandoval DM, Song R, Sigen A, Zhao C, Johnson M, Lyu J, Lara-Sáez I, Wang W. Backbone cationized highly branched poly(β-amino ester)s as enhanced delivery vectors in non-viral gene therapy. J Control Release 2024; 367:327-338. [PMID: 38272397 DOI: 10.1016/j.jconrel.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Gene therapy holds great potential for treating Lung Cystic Fibrosis (CF) which is a fatal hereditary condition arising from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in dysfunctional CFTR protein. However, the advancement and clinical application of CF gene therapy systems have been hindered due to the absence of a highly efficient delivery vector. In this work, we introduce a new generation of highly branched poly(β-amino ester) (HPAE) gene delivery vectors for CF treatment. Building upon the classical chemical composition of HPAE, a novel backbone cationization strategy was developed to incorporate additional functional amine groups into HPAE without altering their branching degree. By carefully adjusting the type, proportion, and backbone distribution of the added cationic groups, a series of highly effective HPAE gene delivery vectors were successfully constructed for CF disease gene therapy. In vitro assessment results showed that the backbone cationized HPAEs with randomly distributed 10% proportion of 1-(3-aminopropyl)-4-methylpiperazine (E7) amine groups exhibited superior transfection performance than their counterparts. Furthermore, the top-performed backbone cationized HPAEs, when loaded with therapeutic plasmids, successfully reinstated CFTR protein expression in the CFBE41o- disease model, achieving levels 20-23 times higher than that of normal human bronchial epithelial (HBE) cells. Their therapeutic effectiveness significantly surpassed that of the currently advanced commercial vectors, Xfect and Lipofectamine 3000.
Collapse
Affiliation(s)
- Yinghao Li
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China; Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zishan Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zhonglei He
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China
| | - Darío Manzanares Sandoval
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - A Sigen
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Chunyu Zhao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland..
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Wenxin Wang
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China; Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland..
| |
Collapse
|
6
|
Feng X, Shi Y, Zhang Y, Lei F, Ren R, Tang X. Opportunities and Challenges for Inhalable Nanomedicine Formulations in Respiratory Diseases: A Review. Int J Nanomedicine 2024; 19:1509-1538. [PMID: 38384321 PMCID: PMC10880554 DOI: 10.2147/ijn.s446919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Lungs experience frequent interactions with the external environment and have an abundant supply of blood; therefore, they are susceptible to invasion by pathogenic microorganisms and tumor cells. However, the limited pharmacokinetics of conventional drugs in the lungs poses a clinical challenge. The emergence of different nano-formulations has been facilitated by advancements in nanotechnology. Inhaled nanomedicines exhibit better targeting and prolonged therapeutic effects. Although nano-formulations have great potential, they still present several unknown risks. Herein, we review the (1) physiological anatomy of the lungs and their biological barriers, (2) pharmacokinetics and toxicology of nanomaterial formulations in the lungs; (3) current nanomaterials that can be applied to the respiratory system and related design strategies, and (4) current applications of inhaled nanomaterials in treating respiratory disorders, vaccine design, and imaging detection based on the characteristics of different nanomaterials. Finally, (5) we analyze and summarize the challenges and prospects of nanomaterials for respiratory disease applications. We believe that nanomaterials, particularly inhaled nano-formulations, have excellent prospects for application in respiratory diseases. However, we emphasize that the simultaneous toxic side effects of biological nanomaterials must be considered during the application of these emerging medicines. This study aims to offer comprehensive guidelines and valuable insights for conducting research on nanomaterials in the domain of the respiratory system.
Collapse
Affiliation(s)
- Xujun Feng
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuan Shi
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ye Zhang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Fei Lei
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Rong Ren
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xiangdong Tang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Li L, Qu X, Cui C, Feng K, Xia Y, Wan F, Ge H, Fang Y, Zhang C, Guo H. Compound heterozygous mutations in CFTR causing congenital bilateral absence of the vas deferens in a Chinese pedigree. Mol Genet Genomic Med 2024; 12:e2364. [PMID: 38284450 PMCID: PMC10795088 DOI: 10.1002/mgg3.2364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is an autosomal recessive disorder rarely found in Asian populations. Most males with CF are infertile because of obstructive azoospermia (OA) caused by congenital bilateral absence of the vas deferens (CBAVD). Compound heterozygous mutations of cystic fibrosis transmembrane conductance regulator (CFTR) are among the most common pathogenic factors in CBAVD. However, few genealogical analyses have been performed. METHODS In this study, whole-exome sequencing and cosegregation analysis were performed in a Chinese pedigree involving two siblings with CBAVD. Moreover, in vitro gene expressions were used to analyze the pathogenicity of a novel CFTR mutation. RESULTS We identified compound heterozygous mutations of CFTR comprising the known disease-causing variant c.1210-11T>G (also known as IVS9-5 T) and c.2144delA;p.q715fs in two siblings with CBAVD. To verify the effects in vitro, we transfected vectors expressing wild-type and mutated CFTR into 293T cells. The results showed that the CFTR protein containing the frameshift mutation (c.2144delA) was 60 kD smaller. With testicular sperm aspiration/intracytoplasmic sperm injection-embryo transfer (TESA/ICSI-ET), both CBAVD patients fathered healthy offspring. CONCLUSION Our study revealed that compound heterozygous mutations of CFTR are involved in CBAVD, expanding the known CFTR gene mutation spectrum of CBAVD patients and providing more evidence that compound heterozygous mutations can cause familial CBAVD.
Collapse
Affiliation(s)
- Lingyi Li
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Xiaowei Qu
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Chenchen Cui
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Ke Feng
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Yanqing Xia
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Feng Wan
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Hengtao Ge
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Yinghong Fang
- Department of Reproductive Medicine CenterZhengzhou University People's HospitalZhengzhouHenanChina
| | - Cuilian Zhang
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Haibin Guo
- Department of Reproductive Medicine CenterPeople's Hospital of Henan University, Henan Provincial People's HospitalZhengzhouHenanChina
| |
Collapse
|
8
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
9
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
10
|
Wang YC, Wu Y, Choi J, Allington G, Zhao S, Khanfar M, Yang K, Fu PY, Wrubel M, Yu X, Mekbib KY, Ocken J, Smith H, Shohfi J, Kahle KT, Lu Q, Jin SC. Computational Genomics in the Era of Precision Medicine: Applications to Variant Analysis and Gene Therapy. J Pers Med 2022; 12:175. [PMID: 35207663 PMCID: PMC8878256 DOI: 10.3390/jpm12020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid methodological advances in statistical and computational genomics have enabled researchers to better identify and interpret both rare and common variants responsible for complex human diseases. As we continue to see an expansion of these advances in the field, it is now imperative for researchers to understand the resources and methodologies available for various data types and study designs. In this review, we provide an overview of recent methods for identifying rare and common variants and understanding their roles in disease etiology. Additionally, we discuss the strategy, challenge, and promise of gene therapy. As computational and statistical approaches continue to improve, we will have an opportunity to translate human genetic findings into personalized health care.
Collapse
Affiliation(s)
- Yung-Chun Wang
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Yuchang Wu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Julie Choi
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; (H.S.); (K.T.K.)
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Mariam Khanfar
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Kuangying Yang
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Po-Ying Fu
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Max Wrubel
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Xiaobing Yu
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Kedous Y. Mekbib
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - Jack Ocken
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; (H.S.); (K.T.K.)
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - John Shohfi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; (H.S.); (K.T.K.)
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
12
|
Guggino WB, Cebotaru L. Gene Therapy for Cystic Fibrosis Paved the Way for the Use of Adeno-Associated Virus in Gene Therapy. Hum Gene Ther 2021; 31:538-541. [PMID: 32283956 DOI: 10.1089/hum.2020.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shortly after the cystic fibrosis (CF) gene was identified in 1989, the race began to develop a gene therapy for this condition. Major efforts utilized full-length cystic fibrosis transmembrane conductance regulator packaged into adenovirus, adeno-associated virus (AAV), or liposomes and delivered to the airways. The drive to find a treatment for CF based on gene therapy drove the early stages of gene therapy in general, particularly those involving AAV gene therapy. Since general overviews of CF gene therapy have already been published, this review considers specifically the efforts using AAV and is focused on honoring the contributions of Dr. Barrie Carter.
