1
|
Chien Y, Wu YR, Chen CY, Yang YP, Ching LJ, Wang BX, Chang WC, Chiang IH, Su P, Chen SY, Lin WC, Wang IC, Lin TC, Chen SJ, Chiou SH. Identifying Multiomic Signatures of X-Linked Retinoschisis-Derived Retinal Organoids and Mice Harboring Patient-Specific Mutation Using Spatiotemporal Single-Cell Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405818. [PMID: 39503290 DOI: 10.1002/advs.202405818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
X-linked retinoschisis (XLRS) is an inherited retinal disorder with severe retinoschisis and visual impairments. Multiomics approaches integrate single-cell RNA-sequencing (scRNA-seq) and spatiotemporal transcriptomics (ST) offering potential for dissecting transcriptional networks and revealing cell-cell interactions involved in biomolecular pathomechanisms. Herein, a multimodal approach is demonstrated combining high-throughput scRNA-seq and ST to elucidate XLRS-specific transcriptomic signatures in two XLRS-like models with retinal splitting phenotypes, including genetically engineered (Rs1emR209C) mice and patient-derived retinal organoids harboring the same patient-specific p.R209C mutation. Through multiomics transcriptomic analysis, the endoplasmic reticulum (ER) stress/eukryotic initiation factor 2 (eIF2) signaling, mTOR pathway, and the regulation of eIF4 and p70S6K pathways are identified as chronically enriched and highly conserved disease pathways between two XLRS-like models. Western blots and proteomics analysis validate the occurrence of unfolded protein responses, chronic eIF2α signaling activation, and chronic ER stress-induced apoptosis. Furthermore, therapeutic targeting of the chronic ER stress/eIF2α pathway activation synergistically enhances the efficacy of AAV-mediated RS1 gene delivery, ultimately improving bipolar cell integrity, postsynaptic transmission, disorganized retinal architecture, and electrophysiological responses. Collectively, the complex transcriptomic signatures obtained from Rs1emR209C mice and patient-derived retinal organoids using the multiomics approach provide opportunities to unravel potential therapeutic targets for incurable retinal diseases, such as XLRS.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Lo-Jei Ching
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Bo-Xuan Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - I-Hsun Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Pong Su
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - I-Chieh Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Shih-Jen Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
2
|
Duan C, Ding C, Sun X, Mao S, Liang Y, Liu X, Ding X, Chen J, Tang S. Retinal organoids with X-linked retinoschisis RS1 (E72K) mutation exhibit a photoreceptor developmental delay and are rescued by gene augmentation therapy. Stem Cell Res Ther 2024; 15:152. [PMID: 38816767 PMCID: PMC11140964 DOI: 10.1186/s13287-024-03767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS. METHODS hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy. RESULTS ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation. CONCLUSIONS The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.
Collapse
Affiliation(s)
- Chunwen Duan
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan, China
| | | | - Xihao Sun
- Aier Eye Institute, Changsha, Hunan, China
| | - Shengru Mao
- Aier Eye Institute, Changsha, Hunan, China
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Xinyu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong, China.
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
- Guangzhou Aier Eye Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Zeng Y, Gao S, Li Y, Marangoni D, De Silva T, Wong WT, Chew EY, Sun X, Li T, Sieving PA, Qian H. OCT Intensity of the Region between Outer Retina Band 2 and Band 3 as a Biomarker for Retinal Degeneration and Therapy. Bioengineering (Basel) 2024; 11:449. [PMID: 38790316 PMCID: PMC11118669 DOI: 10.3390/bioengineering11050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Optical coherence tomography (OCT) is widely used to probe retinal structure and function. This study investigated the outer retina band (ORB) pattern and reflective intensity for the region between bands 2 and 3 (Dip) in three mouse models of inherited retinal degeneration (Rs1KO, TTLL5KO, RPE65KO) and in human AMD patients from the A2A database. OCT images were manually graded, and reflectivity signals were used to calculate the Dip ratio. Qualitative analyses demonstrated the progressive merging band 2 and band 3 in all three mouse models, leading to a reduction in the Dip ratio compared to wildtype (WT) controls. Gene replacement therapy in Rs1KO mice reverted the ORB pattern to one resembling WT and increased the Dip ratio. The degree of anatomical rescue in these mice was highly correlated with level of transgenic RS1 expression and with the restoration of ERG b-wave amplitudes. While the inner retinal cavity was significantly enlarged in dark-adapted Rs1KO mice, the Dip ratio was not altered. A reduction of the Dip ratio was also detected in AMD patients compared with healthy controls and was also positively correlated with AMD severity on the AMD score. We propose that the ORB and Dip ratio can be used as non-invasive early biomarkers for retina health, which can be used to probe therapeutic gene expression and to evaluate the effectiveness of therapy.
Collapse
Affiliation(s)
- Yong Zeng
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Z.); (S.G.); (Y.L.)
| | - Shasha Gao
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Z.); (S.G.); (Y.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Z.); (S.G.); (Y.L.)
| | - Dario Marangoni
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Tharindu De Silva
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai T. Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Emily Y. Chew
- Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xun Sun
- Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD 20892, USA (T.L.)
| | - Tiansen Li
- Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD 20892, USA (T.L.)
| | | | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Z.); (S.G.); (Y.L.)
| |
Collapse
|
4
|
Sun Y, Xiao D, Li Z, Xu D, Zhang D, An Y, Xue J, Ren Y, Liu S, Wang D, Li J, Wang Z, Pang J. Intravitreal injection of new adeno-associated viral vector: Enhancing retinoschisin 1 gene transduction in a mouse model of X-linked retinoschisis. Biochem Biophys Rep 2024; 37:101646. [PMID: 38333050 PMCID: PMC10851200 DOI: 10.1016/j.bbrep.2024.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Adeno-associated virus (AAV) vectors have been widely used in therapy to treat hereditary retinal diseases. But its transduction efficiency by intravitreal injection still needs to be improved. In this study, we investigated the transduction efficiency of AAV-DJ (K137R)-GFP in different retinal cells of normal mice, as well as the therapy effection of AAV-DJ (K137R)-Rs1 on retinal function and structure in Rs1-KO mice. The intravitreal injection of AAV-DJ (K137R)-GFP demonstrated that this vector transduced cells in all layers of the retina, including the inner nuclear layer and photoreceptor layer. The intravitreal injection of AAV-DJ (K137R)-Rs1 found that 3 months post-injection of this vector improved retinal function and structure in Rs1-KO mice. Our conclusion is that AAV-DJ (K137R) vector can efficiently and safely penetrate the inner limiting membrane and transduce different layers of retinal cells in the long term, as well as being able to continuously and efficiently express target therapeutic proteins, making it a candidate therapeutic vector for X-linked retinoschisis (XLRS).