Collapse
Affiliation(s)
- William B Guggino
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Girón Moreno RM, García-Clemente M, Diab-Cáceres L, Martínez-Vergara A, Martínez-García MÁ, Gómez-Punter RM. Treatment of Pulmonary Disease of Cystic Fibrosis: A Comprehensive Review. Antibiotics (Basel) 2021; 10:486. [PMID: 33922413 PMCID: PMC8144952 DOI: 10.3390/antibiotics10050486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes absence or dysfunction of a protein named transmembrane conductance regulatory protein (CFTR) that works as an anion channel. As a result, the secretions of the organs where CFTR is expressed are very viscous, so their functionality is altered. The main cause of morbidity is due to the involvement of the respiratory system as a result of recurrent respiratory infections by different pathogens. In recent decades, survival has been increasing, rising by around age 50. This is due to the monitoring of patients in multidisciplinary units, early diagnosis with neonatal screening, and advances in treatments. In this chapter, we will approach the different therapies used in CF for the treatment of symptoms, obstruction, inflammation, and infection. Moreover, we will discuss specific and personalized treatments to correct the defective gene and repair the altered protein CFTR. The obstacle for personalized CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity of uncommon mutations.
Collapse
Affiliation(s)
- Rosa María Girón Moreno
- Servicio de Neumología, Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; (R.M.G.M.); (R.M.G.-P.)
| | - Marta García-Clemente
- Servicio de Neumología, Hospital Universitario Central de Asturias, C/Avenida de Roma S/n, 33011 Oviedo, Spain
| | - Layla Diab-Cáceres
- Servicio de Neumología, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | | | | | - Rosa Mar Gómez-Punter
- Servicio de Neumología, Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; (R.M.G.M.); (R.M.G.-P.)
| |
Collapse
|
14
|
Allan KM, Farrow N, Donnelley M, Jaffe A, Waters SA. Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Front Pharmacol 2021; 12:639475. [PMID: 33796025 PMCID: PMC8007963 DOI: 10.3389/fphar.2021.639475] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Prognosis of patients with cystic fibrosis (CF) varies extensively despite recent advances in targeted therapies that improve CF transmembrane conductance regulator (CFTR) function. Despite being a multi-organ disease, extensive lung tissue destruction remains the major cause of morbidity and mortality. Progress towards a curative treatment strategy that implements a CFTR gene addition-technology to the patients’ lungs has been slow and not yet developed beyond clinical trials. Improved delivery vectors are needed to overcome the body’s defense system and ensure an efficient and consistent clinical response before gene therapy is suitable for clinical care. Cell-based therapy–which relies on functional modification of allogenic or autologous cells ex vivo, prior to transplantation into the patient–is now a therapeutic reality for various diseases. For CF, pioneering research has demonstrated proof-of-principle for allogenic transplantation of cultured human airway stem cells into mouse airways. However, applying a cell-based therapy to the human airways has distinct challenges. We review CF gene therapies using viral and non-viral delivery strategies and discuss current advances towards autologous cell-based therapies. Progress towards identification, correction, and expansion of a suitable regenerative cell, as well as refinement of pre-cell transplant lung conditioning protocols is discussed.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia
| | - Nigel Farrow
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Martin Donnelley
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| |
Collapse
|
15
|
Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. ADVANCED THERAPEUTICS 2021; 4:2000203. [PMID: 33173809 PMCID: PMC7646027 DOI: 10.1002/adtp.202000203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Systemic delivery of therapeutics for treatment of lung diseases has several limitations including poor organ distribution of delivered payload with relatively low accumulation of active substances in the lungs and severe adverse side effects. In contrast, nanocarrier based therapeutics provide a broad range of opportunities due to their ability to encapsulate substances with different aqueous solubility, transport distinct types of cargo, target therapeutics specifically to the deceased organ, cell, or cellular organelle limiting adverse side effects and increasing the efficacy of therapy. Moreover, many nanotherapeutics can be delivered by inhalation locally to the lungs avoiding systemic circulation. In addition, nanoscale based delivery systems can be multifunctional, simultaneously carrying out several tasks including diagnostics, treatment and suppression of cellular resistance to the treatment. Nanoscale delivery systems improve the clinical efficacy of conventional therapeutics allowing new approaches for the treatment of respiratory diseases which are difficult to treat or possess intrinsic or acquired resistance to treatment. The present review summarizes recent advances in the development of nanocarrier based therapeutics for local and targeted delivery of drugs, nucleic acids and imaging agents for diagnostics and treatment of various diseases such as cancer, cystic fibrosis, and coronavirus.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Tamara Minko
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
16
|
Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. NANO RESEARCH 2021; 14:2067-2089. [PMID: 33456721 PMCID: PMC7796694 DOI: 10.1007/s12274-020-3180-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 05/14/2023]
Abstract
Lung diseases, including COVID-19 and lung cancers, is a huge threat to human health. However, for the treatment and diagnosis of various lung diseases, such as pneumonia, asthma, cancer, and pulmonary tuberculosis, are becoming increasingly challenging. Currently, several types of treatments and/or diagnostic methods are used to treat lung diseases; however, the occurrence of adverse reactions to chemotherapy, drug-resistant bacteria, side effects that can be significantly toxic, and poor drug delivery necessitates the development of more promising treatments. Nanotechnology, as an emerging technology, has been extensively studied in medicine. Several studies have shown that nano-delivery systems can significantly enhance the targeting of drug delivery. When compared to traditional delivery methods, several nanoparticle delivery strategies are used to improve the detection methods and drug treatment efficacy. Transporting nanoparticles to the lungs, loading appropriate therapeutic drugs, and the incorporation of intelligent functions to overcome various lung barriers have broad prospects as they can aid in locating target tissues and can enhance the therapeutic effect while minimizing systemic side effects. In addition, as a new and highly contagious respiratory infection disease, COVID-19 is spreading worldwide. However, there is no specific drug for COVID-19. Clinical trials are being conducted in several countries to develop antiviral drugs or vaccines. In recent years, nanotechnology has provided a feasible platform for improving the diagnosis and treatment of diseases, nanotechnology-based strategies may have broad prospects in the diagnosis and treatment of COVID-19. This article reviews the latest developments in nanotechnology drug delivery strategies in the lungs in recent years and studies the clinical application value of nanomedicine in the drug delivery strategy pertaining to the lung.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
17
|
Abstract
Since the cloning of the CFTR gene 30 years ago, research aiming at understanding how CFTR mutations translate to abnormal synthesis or function of the CFTR protein has opened the way to genomically-guided therapy to improve CFTR function. A CFTR potentiator to enhance CFTR channel function has been approved in 2012 for specific and quite rare mutations. Subsequently, combinations of a corrector to increase CFTR expression at the cell membrane, plus a potentiator, have been approved for patients homozygous for the p.Phe508del mutation. To obtain robust correction of CFTR, new combinations of drugs are being studied. A triple combination associating two correctors and one potentiator is very promising and if data of clinical trials are confirmed, it could be a robust and well tolerated CFTR modulator for patients bearing at least one p.Phe508del mutation. Many other strategies are also in development to make these genomically-guided treatments available to all patients with CF. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- I Fajac
- AP-HP, Hôpital Cochin, Service de Physiologie et Explorations Fonctionnelles, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - E Girodon
- APHP, Centre-Université de Paris, Hôpital Cochin, Laboratoire de Génétique et Biologie Moléculaires, Paris, France
| |
Collapse
|
18
|
Abstract
Cystic fibrosis (CF) is a hereditary, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. CF is mainly characterized by pulmonary dysfunction as a result of deterioration in the mucociliary clearance and anion transport of airways. Mortality is mostly caused by bronchiectasis, bronchiole obstruction, and progressive respiratory dysfunction in the early years of life. Over the last decade, new therapeutic strategies rather than symptomatic treatment have been proposed, such as the small molecule approach, ion channel therapy, and pulmonary gene therapy. Due to considerable progress in the treatment options, CF has become an adult disease rather than a pediatric disease in recent years. Pulmonary gene therapy has gained special attention due to its mutation type independent aspect, therefore being applicable to all CF patients. On the other hand, the major obstacle for CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity. The advancement of 3D culture systems has made it possible to extrapolate the disease modeling and individual drug response in vitro by producing mini adult organs called "organoids" obtained from rectal cell biopsies. In this review, we summarize the advances in the novel therapeutic approaches, clinical interventions, and precision medicine concept for CF.
Collapse
|
19
|
Smirnikhina SA, Kondrateva EV, Adilgereeva EP, Anuchina AA, Zaynitdinova MI, Slesarenko YS, Ershova AS, Ustinov KD, Yasinovsky MI, Amelina EL, Voronina ES, Yakushina VD, Tabakov VY, Lavrov AV. P.F508del editing in cells from cystic fibrosis patients. PLoS One 2020; 15:e0242094. [PMID: 33175893 PMCID: PMC7657551 DOI: 10.1371/journal.pone.0242094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Development of genome editing methods created new opportunities for the development of etiology-based therapies of hereditary diseases. Here, we demonstrate that CRISPR/Cas9 can correct p.F508del mutation in the CFTR gene in the CFTE29o- cells and induced pluripotent stem cells (iPSCs) derived from patients with cystic fibrosis (CF). We used several combinations of Cas9, sgRNA and ssODN and measured editing efficiency in the endogenous CFTR gene and in the co-transfected plasmid containing the CFTR locus with the p.F508del mutation. The non-homologous end joining (NHEJ) frequency in the CFTR gene in the CFTE29o- cells varied from 1.25% to 2.54% of alleles. The best homology-directed repair (HDR) frequency in the endogenous CFTR locus was 1.42% of alleles. In iPSCs, the NHEJ frequency in the CFTR gene varied from 5.5% to 12.13% of alleles. The best HDR efficacy was 2.38% of alleles. Our results show that p.F508del mutation editing using CRISPR/Cas9 in CF patient-derived iPSCs is a relatively rare event and subsequent cell selection and cultivation should be carried out.
Collapse
Affiliation(s)
- Svetlana A. Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
- * E-mail:
| | - Ekaterina V. Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elmira P. Adilgereeva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Arina A. Anuchina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Yana S. Slesarenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Angelina S. Ershova
- Nazarbayev University, School of Science and Technology, Nur-Sultan, Republic of Kazakhstan
| | - Kirill D. Ustinov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Matvei I. Yasinovsky
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elena L. Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russian Federation
| | - Ekaterina S. Voronina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Valentina D. Yakushina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Vyacheslav Yu. Tabakov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexander V. Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| |
Collapse
|
20
|
Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther 2020; 29:3-12. [PMID: 33037407 DOI: 10.1038/s41434-020-00197-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
The field of gene therapy has made significant strides over the last several decades toward the treatment of previously untreatable genetic disease. Gene therapy techniques have been aimed at mitigating disease features of recessive and dominant disorders, as well as several cancers and other diseases. While there have been numerous disease targets of gene therapy trials, only four therapies have reached FDA and/or EMA approval for clinical use. Gene correction using CRISPR-Cas9 is an extension of gene therapy that has received considerable attention in recent years and boasts many possible uses beyond classical gene therapy approaches. While there is significant therapeutic potential using gene therapy and gene correction strategies, a number of hurdles remain to be overcome before they become more common in clinical use, particularly with regards to safety and efficacy. As research progresses in this exciting field, it is likely that these therapies will become first-line treatments and will have tremendous positive impacts on the lives of patients with genetic disorders.
Collapse
Affiliation(s)
- Matthew R Cring
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA. .,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
21
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
22
|
Schleidgen S, Dederer HG, Sgodda S, Cravcisin S, Lüneburg L, Cantz T, Heinemann T. Human germline editing in the era of CRISPR-Cas: risk and uncertainty, inter-generational responsibility, therapeutic legitimacy. BMC Med Ethics 2020; 21:87. [PMID: 32912206 PMCID: PMC7488432 DOI: 10.1186/s12910-020-00487-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clustered Regularly Interspaced Short Palindromic Repeats-associated (CRISPR-Cas) technology may allow for efficient and highly targeted gene editing in single-cell embryos. This possibility brings human germline editing into the focus of ethical and legal debates again. MAIN BODY Against this background, we explore essential ethical and legal questions of interventions into the human germline by means of CRISPR-Cas: How should issues of risk and uncertainty be handled? What responsibilities arise regarding future generations? Under which conditions can germline editing measures be therapeutically legitimized? For this purpose, we refer to a scenario anticipating potential further development in CRISPR-Cas technology implying improved accuracy and exclusion of germline transmission to future generations. We show that, if certain concepts regarding germline editing are clarified, under such conditions a categorical prohibition of one-generation germline editing of single-cell embryos appears not to be ethically or legally justifiable. CONCLUSION These findings are important prerequisites for the international debate on the ethical and legal justification of germline interventions in the human embryo as well as for the harmonization of international legal standards.
Collapse
Affiliation(s)
- Sebastian Schleidgen
- Faculty of Humanities and Social Sciences, Institute of Philosophy, FernUniversität in Hagen, Universitätsstraße 33, 58097 Hagen, Germany
| | - Hans-Georg Dederer
- Faculty of Law, University of Passau, Innstraße 39, 94032 Passau, Germany
| | - Susan Sgodda
- Translational Hepatology and Stem Cell Biology, REBIRTH Center for Translational Regenerative Medicine, Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Stefan Cravcisin
- Faculty of Law, University of Passau, Innstraße 39, 94032 Passau, Germany
| | - Luca Lüneburg
- Faculty of Law, University of Passau, Innstraße 39, 94032 Passau, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH Center for Translational Regenerative Medicine, Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Thomas Heinemann
- Faculty of Nursing Science, University of Philosophy and Theology Vallendar, Pallottistraße 3, 56179 Vallendar, Germany
| |
Collapse
|
23
|
Parsons D, Donnelley M. Will Airway Gene Therapy for Cystic Fibrosis Improve Lung Function? New Imaging Technologies Can Help Us Find Out. Hum Gene Ther 2020; 31:973-984. [PMID: 32718206 DOI: 10.1089/hum.2020.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The promise of genetic therapies has turned into reality in recent years, with new first-line treatments for fatal diseases now available to patients. The development and testing of genetic therapies for respiratory diseases such as cystic fibrosis (CF) has also progressed. The addition of gene editing to the genetic agent toolbox, and its early success in other organ systems, suggests we will see rapid expansion of gene correction options for CF in the future. Although substantial progress has been made in creating techniques and genetic agents that can be highly effective for CF correction in vitro, physiologically relevant functional in vivo changes have been largely prevented by poor delivery efficiency within the lungs. Somewhat hidden from view, however, is the absence of reliable, accurate, detailed, and noninvasive outcome measures that can detect subtle disease and treatment effects in the lungs of humans or animal models. The ability to measure the fundamental function of the lung-ventilation, the effective transport of air throughout the lung-has been constrained by the available measurement technologies. Without sensitive measurement methods, it is difficult to quantify the effectiveness of genetic therapies for CF. The mainstays of lung health assessment are spirometry, which cannot provide adequate disease localization and is not sensitive enough to detect small early changes in disease; and computed tomography, which provides structural rather than functional information. Magnetic resonance imaging using hyperpolarized gases is increasingly useful for lung ventilation assessment, and it removes the radiation risk that accompanies X-ray methods. A new lung imaging technique, X-ray velocimetry, can now offer highly detailed regional lung ventilation information well suited to the diagnosis, treatment, and monitoring needs of CF lung disease, particularly after the application of genetic therapies. In this review, we discuss the options now available for imaging-based lung function measurement in the generation and use of genetic and other therapies for treating CF lung disease.