Collapse
Affiliation(s)
- Yan Sun
- Shenyang He Eye Specialist Hospital, Shenyang, China
- He University, Shenyang, China
| | - Dan Xiao
- Shenyang He Eye Specialist Hospital, Shenyang, China
| | - Zhuang Li
- Shenyang He Eye Specialist Hospital, Shenyang, China
| | - Dan Xu
- He University, Shenyang, China
| | | | | | | | - Yue Ren
- Shenyang He Eye Specialist Hospital, Shenyang, China
| | - Shu Liu
- Shenyang He Eye Specialist Hospital, Shenyang, China
| | - Di Wang
- Shenyang He Eye Specialist Hospital, Shenyang, China
| | - Jun Li
- Shenyang He Eye Specialist Hospital, Shenyang, China
| | - Zhuoshi Wang
- Shenyang He Eye Specialist Hospital, Shenyang, China
- He University, Shenyang, China
| | - Jijing Pang
- Shenyang He Eye Specialist Hospital, Shenyang, China
- He University, Shenyang, China
| |
Collapse
|
5
|
Hassan S, Hsu Y, Thompson JM, Kalmanek E, VandeLune JA, Stanley S, Drack AV. The dose-response relationship of subretinal gene therapy with rAAV2tYF-CB-h RS1 in a mouse model of X-linked retinoschisis. Front Med (Lausanne) 2024; 11:1304819. [PMID: 38414621 PMCID: PMC10898246 DOI: 10.3389/fmed.2024.1304819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose X-linked retinoschisis (XLRS), due to loss-of-function mutations in the retinoschisin (RS1) gene, is characterized by a modest to severe decrease in visual acuity. Clinical trials for XLRS utilizing intravitreal (IVT) gene therapy showed ocular inflammation. We conducted a subretinal dose-response preclinical study using rAAV2tYF-CB-hRS1 utilizing the Rs1 knockout (Rs1-KO) mouse to investigate short- and long-term retinal rescue after subretinal gene delivery. Methods Rs1-KO mice were subretinally injected with 2 μL of rAAV2tYF-CB-hRS1 vector with 8E9 viral genomes (vg)/eye, 8E8 vg/eye, 8E7 vg/eye, or sham injection, and compared to untreated eyes. Reconstitution of human RS1 protein was detected using western blotting. Analysis of retinal function by electroretinography (ERG) and structural analysis by optical coherence tomography (OCT) were performed at 1, 2, 3, 5, 7, and 12 months post injection (MPI). Immunohistochemistry (IHC) was performed to evaluate cone rescue on the cellular level. Functional vision was evaluated using a visually guided swim assay (VGSA). Results Western blotting analysis showed human RS1 protein expression in a dose-dependent manner. Quantification of western blotting showed that the RS1 protein expression in mice treated with the 8E8 vg dose was near the wild-type (WT) expression levels. ERG demonstrated dose-dependent effects: At 1 MPI the 8E8 vg dose treated eyes had higher light-adapted (LA) ERG amplitudes in 3.0 flash and 5 Hz flicker compared to untreated (p < 0.0001) and sham-treated eyes (p < 0.0001) which persisted until the 12 MPI endpoint, consistent with improved cone function. ERG b-wave amplitudes were higher in response to dark-adapted (DA) 0.01 dim flash and 3.0 standard combined response (SCR) compared to sham-treated (p < 0.01) and untreated eyes (p < 0.001) which persisted until 3 MPI, suggesting short-term improvement of the rod photoreceptors. All injections, including sham-treated, resulted in a cyst severity score of 1 (no cavities), with significant reductions compared to untreated eyes up to 3 MPI (p < 0.05). The high and low dose groups showed inconsistent ERG improvements, despite reduced cyst severity, emphasizing the dose-dependent nature of gene augmentation's efficacy and the tenuous connection between cyst reduction and ERG improvement. IHC data showed a significant cone rescue in eyes treated with the 8E8 vg dose compared to sham-treated and untreated eyes. VGSA showed better functional vision in 8E8 vg dose treated mice. Eyes treated with the highest dose showed occasional localized degeneration in the outer nuclear layer. Conclusion Our data suggest that a dose of 8E8 vg/eye subretinally improves retinal function and structure in the Rs1-KO mouse. It improves cone function, rod function, and reduces cyst severity. Sham treatment resolves schisis cysts, but 8E8 vg/eye is needed for optimal retinal electrical function rescue. These findings offer a promising path for clinical translation to human trials.
Collapse
Affiliation(s)
- Salma Hassan
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jacob M Thompson
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Emily Kalmanek
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Joel A VandeLune
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah Stanley
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
6
|
van der Veen I, Heredero Berzal A, Koster C, ten Asbroek ALMA, Bergen AA, Boon CJF. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. Int J Mol Sci 2024; 25:1267. [PMID: 38279267 PMCID: PMC10816913 DOI: 10.3390/ijms25021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.
Collapse
Affiliation(s)
- Isa van der Veen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Céline Koster
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Mautone L, Atiskova Y, Druchkiv V, Spitzer MS, Dulz S. Diurnal functional and anatomical changes in X-linked retinoschisis. Graefes Arch Clin Exp Ophthalmol 2023; 261:3307-3313. [PMID: 37294434 PMCID: PMC10587233 DOI: 10.1007/s00417-023-06106-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND To investigate the changes in macular cystic schisis (MCS) and sensitivity during the day in X-linked retinoschisis (XLRS) patients. METHODS Treatment-naïve patients with genetically verified XLRS underwent best-correlated visual acuity (BCVA) testing with ETDRS charts, spectral domain optical coherence tomography, and microperimetry (MP) twice a day, at 9 a.m. and 4 p.m., to measure changes in central retinal thickness (CRT), macular volume (MV), average threshold (AT), and fixation stability parameters (P1 and P2). RESULTS At baseline, the BCVA of the 14 eyes of 8 patients amounted 0.73 (± 0.23) LogMAR. Between timepoints, the BCVA increased in 3.21 letters (p = .021), the AV improved in 1.84 dB (p = .03, 9.73%), the CRT decreased in 24.43 µm (p = .007, - 4.05%), and the MV dropped in 0.27 µm3 (p = .016, - 2.68%). P1 and P2 did not variate. The collapse of the MCS led to the reduction of macula thickness. CRT at baseline correlated with the decrease of CRT (Spearman's ρ: - 0.83 [p = .001]). Age and change of BCVA, CRT, and AV did not correlate among one another. Eyes with disrupted ellipsoid zone showed a more prominent change in CRT (p = .050). Photoreceptor outer segment length and integrity of the external limiting membrane and cone outer segment tips were not associated with BCVA, AT, or CRT variation. CONCLUSION Eyes of treatment-naïve XLRS patients show diurnal macular thickness and function changes. Eyes with pronounced macular thickness show a greater reduction of the MCS. These results should be taken into consideration in upcoming clinical trials in XLRS. TRIAL REGISTRATION NUMBER Institutional Review Board of the Hamburg Medical Chamber (Ethik-Kommission der Ärztekammer Hamburg): 2020-10,328.