Collapse
Affiliation(s)
- David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| |
Collapse
|
24
|
Sainz-Ramos M, Villate-Beitia I, Gallego I, A L Qtaish N, Lopez-Mendez TB, Eritja R, Grijalvo S, Puras G, Pedraz JL. Non-viral mediated gene therapy in human cystic fibrosis airway epithelial cells recovers chloride channel functionality. Int J Pharm 2020; 588:119757. [PMID: 32791297 DOI: 10.1016/j.ijpharm.2020.119757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Gene therapy strategies based on non-viral vectors are currently considered as a promising therapeutic option for the treatment of cystic fibrosis (CF), being liposomes the most commonly used gene carriers. Niosomes offer a powerful alternative to liposomes due to their higher stability and lower cytotoxicity, provided by their non-ionic surfactant and helper components. In this work, a three-formulation screening is performed, in terms of physicochemical and biological behavior, in CF patient derived airway epithelial cells. The most efficient niosome formulation reaches 28% of EGFP expressing live cells and follows caveolae-mediated endocytosis. Transfection with therapeutic cystic fibrosis transmembrane conductance regulator (CFTR) gene results in 5-fold increase of CFTR protein expression in transfected versus non-transfected cells, which leads to 1.5-fold increment of the chloride channel functionality. These findings highlight the relevance of niosome-based systems as an encouraging non-viral gene therapy platform with potential therapeutic benefits for CF.
Collapse
Affiliation(s)
- Myriam Sainz-Ramos
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Ilia Villate-Beitia
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Idoia Gallego
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Nuseibah A L Qtaish
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Tania B Lopez-Mendez
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Ramón Eritja
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Gustavo Puras
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - José Luis Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
25
|
Alton EWFW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harman TE, Hyde S, McLachlan G. Gene Therapy for Respiratory Diseases: Progress and a Changing Context. Hum Gene Ther 2020; 31:911-916. [PMID: 32746737 DOI: 10.1089/hum.2020.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Eric W F W Alton
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - A Christopher Boyd
- UK CF Gene Therapy Consortium, London, United Kingdom.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane C Davies
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Deborah R Gill
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Tracy E Harman
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Stephen Hyde
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gerry McLachlan
- UK CF Gene Therapy Consortium, London, United Kingdom.,The Roslin Institute & R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Khalaf M, Scott-Ward T, Causer A, Saynor Z, Shepherd A, Górecki D, Lewis A, Laight D, Shute J. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Human Lung Microvascular Endothelial Cells Controls Oxidative Stress, Reactive Oxygen-Mediated Cell Signaling and Inflammatory Responses. Front Physiol 2020; 11:879. [PMID: 32848840 PMCID: PMC7403513 DOI: 10.3389/fphys.2020.00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Perturbation of endothelial function in people with cystic fibrosis (CF) has been reported, which may be associated with endothelial cell expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Previous reports indicate that CFTR activity upregulates endothelial barrier function, endothelial nitric oxide synthase (eNOS) expression and NO release, while limiting interleukin-8 (IL-8) release, in human umbilical vein endothelial cells (HUVECs) in cell culture. In view of reported microvascular dysfunction in people with CF we investigated the role of CFTR expression and activity in the regulation of oxidative stress, cell signaling and inflammation in human lung microvascular endothelial cells (HLMVECs) in cell culture. Methods HLMVECs were cultured in the absence and presence of the CFTR inhibitor GlyH-101 and CFTR siRNA. CFTR expression was analyzed using qRT-PCR, immunocytochemistry (IHC) and western blot, and function by membrane potential assay. IL-8 expression was analyzed using qRT-PCR and ELISA. Nrf2 expression, and NF-κB and AP-1 activation were determined using IHC and western blot. The role of the epidermal growth factor receptor (EGFR) in CFTR signaling was investigated using the EGFR tyrosine kinase inhibitor AG1478. Oxidative stress was measured as intracellular ROS and hydrogen peroxide (H2O2) concentration. VEGF and SOD-2 were measured in culture supernatants by ELISA. Results HLMVECs express low levels of CFTR that increase following inhibition of CFTR activity. Inhibition of CFTR, significantly increased intracellular ROS and H2O2 levels over 30 min and significantly decreased Nrf2 expression by 70% while increasing SOD-2 expression over 24 h. CFTR siRNA significantly increased constitutive expression of IL-8 by HLMVECs. CFTR inhibition activated the AP-1 pathway and increased IL-8 expression, without effect on NF-κB activity. Conversely, TNF-α activated the NF-κB pathway and increased IL-8 expression. The effects of TNF-α and GlyH-101 on IL-8 expression were additive and inhibited by AG1478. Inhibition of both CFTR and EGFR in HLMVECs significantly increased VEGF expression. The antioxidant N-acetyl cysteine significantly reduced ROS production and the increase in IL-8 and VEGF expression following CFTR inhibition. Conclusion Functional endothelial CFTR limits oxidative stress and contributes to the normal anti-inflammatory state of HLMVECs. Therapeutic strategies to restore endothelial CFTR function in CF are warranted.
Collapse
Affiliation(s)
- Maha Khalaf
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Toby Scott-Ward
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Adam Causer
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Zoe Saynor
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony Shepherd
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Dariusz Górecki
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony Lewis
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - David Laight
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Janis Shute
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
27
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
28
|
Successes and Challenges: Inhaled Treatment Approaches Using Magnetic Nanoparticles in Cystic Fibrosis. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6020025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic nanoparticles have been largely applied to increase the efficacy of antibiotics due to passive accumulation provided by enhancing permeability and retention, which is essential for the treatment of lung infections. Recurring lung infections such as in the life-shortening genetic disease cystic fibrosis (CF) are a major problem. The recent advent of the CF modulator drug ivacaftor, alone or in combination with lumacaftor or tezacaftor, has enabled systemic treatment of the majority of patients. Magnetic nanoparticles (MNPs) show unique properties such as biocompatibility and biodegradability as well as magnetic and heat-medicated characteristics. These properties make them suitable to be used as drug carriers and hyperthermia-based agents. Hyperthermia is a promising approach for the thermal activation therapy of several diseases, including pulmonary diseases. The benefits of delivering CF drugs via inhalation using MNPs as drug carriers afford application of sufficient therapeutic dosages directly to the primary target site, while avoiding potential suboptimal pharmacokinetics/pharmacodynamics and minimizing the risks of systemic toxicity. This review explores the multidisciplinary approach of using MNPs as vehicles of drug delivery. Additionally, we highlight advantages such as increased drug concentration at disease site, minimized drug loss and the possibility of specific cell targeting, while addressing major challenges for this emerging field.
Collapse
|
29
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Vaidyanathan S, Salahudeen AA, Sellers ZM, Bravo DT, Choi SS, Batish A, Le W, Baik R, de la O S, Kaushik MP, Galper N, Lee CM, Teran CA, Yoo JH, Bao G, Chang EH, Patel ZM, Hwang PH, Wine JJ, Milla CE, Desai TJ, Nayak JV, Kuo CJ, Porteus MH. High-Efficiency, Selection-free Gene Repair in Airway Stem Cells from Cystic Fibrosis Patients Rescues CFTR Function in Differentiated Epithelia. Cell Stem Cell 2020; 26:161-171.e4. [PMID: 31839569 PMCID: PMC10908575 DOI: 10.1016/j.stem.2019.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Cystic fibrosis (CF) is a monogenic disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Mortality in CF patients is mostly due to respiratory sequelae. Challenges with gene delivery have limited attempts to treat CF using in vivo gene therapy, and low correction levels have hindered ex vivo gene therapy efforts. We have used Cas9 and adeno-associated virus 6 to correct the ΔF508 mutation in readily accessible upper-airway basal stem cells (UABCs) obtained from CF patients. On average, we achieved 30%-50% allelic correction in UABCs and bronchial epithelial cells (HBECs) from 10 CF patients and observed 20%-50% CFTR function relative to non-CF controls in differentiated epithelia. Furthermore, we successfully embedded the corrected UABCs on an FDA-approved porcine small intestinal submucosal membrane (pSIS), and they retained differentiation capacity. This study supports further development of genetically corrected autologous airway stem cell transplant as a treatment for CF.