Collapse
Affiliation(s)
- Luca Mautone
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany.
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| | - Vasyl Druchkiv
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| | - Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| |
Collapse
|
8
|
Hassan S, Hsu Y, Mayer SK, Thomas J, Kothapalli A, Helms M, Baker SA, Laird JG, Bhattarai S, Drack AV. A visually guided swim assay for mouse models of human retinal disease recapitulates the multi-luminance mobility test in humans. Saudi J Ophthalmol 2023; 37:313-320. [PMID: 38155679 PMCID: PMC10752274 DOI: 10.4103/sjopt.sjopt_155_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 12/30/2023] Open
Abstract
PURPOSE The purpose of this study was to develop a visually guided swim assay (VGSA) for measuring vision in mouse retinal disease models comparable to the multi-luminance mobility test (MLMT) utilized in human clinical trials. METHODS Three mouse retinal disease models were studied: Bardet-Biedl syndrome type 1 (Bbs1M390R/M390R), n = 5; Bardet-Biedl syndrome type 10 (Bbs10-/-), n = 11; and X linked retinoschisis (retinoschisin knockout; Rs1-KO), n = 5. Controls were normally-sighted mice, n = 10. Eyeless Pax6Sey-Dey mice, n = 4, were used to determine the performance of animals without vision in VGSA. RESULTS Eyeless Pax6Sey-Dey mice had a VGSA time-to-platform (TTP) 7X longer than normally-sighted controls (P < 0.0001). Controls demonstrated no difference in their TTP in both lighting conditions; the same was true for Pax6Sey-Dey. At 4-6 M, Rs1-KO and Bbs10-/- had longer TTP in the dark than controls (P = 0.0156 and P = 1.23 × 10-8, respectively). At 9-11 M, both BBS models had longer TTP than controls in light and dark with times similar to Pax6Sey-Dey (P < 0.0001), demonstrating progressive vision loss in BBS models, but not in controls nor in Rs1-KO. At 1 M, Bbs10-/- ERG light-adapted (cone) amplitudes were nonrecordable, resulting in a floor effect. VGSA did not reach a floor until 9-11 M. ERG combined rod/cone b-wave amplitudes were nonrecordable in all three mutant groups at 9-11 M, but VGSA still showed differences in visual function. ERG values correlate non-linearly with VGSA, and VGSA measured the continual decline of vision. CONCLUSION ERG is no longer a useful endpoint once the nonrecordable level is reached. VGSA differentiates between different levels of vision, different ages, and different disease models even after ERG is nonrecordable, similar to the MLMT in humans.
Collapse
Affiliation(s)
- Salma Hassan
- Department of Anatomy and Cell Biology, Biomedical Science- Cell and Developmental Biology Graduate Program, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Sara K. Mayer
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | | | - Megan Helms
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Sheila A. Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Joseph G. Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
| | - Arlene V. Drack
- Department of Anatomy and Cell Biology, Biomedical Science- Cell and Developmental Biology Graduate Program, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, IVR, Iowa City, IA, USA
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Ku CA, Wei LW, Sieving PA. X-Linked Retinoschisis. Cold Spring Harb Perspect Med 2023; 13:a041288. [PMID: 36690462 PMCID: PMC10513161 DOI: 10.1101/cshperspect.a041288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
X-linked retinoschisis (XLRS) is an inherited vitreoretinal dystrophy causing visual impairment in males starting at a young age with an estimated prevalence of 1:5000 to 1:25,000. The condition was first observed in two affected brothers by Josef Haas in 1898 and is clinically diagnosed by characteristic intraretinal cysts arranged in a petaloid "spoke-wheel" pattern centered in the macula. When clinical electroretinogram (ERG) testing began in the 1960s, XLRS was noted to have a characteristic reduction of the dark-adapted b-wave amplitude despite normal or usually nearly normal a-wave amplitudes, which became known as the "electronegative ERG response" of XLRS disease. The causative gene, RS1, was identified on the X-chromosome in 1997 and led to understanding the molecular and cellular basis of the condition, discerning the structure and function of the retinoschisin protein, and generating XLRS murine models. Along with parallel development of gene delivery vectors suitable for targeting retinal diseases, successful gene augmentation therapy was demonstrated by rescuing the XLRS phenotype in mouse. Two human phase I/II therapeutic XLRS gene augmentation studies were initiated; and although these did not yield definitive improvement in visual function, they gave significant new knowledge and experience, which positions the field for further near-term clinical testing with enhanced, next-generation gene therapy for XLRS patients.
Collapse
Affiliation(s)
- Cristy A Ku
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California 95817, USA
| | - Lisa W Wei
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, NIH Office of Biodefense, Research Resources and Translational Research/Vaccine Section, Bethesda, Maryland 20892, USA
| | - Paul A Sieving
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California 95817, USA
| |
Collapse
|
10
|
Shamshad A, Kang C, Jenny LA, Persad-Paisley EM, Tsang SH. Translatability barriers between preclinical and clinical trials of AAV gene therapy in inherited retinal diseases. Vision Res 2023; 210:108258. [PMID: 37244011 PMCID: PMC10526971 DOI: 10.1016/j.visres.2023.108258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
Inherited retinal diseases (IRDs) are progressive degenerative diseases which cause gradual vision loss or complete blindness. As over 270 gene mutations have been identified in the underlying pathology of IRDs, gene therapy as a treatment modality has been an increasingly active realm of investigation. Currently, the most common vehicle of ocular gene delivery is the adeno-associated virus (AAV) vector. This is injected into the immune-privileged subretinal space to mediate transgene expression in retinal cells. Although numerous animal models of IRDs have demonstrated successful outcomes following AAV-mediated gene delivery, many of these studies fail to translate into successful outcomes in clinical trials. The purpose of this review is to A) comparatively assess preclinical and clinical IRD trials in which the success of AAV-mediated therapy failed to translate between animal and human participants B) discuss factors which may complicate the translatability of gene therapy in animals to results in humans.