Collapse
Affiliation(s)
| | - Ameen A Salahudeen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Dawn T Bravo
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Shannon S Choi
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arpit Batish
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wei Le
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Ron Baik
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Sean de la O
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Milan P Kaushik
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Noah Galper
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Jessica H Yoo
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona, Tucson, Tucson, AZ 85724, USA
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Jeffrey J Wine
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Tushar J Desai
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA.
| | - Calvin J Kuo
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
31
|
Oude Blenke E, Mahakena S, Fens M, van den Dikkenberg J, Holkers M, Mastrobattista E. Impact of chemistry and nanoformulation parameters on cellular uptake and airway distribution of RNA oligonucleotides. J Control Release 2019; 317:154-165. [PMID: 31765703 DOI: 10.1016/j.jconrel.2019.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
Small, synthetic oligonucleotides (ON) are of great interest as potential disease modifying drugs, mainly because of their ability to modulate previously undruggable target mutations. To date, therapeutic applications of ON are, however, limited by their physicochemical properties, including poor stability, rapid excretion and low intracellular access. In order to overcome some of these shortcomings, ON are generally formulated using nanoparticle (NP) delivery systems. Alternatively, the poor stability can be circumvented by including chemical modifications to the backbone or sugars of the ON. Some of these modifications also result in better intracellular target access of these otherwise membrane-impermeable macromolecules. Therefore, complex formulation of ON into NP in order to overcome the hurdle of intracellular access might not always be needed, especially in case of local delivery. In this study, the delivery and functionality of chemically modified ON in free form was compared to polymeric NP assisted delivery, measuring their effectivity and efficiency. For this reason, phosphorothioate (PS) backbone-modified 18-mer ON with either 2'OMe or 2'MOE-modifications were selected, capable of eliciting exon-skipping of an aberrant exon in fluorescence based in vitro and in vivo model systems. The NP consisted of poly(D,L-lactic,co-glycolic acid) and poly-β-amino-ester, previously demonstrated to successfully deliver nucleic acids via the pulmonary route. Several NP formulation parameters were tested in order to optimize the delivery of the ON, including ratio polymer:ON, NP size and concentration. The results reported here show clear differences between gymnotic and nanoparticle mediated ON delivery in terms of cellular uptake and local tissue distribution. In vitro, differences in exon-skipping efficiencies were observed with 2'OMe and 2'MOE ON either in free form or formulated in NP, with the striking observation that 2'OMe ON formulated in polymeric NP did not result in exon skipping. Gymnotic delivery of 2'MOE ON into the respiratory tract of mice resulted in functional delivery of exon-skipping ON into nasal epithelia and lungs as well as other downstream tissues and organs, pointing towards a gradual redistribution of locally delivered ONs, with limited but measurable systemic exposure. Conversely, NP-mediated delivery into the respiratory tract resulted in a more contained functional delivery at 10× lower ON doses compared to gymnotic delivery. Based on these findings we conclude that gymnotic delivery of 2'OMe or 2'MOE exon-skipping ON to the respiratory tract is effective, but that NP formulation might be advantageous in case spread of ON to non-target tissue can lead to undesired effects.
Collapse
Affiliation(s)
- Erik Oude Blenke
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Sunny Mahakena
- ProQR Therapeutics NV, Zernikedreef 9, 2333, CK, Leiden, The Netherlands
| | - Marcel Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Joep van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Maarten Holkers
- ProQR Therapeutics NV, Zernikedreef 9, 2333, CK, Leiden, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Ghelani DP, Schneider-Futschik EK. Emerging Cystic Fibrosis Transmembrane Conductance Regulator Modulators as New Drugs for Cystic Fibrosis: A Portrait of in Vitro Pharmacology and Clinical Translation. ACS Pharmacol Transl Sci 2019; 3:4-10. [PMID: 32259083 DOI: 10.1021/acsptsci.9b00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 02/06/2023]
Abstract
Pharmacological correction of the defective ion channel with cystic fibrosis transmembrane conductance regulator (CFTR) has become an attractive approach to therapy directed at the root cause of the life-limiting disease cystic fibrosis (CF). CFTR defects range from absence, misfolding, and resulting degradation to functional defects of the CFTR protein. The discovery and development of the CFTR potentiator ivacaftor was a major break-through in CF therapy and has triggered an enormous incentive for seeking effective modulators such as lumacaftor, tezacaftor or elexacaftor for all patients with CF. A number of emerging CFTR modulators are currently in the development pipeline, and rescue levels of CFTR protein approach a cure for cystic fibrosis. In this review, we identify and characterize all preclinical and clinical emerging CFTR modulators and discuss the in vitro pharmacology, looking at CFTR protein expression and chloride transport and the translation to the clinic. The new emerging CFTR modulators could offer new therapeutic solutions for CF patients.
Collapse
Affiliation(s)
- Drishti P Ghelani
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
33
|
Beyond cystic fibrosis transmembrane conductance regulator therapy: a perspective on gene therapy and small molecule treatment for cystic fibrosis. Gene Ther 2019; 26:354-362. [PMID: 31300729 DOI: 10.1038/s41434-019-0092-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/07/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Cystic fibrosis (CF) is a life-limiting disease caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) activity. The recent advent of the FDA-approved CFTR modulator drug ivacaftor, alone or in combination with lumacaftor or tezacaftor, has enabled treatment of the majority of patients suffering from CF. Even before the identification of the CFTR gene, gene therapy was put forward as a viable treatment option for this genetic condition. However, initial enthusiasm has been hampered as CFTR gene delivery to the lungs has proven to be more challenging than expected. This review covers the contemporary clinical and scientific knowledge base for small molecule CFTR modulator drug therapy, gene delivery vectors and CRISPR/Cas9 gene editing and highlights the prospect of these technologies for future treatment options.
Collapse
|
34
|
Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC. Nanotechnology based therapeutics for lung disease. Thorax 2019; 74:965-976. [PMID: 31285360 DOI: 10.1136/thoraxjnl-2019-213037] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 11/03/2022]
Abstract
Nanomedicine is a multidisciplinary research field with an integration of traditional sciences such as chemistry, physics, biology and materials science. The application of nanomedicine for lung diseases as a relatively new area of interdisciplinary science has grown rapidly over the last 10 years. Promising research outcomes suggest that nanomedicine will revolutionise the practice of medicine, through the development of new approaches in therapeutic agent delivery, vaccine development and nanotechnology-based medical detections. Nano-based approaches in the diagnosis and treatment of lung diseases will, in the not too distant future, change the way we practise medicine. This review will focus on the current trends and developments in the clinical translation of nanomedicine for lung diseases, such as in the areas of lung cancer, cystic fibrosis, asthma, bacterial infections and COPD.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Galway, Ireland.,School of Pharmacy, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Fergus Poynton
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- CRANN Institute and AMBER Centre, University of Dublin Trinity College, Dublin, Ireland.,Department of Medicine, Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity College Dublin, Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Zhou ZP, Yang LL, Cao H, Chen ZR, Zhang Y, Wen XY, Hu J. In Vitro Validation of a CRISPR-Mediated CFTR Correction Strategy for Preclinical Translation in Pigs. Hum Gene Ther 2019; 30:1101-1116. [PMID: 31099266 DOI: 10.1089/hum.2019.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early efforts in cystic fibrosis (CF) gene therapy faced major challenges in delivery efficiency and sustained therapeutic gene expression. Recent advancements in engineered site-specific endonucleases such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 make permanent CF transmembrane conductance regulator (CFTR) gene correction possible. However, because of safety concerns of the CRISPR/Cas9 system and challenges in in vivo delivery to inflamed CF airway, CRISPR-based gene correction strategies need to be tested in proper animal models. In this study, we aimed at creating vectors for testing CFTR gene correction in pig models. We constructed helper-dependent adenoviral (HD-Ad) vectors to deliver CRISPR/Cas9 and a donor template (a 6 kb LacZ or 8.7 kb human CFTR expression cassette) into cultured pig cells. We demonstrated precise integration of each donor into the GGTA1 safe harbor through Cas9-induced homology directed repair with 3 kb homology arms. In addition, we showed that both LacZ and hCFTR were persistently expressed in transduced cells. Furthermore, we created a CFTR-deficient cell line for testing CFTR correction. We detected hCFTR mRNA and protein expression in cells transduced with the hCFTR vector. We also demonstrated CFTR function in the CF cells transduced with the HD-Ad delivering the CRISPR-Cas9 system and hCFTR donor at late cellular passages using the membrane potential sensitive dye-based assay (FLIPR®). Combined with our previous report on gene delivery to pig airway basal cells, these data provide the feasibility of testing CRISPR/Cas9-mediated permanent human CFTR correction through HD-Ad vector delivery in pigs.