Collapse
Affiliation(s)
| | - Chaerim Kang
- Warren Alpert Medical School of Brown University, USA
| | - Laura A Jenny
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Stephen H Tsang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY, USA; Insitute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Heymann JB, Vijayasarathy C, Fariss RN, Sieving PA. Advances in understanding the molecular structure of retinoschisin while questions remain of biological function. Prog Retin Eye Res 2023; 95:101147. [PMID: 36402656 PMCID: PMC10185713 DOI: 10.1016/j.preteyeres.2022.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Retinoschisin (RS1) is a secreted protein that is essential for maintaining integrity of the retina. Numerous mutations in RS1 cause X-linked retinoschisis (XLRS), a progressive degeneration of the retina that leads to vision loss in young males. A key manifestation of XLRS is the formation of cavities (cysts) in the retina and separation of the layers (schisis), disrupting synaptic transmission. There are currently no approved treatments for patients with XLRS. Strategies using adeno-associated viral (AAV) vectors to deliver functional copies of RS1 as a form of gene augmentation therapy, are under clinical evaluation. To improve therapeutic strategies for treating XLRS, it is critical to better understand the secretion of RS1 and its molecular function. Immunofluorescence and immunoelectron microscopy show that RS1 is located on the surfaces of the photoreceptor inner segments and bipolar cells. Sequence homology indicates a discoidin domain fold, similar to many other proteins with demonstrated adhesion functions. Recent structural studies revealed the tertiary structure of RS1 as two back-to-back octameric rings, each cross-linked by disulfides. The observation of higher order structures in vitro suggests the formation of an adhesive matrix spanning the distance between cells (∼100 nm). Several studies indicated that RS1 readily binds to other proteins such as the sodium-potassium ATPase (NaK-ATPase) and extracellular matrix proteins. Alternatively, RS1 may influence fluid regulation via interaction with membrane proteins such as the NaK-ATPase, largely inferred from the use of carbonic anhydrase inhibitors to shrink the typical intra-retinal cysts in XLRS. We discuss these models in light of RS1 structure and address the difficulty in understanding the function of RS1.
Collapse
Affiliation(s)
- J Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration, NIDCD, NIH, Bethesda, MD, 20892, USA
| | - Robert N Fariss
- Biological Imaging Core Facility, NEI, NIH, Bethesda, MD, 20892, USA
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, Ophthalmology, U C Davis Health, Sacramento, CA, 95817, USA
| |
Collapse
|
12
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
13
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
14
|
Scruggs BA, Bhattarai S, Helms M, Cherascu I, Salesevic A, Stalter E, Laird J, Baker SA, Drack AV. AAV2/4-RS1 gene therapy in the retinoschisin knockout mouse model of X-linked retinoschisis. PLoS One 2022; 17:e0276298. [PMID: 36477475 PMCID: PMC9728878 DOI: 10.1371/journal.pone.0276298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate efficacy of a novel adeno-associated virus (AAV) vector, AAV2/4-RS1, for retinal rescue in the retinoschisin knockout (Rs1-KO) mouse model of X-linked retinoschisis (XLRS). Brinzolamide (Azopt®), a carbonic anhydrase inhibitor, was tested for its ability to potentiate the effects of AAV2/4-RS1. METHODS AAV2/4-RS1 with a cytomegalovirus (CMV) promoter (2x1012 viral genomes/mL) was delivered to Rs1-KO mice via intravitreal (N = 5; 1μL) or subretinal (N = 21; 2μL) injections at postnatal day 60-90. Eleven mice treated with subretinal therapy also received topical Azopt® twice a day. Serial full field electroretinography (ERG) was performed starting at day 50-60 post-injection. Mice were evaluated using a visually guided swim assay (VGSA) in light and dark conditions. The experimental groups were compared to untreated Rs1-KO (N = 11), wild-type (N = 12), and Rs1-KO mice receiving only Azopt® (N = 5). Immunofluorescence staining was performed to assess RS1 protein expression following treatment. RESULTS The ERG b/a ratio was significantly higher in the subretinal plus Azopt® (p<0.0001), subretinal without Azopt® (p = 0.0002), and intravitreal (p = 0.01) treated eyes compared to untreated eyes. There was a highly significant subretinal treatment effect on ERG amplitudes collectively at 7-9 months post-injection (p = 0.0003). Cones showed more effect than rods. The subretinal group showed improved time to platform in the dark VGSA compared to untreated mice (p<0.0001). RS1 protein expression was detected in the outer retina in subretinal treated mice and in the inner retina in intravitreal treated mice. CONCLUSIONS AAV2/4-RS1 shows promise for improving retinal phenotype in the Rs1-KO mouse model. Subretinal delivery was superior to intravitreal. Topical brinzolamide did not improve efficacy. AAV2/4-RS1 may be considered as a potential treatment for XLRS patients.
Collapse
Affiliation(s)
- Brittni A. Scruggs
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Sajag Bhattarai
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Megan Helms
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Ioana Cherascu
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Adisa Salesevic
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Elliot Stalter
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Laird
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Sheila A. Baker
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Arlene V. Drack
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
15
|
Vijayasarathy C, Zeng Y, Marangoni D, Dong L, Pan ZH, Simpson EM, Fariss RN, Sieving PA. Targeted Expression of Retinoschisin by Retinal Bipolar Cells in XLRS Promotes Resolution of Retinoschisis Cysts Sans RS1 From Photoreceptors. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 36227606 PMCID: PMC9583743 DOI: 10.1167/iovs.63.11.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/18/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose Loss of retinoschisin (RS1) function underlies X-linked retinoschisis (XLRS) pathology. In the retina, both photoreceptor inner segments and bipolar cells express RS1. However, the loss of RS1 function causes schisis primarily in the inner retina. To understand these cell type-specific phenotypes, we decoupled RS1 effects in bipolar cells from that in photoreceptors. Methods Bipolar cell transgene RS1 expression was achieved using two inner retina-specific promoters: (1) a minimal promoter engineered from glutamate receptor, metabotropic glutamate receptor 6 gene (mini-mGluR6/ Grm6) and (2) MiniPromoter (Ple155). Adeno-associated virus vectors encoding RS1 gene under either the mini-mGluR6 or Ple-155 promoter were delivered to the XLRS mouse retina through intravitreal or subretinal injection on postnatal day 14. Retinal structure and function were assessed 5 weeks later: immunohistochemistry for morphological characterization, optical coherence tomography and electroretinography (ERG) for structural and functional evaluation. Results Immunohistochemical analysis of RS1expression showed that expression with the MiniPromoter (Ple155) was heavily enriched in bipolar cells. Despite variations in vector penetrance and gene transfer efficiency across the injected retinas, those retinal areas with robust bipolar cell RS1 expression showed tightly packed bipolar cells with fewer cavities and marked improvement in inner retinal structure and synaptic function as judged by optical coherence tomography and electroretinography, respectively. Conclusions These results demonstrate that RS1 gene expression primarily in bipolar cells of the XLRS mouse retina, independent of photoreceptor expression, can ameliorate retinoschisis structural pathology and provide further evidence of RS1 role in cell adhesion.
Collapse
Affiliation(s)
- Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Yong Zeng
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Marangoni
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A. Sieving
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
- Center for Ocular Regenerative Therapy, Department of Ophthalmology, University of California Davis, United States
| |
Collapse
|
16
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
17
|
Retinal Proteomic Alterations and Combined Transcriptomic-Proteomic Analysis in the Early Stages of Progression of a Mouse Model of X-Linked Retinoschisis. Cells 2022; 11:cells11142150. [PMID: 35883593 PMCID: PMC9321393 DOI: 10.3390/cells11142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
X-linked retinoschisis (XLRS) is among the most commonly inherited degenerative retinopathies. XLRS is caused by functional impairment of RS1. However, the molecular mechanisms underlying RS1 malfunction remain largely uncharacterized. Here, we performed a data-independent acquisition-mass spectrometry-based proteomic analysis in RS1-null mouse retina with different postal days (Ps), including the onset (P15) and early progression stage (P56). Gene set enrichment analysis showed that type I interferon-mediated signaling was upregulated and photoreceptor proteins responsible for detection of light stimuli were downregulated at P15. Positive regulation of Tor signaling was downregulated and nuclear transcribed mRNA catabolic process nonsense-mediated decay was upregulated at P56. Moreover, the differentially expressed proteins at P15 were enriched in metabolism of RNA and RNA destabilization. A broader subcellular localization distribution and enriched proteins in visual perception and phototransduction were evident at P56. Combined transcriptomic-proteomic analysis revealed that functional impairments, including detection of visible light, visual perception, and visual phototransduction, occurred at P21 and continued until P56. Our work provides insights into the molecular mechanisms underlying the onset and progression of an XLRS mouse model during the early stages, thus enhancing the understanding of the mechanism of XLRS.
Collapse
|
18
|
Clinical and Genetic Re-Evaluation of Inherited Retinal Degeneration Pedigrees following Initial Negative Findings on Panel-Based Next Generation Sequencing. Int J Mol Sci 2022; 23:ijms23020995. [PMID: 35055178 PMCID: PMC8780304 DOI: 10.3390/ijms23020995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Although rare, inherited retinal degenerations (IRDs) are the most common reason for blind registration in the working age population. They are highly genetically heterogeneous (>300 known genetic loci), and confirmation of a molecular diagnosis is a prerequisite for many therapeutic clinical trials and approved treatments. First-tier genetic testing of IRDs with panel-based next-generation sequencing (pNGS) has a diagnostic yield of ≈70-80%, leaving the remaining more challenging cases to be resolved by second-tier testing methods. This study describes the phenotypic reassessment of patients with a negative result from first-tier pNGS and the rationale, outcomes, and cost of second-tier genetic testing approaches. Removing non-IRD cases from consideration and utilizing case-appropriate second-tier genetic testing techniques, we genetically resolved 56% of previously unresolved pedigrees, bringing the overall resolve rate to 92% (388/423). At present, pNGS remains the most cost-effective first-tier approach for the molecular assessment of diverse IRD populations Second-tier genetic testing should be guided by clinical (i.e., reassessment, multimodal imaging, electrophysiology), and genetic (i.e., single alleles in autosomal recessive disease) indications to achieve a genetic diagnosis in the most cost-effective manner.
Collapse
|
19
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
20
|
Hahn LC, van Schooneveld MJ, Wesseling NL, Florijn RJ, Ten Brink JB, Lissenberg-Witte BI, Strubbe I, Meester-Smoor MA, Thiadens AA, Diederen RM, van Cauwenbergh C, de Zaeytijd J, Walraedt S, de Baere E, Klaver CCW, Ossewaarde-van Norel J, Ingeborgh van den Born L, Hoyng CB, van Genderen MM, Sieving PA, Leroy BP, Bergen AA, Boon CJF. X-Linked Retinoschisis: Novel Clinical Observations and Genetic Spectrum in 340 Patients. Ophthalmology 2021; 129:191-202. [PMID: 34624300 DOI: 10.1016/j.ophtha.2021.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To describe the natural course, phenotype, and genotype of patients with X-linked retinoschisis (XLRS). DESIGN Retrospective cohort study. PARTICIPANTS Three hundred forty patients with XLRS from 178 presumably unrelated families. METHODS This multicenter, retrospective cohort study reviewed medical records of patients with XLRS for medical history, symptoms, visual acuity (VA), ophthalmoscopy, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain [SD] OCT, fundus autofluorescence). MAIN OUTCOME MEASURES Age at onset, age at diagnosis, severity of visual impairment, annual visual decline, and electroretinography and imaging findings. RESULTS Three hundred forty patients were included with a mean follow-up time of 13.2 years (range, 0.1-50.1 years). The median ages to reach mild visual impairment and low vision were 12 and 25 years, respectively. Severe visual impairment and blindness were observed predominantly in patients older than 40 years, with a predicted prevalence of 35% and 25%, respectively, at 60 years of age. The VA increased slightly during the first 2 decades of life and subsequently transitioned into an average annual decline of 0.44% (P < 0.001). No significant difference was found in decline of VA between variants that were predicted to be severe and mild (P = 0.239). The integrity of the ellipsoid zone (EZ) as well as the photoreceptor outer segment (PROS) length in the fovea on SD OCT correlated significantly with VA (Spearman's ρ = -0.759 [P < 0.001] and -0.592 [P = 0.012], respectively). Fifty-three different RS1 variants were found. The most common variants were the founder variant c.214G→A (p.(Glu72Lys)) (101 patients [38.7%]) and a deletion of exon 3 (38 patients [14.6%]). CONCLUSIONS Large variabilities in phenotype and natural course of XLRS were seen in this study. In most patients, XLRS showed a slow deterioration starting in the second decade of life, suggesting an optimal window of opportunity for treatment within the first 3 decades of life. The integrity of EZ as well as the PROS length on SD OCT may be important in choosing optimal candidates for treatment and as potential structural end points in future therapeutic studies. No clear genotype-phenotype correlation was found.