Collapse
Affiliation(s)
- Zhichang Peter Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Liang Leo Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Huibi Cao
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Ziyan Rachel Chen
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Yiqian Zhang
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Xiao-Yan Wen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Department of Medicine, Physiology and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
36
|
Marquez Loza LI, Yuen EC, McCray PB. Lentiviral Vectors for the Treatment and Prevention of Cystic Fibrosis Lung Disease. Genes (Basel) 2019; 10:genes10030218. [PMID: 30875857 PMCID: PMC6471883 DOI: 10.3390/genes10030218] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023] Open
Abstract
Despite the continued development of cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs for the treatment of cystic fibrosis (CF), the need for mutation agnostic treatments remains. In a sub-group of CF individuals with mutations that may not respond to modulators, such as those with nonsense mutations, CFTR gene transfer to airway epithelia offers the potential for an effective treatment. Lentiviral vectors are well-suited for this purpose because they transduce nondividing cells, and provide long-term transgene expression. Studies in primary cultures of human CF airway epithelia and CF animal models demonstrate the long-term correction of CF phenotypes and low immunogenicity using lentiviral vectors. Further development of CF gene therapy requires the investigation of optimal CFTR expression in the airways. Lentiviral vectors with improved safety features have minimized insertional mutagenesis safety concerns raised in early clinical trials for severe combined immunodeficiency using γ-retroviral vectors. Recent clinical trials using improved lentiviral vectors support the feasibility and safety of lentiviral gene therapy for monogenetic diseases. While work remains to be done before CF gene therapy reaches the bedside, recent advances in lentiviral vector development reviewed here are encouraging and suggest it could be tested in clinical studies in the near future.
Collapse
Affiliation(s)
- Laura I Marquez Loza
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA.
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA.
| | - Eric C Yuen
- Talee Bio, 3001 Market Street, Suite 140, Philadelphia, PA 19104, USA.
| | - Paul B McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
37
|
Patel AK, Kaczmarek JC, Bose S, Kauffman KJ, Mir F, Heartlein MW, DeRosa F, Langer R, Anderson DG. Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805116. [PMID: 30609147 PMCID: PMC7490222 DOI: 10.1002/adma.201805116] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/15/2018] [Indexed: 05/18/2023]
Abstract
Noninvasive aerosol inhalation is an established method of drug delivery to the lung, and remains a desirable route for nucleic-acid-based therapeutics. In vitro transcribed (IVT) mRNA has broad therapeutic applicability as it permits temporal and dose-dependent control of encoded protein expression. Inhaled delivery of IVT-mRNA has not yet been demonstrated and requires development of safe and effective materials. To meet this need, hyperbranched poly(beta amino esters) (hPBAEs) are synthesized to enable nanoformulation of stable and concentrated polyplexes suitable for inhalation. This strategy achieves uniform distribution of luciferase mRNA throughout all five lobes of the lung and produces 101.2 ng g-1 of luciferase protein 24 h after inhalation of hPBAE polyplexes. Importantly, delivery is localized to the lung, and no luminescence is observed in other tissues. Furthermore, using an Ai14 reporter mouse model it is identified that 24.6% of the total lung epithelial cell population is transfected after a single dose. Repeat dosing of inhaled hPBAE-mRNA generates consistent protein production in the lung, without local or systemic toxicity. The results indicate that nebulized delivery of IVT-mRNA facilitated by hPBAE vectors may provide a clinically relevant delivery system to lung epithelium.
Collapse
Affiliation(s)
- Asha Kumari Patel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Cancer and Stem Cells, School of Medicine, and Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James C Kaczmarek
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Suman Bose
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin J Kauffman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Faryal Mir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Yan Z, Zou W, Feng Z, Shen W, Park SY, Deng X, Qiu J, Engelhardt JF. Establishment of a High-Yield Recombinant Adeno-Associated Virus/Human Bocavirus Vector Production System Independent of Bocavirus Nonstructural Proteins. Hum Gene Ther 2019; 30:556-570. [PMID: 30398383 DOI: 10.1089/hum.2018.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genome of recombinant adeno-associated virus 2 (rAAV2) remains a promising candidate for gene therapy for cystic fibrosis (CF) lung disease, but due to limitations in the packaging capacity and the tropism of this virus with respect to the airways, strategies have evolved for packaging an rAAV2 genome (up to 5.8 kb) into the capsid of human bocavirus 1 (HBoV1) to produce a chimeric rAAV2/HBoV1 vector. Although a replication-incompetent HBoV1 genome has been established as a trans helper for capsid complementation, this system remains suboptimal with respect to virion yield. Here, a streamlined production system is described based on knowledge of the involvement of HBoV1 nonstructural (NS) proteins NS1, NS2, NS3, NS4, and NP1 in the process of virion production. The analyses reveal that NS1 and NS2 negatively impact virion production, NP1 is required to prevent premature termination of transcription of the cap mRNA from the native genome, and silent mutations within the polyadenylation sites of the cap coding sequence can eliminate this requirement for NP1. It is further shown that preventing the expression of all NS proteins significantly increases virion yield. Whereas the expression of capsid proteins VP1, VP2, and VP3 from a codon-optimized cap mRNA was highly efficient, optimal virion assembly, and thus potency, required enhanced VP1 expression, entailing a separate VP1 expression cassette. The final NS protein-free production system uses three-plasmid co-transfection of HEK293 cells, with one trans helper plasmid encoding VP1 and the AAV2 Rep proteins, and another encoding VP2-3 and components from adenovirus. This system yielded >16-fold more virions than the prototypic system, without reducing transduction potency. This increase in virion production is expected to facilitate greatly both research on the biology of rAAV2/HBoV1 and preclinical studies testing the effectiveness of this vector for gene therapy of CF lung disease in large animal models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weiran Shen
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Soo Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Xuefeng Deng
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| |
Collapse
|
39
|
Terry TL, Givens BE, Rodgers VGJ, Salem AK. Tunable Properties of Poly-DL-Lactide-Monomethoxypolyethylene Glycol Porous Microparticles for Sustained Release of Polyethylenimine-DNA Polyplexes. AAPS PharmSciTech 2019; 20:23. [PMID: 30604270 DOI: 10.1208/s12249-018-1215-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Direct pulmonary delivery is a promising step in developing effective gene therapies for respiratory disease. Gene therapies can be used to treat the root cause of diseases, rather than just the symptoms. However, developing effective therapies that do not cause toxicity and that successfully reach the target site at therapeutic levels is challenging. We have developed a polymer-DNA complex utilizing polyethylene imine (PEI) and DNA, which was then encapsulated into poly(lactic acid)-co-monomethoxy poly(ethylene glycol) (PLA-mPEG) microparticles via double emulsion, solvent evaporation. Then, the resultant particle size, porosity, and encapsulation efficiency were measured as a function of altering preparation parameters. Microsphere formation was confirmed from scanning electron micrographs and the aerodynamic particle diameter was measured using an aerodynamic particle sizer. Several formulations produced particles with aerodynamic diameters in the 0-5 μm range despite having larger particle diameters which is indicative of porous particles. Furthermore, these aerodynamic diameters correspond to high deposition within the airways when inhaled and the measured DNA content indicated high encapsulation efficiency. Thus, this formulation provides promise for developing inhalable gene therapies.