Collapse
Affiliation(s)
- Leo C Hahn
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Nieneke L Wesseling
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ine Strubbe
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium
| | | | - Alberta A Thiadens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roselie M Diederen
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline van Cauwenbergh
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Julie de Zaeytijd
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium
| | - Elfride de Baere
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital & Ghent University, Ghent, Belgium
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Institute of Molecular and Clinical Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria M van Genderen
- Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul A Sieving
- Department of Ophthalmology, School of Medicine, University of California at Davis, Sacramento, California
| | - Bart P Leroy
- Department of Ophthalmology, University Hospital Ghent, Ghent University & Ghent University, Ghent, Belgium; Division of Ophthalmology & CCMT, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
21
|
|
22
|
Zeng Y, Qian H, Campos MM, Li Y, Vijayasarathy C, Sieving PA. Rs1h -/y exon 3-del rat model of X-linked retinoschisis with early onset and rapid phenotype is rescued by RS1 supplementation. Gene Ther 2021; 29:431-440. [PMID: 34548657 PMCID: PMC8938309 DOI: 10.1038/s41434-021-00290-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Animal models of X-linked juvenile retinoschisis (XLRS) are valuable tools for understanding basic biochemical function of retinoschisin (RS1) protein and to investigate outcomes of preclinical efficacy and toxicity studies. In order to work with an eye larger than mouse, we generated and characterized an Rs1h−/y knockout rat model created by removing exon 3. This rat model expresses no normal RS1 protein. The model shares features of an early onset and more severe phenotype of human XLRS. The morphologic pathology includes schisis cavities at postnatal day 15 (p15), photoreceptors that are misplaced into the subretinal space and OPL, and a reduction of photoreceptor cell numbers by p21. By 6 mo age only 1–3 rows of photoreceptors nuclei remain, and the inner/outer segment layers and the OPL shows major changes. Electroretinogram recordings show functional loss with considerable reduction of both the a-wave and b-wave by p28, indicating early age loss and dysfunction of photoreceptors. The ratio of b-/a-wave amplitudes indicates impaired synaptic transmission to bipolar cells in addition. Supplementing the Rs1h−/y exon3-del retina with normal human RS1 protein using AAV8-RS1 delivery improved the retinal structure. This Rs1h−/y rat model provides a further tool to explore underlying mechanisms of XLRS pathology and to evaluate therapeutic intervention for the XLRS condition.
Collapse
Affiliation(s)
- Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yichao Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA. .,Department of Ophthalmology, University of California Davis, Sacramento, CA, USA. .,Center for Ocular Regenerative Therapy, Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
23
|
Vijaysarathy C, Babu Sardar Pasha SP, Sieving PA. Of men and mice: Human X-linked retinoschisis and fidelity in mouse modeling. Prog Retin Eye Res 2021; 87:100999. [PMID: 34390869 DOI: 10.1016/j.preteyeres.2021.100999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
X-linked Retinoschisis (XLRS) is an early-onset transretinal dystrophy, often with a prominent macular component, that affects males and generally spares heterozygous females because of X-linked recessive inheritance. It results from loss-of-function RS1 gene mutations on the X-chromosome. XLRS causes bilateral reduced acuities from young age, and on clinical exam and by ocular coherence tomography (OCT) the neurosensory retina shows foveo-macular cystic schisis cavities in the outer plexiform (OPL) and inner nuclear layers (INL). XLRS manifests between infancy and school-age with variable phenotypic presentation and without reliable genotype-phenotype correlations. INL disorganization disrupts synaptic signal transmission from photoreceptors to ON-bipolar cells, and this reduces the electroretinogram (ERG) bipolar b-wave disproportionately to photoreceptor a-wave changes. RS1 gene expression is localized mainly to photoreceptors and INL bipolar neurons, and RS1 protein is thought to play a critical cell adhesion role during normal retinal development and later for maintenance of retinal structure. Several independent XLRS mouse models with mutant RS1 were created that recapitulate features of human XLRS disease, with OPL-INL schisis cavities, early onset and variable phenotype across mutant models, and reduced ERG b-wave to a-wave amplitude ratio. The faithful phenotype of the XLRS mouse has assisted in delineating the disease pathophysiology. Delivery to XLRS mouse retina of an AAV8-RS1 construct under control of the RS1 promoter restores the retinal structure and synaptic function (with increase of b-wave amplitude). It also ameliorates the schisis-induced inflammatory microglia phenotype toward a state of immune quiescence. The results imply that XLRS gene therapy could yield therapeutic benefit to preserve morphological and functional retina particularly when intervention is conducted at earlier ages before retinal degeneration becomes irreversible. A phase I/IIa single-center, open-label, three-dose-escalation clinical trial reported a suitable safety and tolerability profile of intravitreally administered AAV8-RS1 gene replacement therapy for XLRS participants. Dose-related ocular inflammation occurred after dosing, but this resolved with topical and oral corticosteroids. Systemic antibodies against AAV8 increased in dose-dependent fashion, but no antibodies were observed against the RS1 protein. Retinal cavities closed transiently in one participant. Technological innovations in methods of gene delivery and strategies to further reduce immune responses are expected to enhance the therapeutic efficacy of the vector and ultimate success of a gene therapy approach.
Collapse
Affiliation(s)
| | | | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA; Department of Ophthalmology, University of California Davis, 95817, USA.
| |
Collapse
|
24
|
Xu D, Khan MA, Klufas MA, Ho AC. Administration of Ocular Gene Therapy. Int Ophthalmol Clin 2021; 61:131-149. [PMID: 34196321 DOI: 10.1097/iio.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
26
|
Zhang KY, Johnson TV. The internal limiting membrane: Roles in retinal development and implications for emerging ocular therapies. Exp Eye Res 2021; 206:108545. [PMID: 33753089 DOI: 10.1016/j.exer.2021.108545] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Basement membranes help to establish, maintain, and separate their associated tissues. They also provide growth and signaling substrates for nearby resident cells. The internal limiting membrane (ILM) is the basement membrane at the ocular vitreoretinal interface. While the ILM is essential for normal retinal development, it is dispensable in adulthood. Moreover, the ILM may constitute a significant barrier to emerging ocular therapeutics, such as viral gene therapy or stem cell transplantation. Here we take a neurodevelopmental perspective in examining how retinal neurons, glia, and vasculature interact with individual extracellular matrix constituents at the ILM. In addition, we review evidence that the ILM may impede novel ocular therapies and discuss approaches for achieving retinal parenchymal targeting of gene vectors and cell transplants delivered into the vitreous cavity by manipulating interactions with the ILM.
Collapse
Affiliation(s)
- Kevin Y Zhang
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Maumenee B-110, Baltimore, MD, 21287, USA
| | - Thomas V Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Maumenee B-110, Baltimore, MD, 21287, USA.
| |
Collapse
|
27
|
Hu ML, Edwards TL, O'Hare F, Hickey DG, Wang JH, Liu Z, Ayton LN. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom 2021; 104:444-454. [PMID: 33689657 DOI: 10.1080/08164622.2021.1880863] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) comprise a heterogeneous group of genetic disorders affecting the retina. Caused by mutations in over 300 genes, IRDs result in visual impairment due to dysfunction and degeneration of photoreceptors, retinal pigment epithelium, or the choroid. Important photoreceptor IRDs include retinitis pigmentosa and Leber congenital amaurosis. Macular dystrophies include Stargardt and Best disease. Currently, IRDs are largely incurable but the landscape of treatment options is rapidly changing for these diseases which, untreated, result in severe visual impairment and blindness.Advances in DNA delivery to the retina and improved genetic diagnosis of IRDs have led to a new era of research into gene therapy for these vision-threatening disorders. Gene therapy is a compelling approach due to the monogenic nature of most IRDs, with the retina being a favourable target for administering genetic vectors due to its immunoprivileged environment, direct visibility, and multiple methods to assess sensitivity and function. Generally, retinal gene therapy involves a subretinal or intravitreal injection of a viral vector, which infects target cells to deliver a therapeutic gene, or transgene. A gene augmentation strategy introduces a functioning copy of a gene to restore expression of a mutated gene, whereas a gene-editing strategy aims to directly edit and correct the mutation. Common delivery vectors include adeno-associated virus (AAV) and lentivirus.Voretigene neparvovec-rzyl (Luxturna) became the first FDA-approved direct gene therapy in December 2017, and the Australian TGA followed suit in August 2020. More are projected to follow, with clinical trials underway for many other IRDs.This review provides an overview of gene therapy for IRDs, including current progress and challenges. A companion article in this issue details target patient populations for IRD gene therapy, and how optometrists can assist in assessing individuals who may be eligible for current and future therapies.
Collapse
Affiliation(s)
- Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| | - Fleur O'Hare
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Zhengyang Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
28
|
Vijayasarathy C, Zeng Y, Brooks MJ, Fariss RN, Sieving PA. Genetic Rescue of X-Linked Retinoschisis Mouse ( Rs1-/y) Retina Induces Quiescence of the Retinal Microglial Inflammatory State Following AAV8- RS1 Gene Transfer and Identifies Gene Networks Underlying Retinal Recovery. Hum Gene Ther 2020; 32:667-681. [PMID: 33019822 PMCID: PMC8312029 DOI: 10.1089/hum.2020.213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand RS1 gene interaction networks in the X-linked retinoschisis (XLRS) mouse retina (Rs1-/y), we analyzed the transcriptome by RNA sequencing before and after in vivo expression of exogenous retinoschisin (RS1) gene delivered by AAV8. RS1 is a secreted cell adhesion protein that is critical for maintaining structural lamination and synaptic integrity of the neural retina. RS1 loss-of-function mutations cause XLRS disease in young boys and men, with splitting ("schisis") of retinal layers and synaptic dysfunction that cause progressive vision loss with age. Analysis of differential gene expression profiles and pathway enrichment analysis of Rs1-KO (Rs1-/y) retina identified cell surface receptor signaling and positive regulation of cell adhesion as potential RS1 gene interaction networks. Most importantly, it also showed massive dysregulation of immune response genes at early age, with characteristics of a microglia-driven proinflammatory state. Delivery of AAV8-RS1 primed the Rs1-KO retina toward structural and functional recovery. The disease transcriptome transitioned toward a recovery phase with upregulation of genes implicated in wound healing, anatomical structure (camera type eye) development, metabolic pathways, and collagen IV networks that provide mechanical stability to basement membrane. AAV8-RS1 expression also attenuated the microglia gene signatures to low levels toward immune quiescence. This study is among the first to identify RS1 gene interaction networks that underlie retinal structural and functional recovery after RS1 gene therapy. Significantly, it also shows that providing wild-type RS1 gene function caused the retina immune status to transition from a degenerative inflammatory phenotype toward immune quiescence, even though the transgene is not directly linked to microglia function. This study indicates that inhibition of microglial proinflammatory responses is an integral part of therapeutic rescue in XLRS gene therapy, and gene therapy might realize its full potential if delivered before microglia activation and photoreceptor cell death. Clinical Trials. gov Identifier NTC 02317887.
Collapse
Affiliation(s)
| | - Yong Zeng
- Section for Translational Research in Retinal and Macular Degeneration
| | | | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Sieving
- Department of Ophthalmology, Center for Ocular Regenerative Therapy, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
29
|
Ku CA, Pennesi ME. The new landscape of retinal gene therapy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:846-859. [PMID: 32888388 DOI: 10.1002/ajmg.c.31842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Novel therapeutics for inherited retinal dystrophies (IRDs) have rapidly evolved since groundbreaking clinical trials for LCA due to RPE65 mutations led to the first FDA-approved in vivo gene therapy. Since then, advancements in viral vectors have led to more efficient AAV transduction and developed other viral vectors for gene augmentation therapy of large gene targets. Furthermore, significant developments in gene editing and RNA modulation technologies have introduced novel capabilities for treatment of autosomal dominant diseases, intronic mutations, and/or large genes otherwise unable to be treated with current viral vectors. We highlight strategies currently being evaluated in gene therapy clinical trials and promising preclinical developments for IRDs.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
30
|
Abstract
Retinal degenerations account for the majority of untreatable causes of blindness. Advances in gene delivery vectors, CRISPR/Cas9-based gene editing systems, and electronic engineering have led to a wide range of strategies for correcting visual loss. Here, we provide an overview of retinal gene therapy, gene editing, optogenetics and retinal prostheses using examples from recent clinical trials and pre-clinical studies.