Collapse
|
40
|
Arjmand B, Larijani B, Sheikh Hosseini M, Payab M, Gilany K, Goodarzi P, Parhizkar Roudsari P, Amanollahi Baharvand M, Hoseini Mohammadi NS. The Horizon of Gene Therapy in Modern Medicine: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:33-64. [PMID: 31845133 DOI: 10.1007/5584_2019_463] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene therapy as a novel study in molecular medicine will have a significant impact on human health in the near future. In recent years, the scope of gene therapy has been developed and is now beginning to revolutionize therapeutic approaches. Accordingly, many types of diseases are now being studied and treated in clinical trials through various gene delivery vectors. The emergence of recombinant DNA technology which provides the possibility of fetal genetic screening and genetic counseling is a good case in point. Therefore, gene therapy advances are being applied to correct inherited genetic disorders such as hemophilia, cystic fibrosis, and familial hypercholesterolemia as well as acquired diseases like cancer, AIDS, Alzheimer's disease, Parkinson's disease, and infectious diseases like HIV. As a result, gene therapy approaches have the ability to help the vast majority of newborns with different diseases. Since these ongoing treatments and clinical trials are being developed, many more barriers and challenges have been created. In order to continue this positive growth, these challenges need to be recognized and addressed. Accordingly, safety, efficiency and also risks and benefits of gene therapy trials for each disease should be considered. As a result, sustained manufacturing of the therapeutic gene product without any harmful side effects is the least requirement for gene therapy. Herein, different aspects of gene therapy, an overview of the progress, and also the prospects for the future have been discussed for the successful practice of gene therapy.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Motahareh Sheikh Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Amanollahi Baharvand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Hoseini Mohammadi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Osman G, Rodriguez J, Chan SY, Chisholm J, Duncan G, Kim N, Tatler AL, Shakesheff KM, Hanes J, Suk JS, Dixon JE. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J Control Release 2018; 285:35-45. [PMID: 30004000 PMCID: PMC6573017 DOI: 10.1016/j.jconrel.2018.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022]
Abstract
The lung remains an attractive target for the gene therapy of monogenetic diseases such as cystic fibrosis (CF). Despite over 27 clinical trials, there are still very few gene therapy vectors that have shown any improvement in lung function; highlighting the need to develop formulations with improved gene transfer potency and the desirable physiochemical characteristics for efficacious therapy. Herein, we introduce a novel cell penetrating peptide (CPP)-based non-viral vector that utilises glycosaminoglycan (GAG)-binding enhanced transduction (GET) for highly efficient gene transfer. GET peptides couple directly with DNA through electrostatic interactions to form nanoparticles (NPs). In order to adapt the GET peptide for efficient in vivo delivery, we engineered PEGylated versions of the peptide and employed a strategy to form DNA NPs with different densities of PEG coatings. We were able to identify candidate formulations (PEGylation rates ≥40%) that shielded the positively charged surface of particles, maintained colloidal stability in bronchoalveolar lavage fluid (BALF) and retained gene transfer activity in human bronchial epithelial cell lines and precision cut lung slices (PCLS) in vitro. Using multiple particle tracking (MPT) technology, we demonstrated that PEG-GET complexes were able to navigate the mucus mesh and diffuse rapidly through patient CF sputum samples ex vivo. When tested in mouse lung models in vivo, PEGylated particles demonstrated superior biodistribution, improved safety profiles and efficient gene transfer of a reporter luciferase plasmid compared to non-PEGylated complexes. Furthermore, gene expression was significantly enhanced in comparison to polyethylenimine (PEI), a non-viral gene carrier that has been widely tested in pre-clinical settings. This work describes an innovative approach that combines novel GET peptides for enhanced transfection with a tuneable PEG coating for efficacious lung gene therapy.
Collapse
Affiliation(s)
- Gizem Osman
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jason Rodriguez
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sze Yan Chan
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jane Chisholm
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg Duncan
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Namho Kim
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amanda L Tatler
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham NG5 1PB, UK
| | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Justin Hanes
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jung Soo Suk
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
42
|
Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2018; 31:317-334. [PMID: 28669112 PMCID: PMC5548848 DOI: 10.1007/s40259-017-0234-5] [Citation(s) in RCA: 726] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.
Collapse
Affiliation(s)
- Michael F Naso
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA.
| | - Brian Tomkowicz
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | - William L Perry
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | | |
Collapse
|
43
|
McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 2018; 19:54. [PMID: 29609604 PMCID: PMC5879563 DOI: 10.1186/s12931-018-0750-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Collapse
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Martin Donnelley
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - David Parsons
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| |
Collapse
|
44
|
Heltshe SL, Cogen J, Ramos KJ, Goss CH. Cystic Fibrosis: The Dawn of a New Therapeutic Era. Am J Respir Crit Care Med 2017; 195:979-984. [PMID: 27710011 DOI: 10.1164/rccm.201606-1250pp] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sonya L Heltshe
- 1 Division of Pediatric Pulmonology, Department of Pediatrics, and.,2 Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| | - Jonathan Cogen
- 1 Division of Pediatric Pulmonology, Department of Pediatrics, and
| | - Kathleen J Ramos
- 3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington; and
| | - Christopher H Goss
- 1 Division of Pediatric Pulmonology, Department of Pediatrics, and.,3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington; and.,2 Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
45
|
Kouis P, Hadjisavvas A, Middleton N, Papatheodorou SI, Kyriacou K, Yiallouros PK. The effect of l-Arginine on Ciliary Beat Frequency in PCD patients, non-PCD respiratory patients and healthy controls. Pulm Pharmacol Ther 2017; 48:15-21. [PMID: 29056509 DOI: 10.1016/j.pupt.2017.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Few studies have examined the potentially therapeutic effect of increasing the production of endogenous nitric oxide (NO) in Primary Ciliary Dyskinesia (PCD) and other chronic respiratory conditions. Nasal NO is low in PCD and has been found to correlate with compromised Ciliary Beat Frequency (CBF). In this study we assessed the effect of increasing l-Arginine, as the substrate of NO synthases, on CBF in biopsies of human respiratory ciliated epithelium. METHODOLOGY A total of 28 suspect cases with chronic respiratory manifestations referred for PCD diagnostic testing and 8 healthy controls underwent nasal brushing. Obtained epithelial cells were divided between three culture medium 199 solutions, containing different levels of l-Arginine (0.33 mM as baseline, 1 mM and 10 Mm as increased levels). CBF measurements were obtained at 37 °C and 25 °C at 1, 3 and 24 h after sample acquisition. RESULTS Among a total of 36 recruited subjects, 8 had PCD confirmed (PCD n = 8), 20 had PCD excluded (non-PCD n = 20) and 8 were healthy controls (Healthy Controls = 8). Among PCD subjects, ciliary motility was characterized by rotational (n = 5) or dyskinetic (n = 3) beating. At 37 °C, compared to baseline, higher levels of l-Arginine resulted in up to 9% CBF increase at 1 h (p = 0.007), up to 9% CBF increase at 3 h (p < 0.001) and up to 12% CBF increase at 24 h (p = 0.002). Similar although smaller scale increases were recorded at 25 °C. The effect of l-Arginine was time dependent (interaction p = 0.002) and was similar in PCD patients, non-PCD chronic respiratory patients and healthy controls (interaction p = 0.800). CONCLUSIONS l-Arginine increases CBF and merits to be evaluated as a potential stimulator of mucociliary clearance in chronic respiratory conditions and congenital ciliary disorders with residual motility. Larger human studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Panayiotis Kouis
- Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus.
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| | - Nicos Middleton
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus.
| | - Stefania I Papatheodorou
- Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus.
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| | - Panayiotis K Yiallouros
- Medical School, University of Cyprus, Nicosia, Cyprus; Hospital 'Archbishop Makarios III', Nicosia, Cyprus.
| |
Collapse
|
46
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
47
|
von Dossow V, Costa J, D'Ovidio F, Marczin N. Worldwide trends in heart and lung transplantation: Guarding the most precious gift ever. Best Pract Res Clin Anaesthesiol 2017; 31:141-152. [PMID: 29110788 DOI: 10.1016/j.bpa.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/17/2023]
Abstract
Transplantation is sadly a therapy to die for. The survival of a recipient with end-stage heart or lung disease requires the demise of a human being through brain death or cessation of circulation, with the noblest final act of offering one's organs to another. However, transplantation is constrained by severe hemodynamic, regulatory, inflammatory, and metabolic stresses in the donor, rendering the majority of offered organs unsuitable for transplantation. Coupled with our inability to acquire exact molecular and cellular information and missed opportunities for effectively modulating deteriorations of donors and allografts, anesthesia and critical care contributes to ongoing organ shortages. Progress is made with improving waiting lists by bridging patients for transplantation using mechanical support. However, this represents more complex recipients, higher risk transplant operations, and increased resource utilization. The advent of ex vivo perfusion allows implementing novel diagnostic and therapeutic strategies with real potential of reconditioning less ideal organs. This review advocates a paradigm change in critical care management of the potential donor for improving retrieval practices and for more intellectual involvement of our specialties in organ preservation, ex vivo evaluation and reconditioning, and the need for great advancement in our efficiency in converting unacceptable allografts to suitable donor organs.
Collapse
Affiliation(s)
- Vera von Dossow
- Department of Anesthesiology, Ludwig-Maximilians-University of Munich, Germany
| | - Joseph Costa
- Department of Surgery, Division of Cardiothoracic Surgery and Transplantation, Columbia University Medical Center, New York, NY, USA
| | - Frank D'Ovidio
- Department of Surgery, Division of Cardiothoracic Surgery and Transplantation, Columbia University Medical Center, New York, NY, USA
| | - Nandor Marczin
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anaesthesia, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, Harefield, Middlesex, UK; Centre of Anaesthesia and Intensive Care, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
48
|
Guggino WB, Cebotaru L. Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther 2017; 17:1265-1273. [PMID: 28657358 DOI: 10.1080/14712598.2017.1347630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Since the cystic fibrosis (CF) gene was discovered in 1989, researchers have worked to develop a gene therapy. One of the most promising and enduring vectors is the AAV, which has been shown to be safe. In particular, several clinical trials have been conducted with AAV serotype 2. All of them detected viral genomes, but identification of mRNA transduction was not consistent; clinical outcomes in Phase II studies were also inconsistent. The lack of a positive outcome has been attributed to a less-than-efficient viral infection by AAV2, a weak transgene promoter and the host immune response to the vector. Areas covered: Herein, the authors focus on AAV gene therapy for CF, evaluating past experience with this approach and identifying ways forward, based on the progress that has already been made in identifying and overcoming the limitations of AAV gene therapy. Expert opinion: Such progress makes it clear that this is an opportune time to push forward toward the development of a gene therapy for CF. Drugs to treat the basic defect in CF represent a remarkable advance but cannot treat a significant cohort of patients with rare mutations. Thus, there is a critical need to develop a gene therapy for those individuals.
Collapse
Affiliation(s)
- William B Guggino
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| | - Liudmila Cebotaru
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
49
|
Fajac I, Wainwright CE. New treatments targeting the basic defects in cystic fibrosis. Presse Med 2017; 46:e165-e175. [PMID: 28554723 DOI: 10.1016/j.lpm.2017.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder affecting around 75,000 individuals worldwide. It is a multi-system disease but the main morbidity and mortality is caused by chronic lung disease. Due to newborn screening, a multidisciplinary approach to care and intensive symptomatic treatment, the prognosis has dramatically improved over the last decades and there are currently more adults than children in many countries. However, CF is still a very severe disease with a current median age of life expectancy in the fourth decade of life. The disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which encodes the CFTR protein, a protein kinase A-activated ATP-gated anion channel that regulates the transport of electrolytes such as chloride and bicarbonate. More than 2000 mutations have been reported, although not all of these have functional consequences. An enormous research effort and progress has been made in understanding the consequences of these mutations on the CFTR protein structure and function, and this has led to the approval of two new drug therapies that are able to bind to defective CFTR proteins and partially restore their function. They are mutation-specific therapies and available at present for specific mutations only. They are the first personalized medicine for CF with a possible disease-modifying effect. A pipeline of other compounds is under development with different mechanisms of action. It is foreseeable that new combinations of compounds will further improve the correction of CFTR function. Other strategies including premature stop codon read-through drugs, antisense oligonucleotides that correct the basic defect at the mRNA level or gene editing to restore the defective gene as well as gene therapy approaches are all in the pipeline. All these strategies are needed to develop disease-modifying therapies for all patients with CF.
Collapse
Affiliation(s)
- Isabelle Fajac
- Université Paris Descartes, Sorbonne Paris Cité, site Cochin, 24, rue du Faubourg-Saint-Jacques, 75014 Paris, France; AP-HP, hôpital Cochin, service de physiologie et explorations fonctionnelles,27, rue du Faubourg-Saint-Jacques, 75014 Paris, France.
| | - Claire E Wainwright
- University of Queensland, St Lucia Queensland 4072,Brisbane, Australia; Lady Cilento Children's Hospital, 501 Stanley St, 4101 Brisbane, QLD, Australia
| |
Collapse
|
50
|
Yan Z, Feng Z, Sun X, Zhang Y, Zou W, Wang Z, Jensen-Cody C, Liang B, Park SY, Qiu J, Engelhardt JF. Human Bocavirus Type-1 Capsid Facilitates the Transduction of Ferret Airways by Adeno-Associated Virus Genomes. Hum Gene Ther 2017; 28:612-625. [PMID: 28490200 DOI: 10.1089/hum.2017.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human bocavirus type-1 (HBoV1) has a high tropism for the apical membrane of human airway epithelia. The packaging of a recombinant adeno-associated virus 2 (rAAV2) genome into HBoV1 capsid produces a chimeric vector (rAAV2/HBoV1) that also efficiently transduces human airway epithelia. As such, this vector is attractive for use in gene therapies to treat lung diseases such as cystic fibrosis. However, preclinical development of rAAV2/HBoV1 vectors has been hindered by the fact that humans are the only known host for HBoV1 infection. This study reports that rAAV2/HBoV1 vector is capable of efficiently transducing the lungs of both newborn (3- to 7-day-old) and juvenile (29-day-old) ferrets, predominantly in the distal airways. Analyses of in vivo, ex vivo, and in vitro models of the ferret proximal airway demonstrate that infection of this particular region is less effective than it is in humans. Studies of vector binding and endocytosis in polarized ferret proximal airway epithelial cultures revealed that a lack of effective vector endocytosis is the main cause of inefficient transduction in vitro. While transgene expression declined proportionally with growth of the ferrets following infection at 7 days of age, reinfection of ferrets with rAAV2/HBoV1 at 29 days gave rise to approximately 5-fold higher levels of transduction than observed in naive infected 29-day-old animals. The findings presented here lay the foundation for clinical development of HBoV1 capsid-based vectors for lung gene therapy in cystic fibrosis using ferret models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Xingshen Sun
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Yulong Zhang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - Zekun Wang
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | | | - Bo Liang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Soo-Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| |
Collapse
|