Collapse
Affiliation(s)
- Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, and Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, and Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
31
|
Song H, Zeng Y, Sardar Pasha SPB, Bush RA, Vijayasarathy C, Qian H, Wei L, Wiley HE, Wu Z, Sieving PA. Trans-Ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Transduction in Large Animal Eye After Intravitreal Vector Administration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32844051 PMCID: PMC7416894 DOI: 10.1167/tvst.9.7.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose Electric micro-current has been shown to enhance penetration and transduction of adeno-associated viral (AAV) vectors in mouse retina after intravitreal administration. We termed this: “electric-current vector mobility (ECVM).” The present study considered whether ECVM could augment retinal transduction efficiency of intravitreal AAV8-CMV-EGFP in normal rabbit and nonhuman primate (NHP) macaque. Potential mechanisms underlying enhanced retinal transduction by ECVM were also studied. Methods We applied an electric micro-current across the intact eye of normal rabbit and monkey in vivo for a brief period immediately after intravitreal injection of AAV8-CMV-EGFP. Retinal GFP expression was evaluated by fundus imaging in vivo. Retinal immunohistochemistry was performed to assess the distribution of retinal cells transduced by the AAV8-EGFP. Basic fibroblast growth factor (bFGF) was analyzed by quantitative RT-polymerase chain reaction (PCR). Müller glial reactivity and inner limiting membrane (ILM) were examined by the glial fibrillary acidic protein (GFAP) and vimentin staining in mouse retina, respectively. Results ECVM significantly increased the efficiency of AAV reaching and transducing the rabbit retina following intravitreal injection, with gene expression in inner nuclear layer, ganglion cells, and Müller cells. Similar trend of improvement was observed in the ECVM-treated monkey eye. The electric micro-current upregulated bFGF expression in Müller cells and vimentin showed ILM structural changes in mouse retina. Conclusions ECVM promotes the transduction efficiency of AAV8-CMV-GFP in normal rabbit and monkey retinas following intravitreal injection. Translational Relevance This work has potential translational relevance to human ocular gene therapy by increasing retinal expression of therapeutic vectors given by intravitreal administration.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camasamudram Vijayasarathy
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Ophthalmology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
32
|
Zeng Y, Boyd R, Bartoe J, Wiley HE, Marangoni D, Wei LL, Sieving PA. "Para-retinal" Vector Administration into the Deep Vitreous Enhances Retinal Transgene Expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:422-427. [PMID: 32695844 PMCID: PMC7363691 DOI: 10.1016/j.omtm.2020.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023]
Abstract
Intravitreal administration for human adeno-associated vector (AAV) delivery is easier and less traumatic to ocular tissues than subretinal injection, but it gives limited retinal transduction. AAV vectors are large (about 4,000 kDa) compared with most intraocular drugs, such as ranibizumab (48 kDa), and the large size impedes diffusion to reach the retina from the usual injection site in the anterior/mid-vitreous. Intuitively, a preferred placement for the vector would be deep in the vitreous near the retina, which we term “para-retinal” delivery. We explored the consequences of para-retinal intravitreal delivery in the rabbit eye and in non-human primate (NHP) eye. 1 h after para-retinal administration in the rabbit eye, the vector concentration near the retina remained four times greater than in the anterior vitreous, indicating limited vector diffusion through the gelatinous vitreous matrix. In NHP, para-retinal placement showed greater transduction in the fovea than vector applied in the mid-vitreous. More efficient retinal delivery translates to using lower vector doses, with reduced risk of ocular inflammatory exposure. These results indicate that para-retinal delivery yields more effective vector concentration near the retina, thereby increasing the potential for better retinal transduction in human clinical application.
Collapse
Affiliation(s)
- Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Boyd
- Charles River Laboratories, Matawan, MI, USA
| | | | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dario Marangoni
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa L Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Center for Ocular Regenerative Therapy; Department of Ophthalmology, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
33
|
Yiu G, Chung SH, Mollhoff IN, Nguyen UT, Thomasy SM, Yoo J, Taraborelli D, Noronha G. Suprachoroidal and Subretinal Injections of AAV Using Transscleral Microneedles for Retinal Gene Delivery in Nonhuman Primates. Mol Ther Methods Clin Dev 2020; 16:179-191. [PMID: 32055646 PMCID: PMC7005511 DOI: 10.1016/j.omtm.2020.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 02/01/2023]
Abstract
Retinal gene therapy using adeno-associated viruses (AAVs) is constrained by the mode of viral vector delivery. Intravitreal AAV injections are impeded by the internal limiting membrane barrier, while subretinal injections require invasive surgery and produce a limited region of therapeutic effect. In this study, we introduce a novel mode of ocular gene delivery in rhesus macaques using transscleral microneedles to inject AAV8 into the subretinal or suprachoroidal space, a potential space between the choroid and scleral wall of the eye. Using in vivo imaging, we found that suprachoroidal AAV8 produces diffuse, peripheral expression in retinal pigment epithelial (RPE) cells, but it elicited local infiltration of inflammatory cells. Transscleral subretinal injection of AAV8 using microneedles leads to focal gene expression with transduction of RPE and photoreceptors, and minimal intraocular inflammation. In comparison, intravitreal AAV8 shows minimal transduction of retinal cells, but elicits greater systemic humoral immune responses. Our study introduces a novel mode of transscleral viral delivery that can be performed without vitreoretinal surgery, with focal or diffuse transgene expression patterns suitable for different applications. The decoupling of local and systemic immune responses reveals important insights into the immunological consequences of AAV delivery to different ocular compartments surrounding the blood-retinal barrier.
Collapse
Affiliation(s)
- Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Sook Hyun Chung
- Department of Ophthalmology & Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Iris N. Mollhoff
- Department of Ophthalmology & Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Uyen Tu Nguyen
- Department of Ophthalmology & Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Sara M. Thomasy
- Department of Ophthalmology & Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, 1 Garrod Drive, Davis, CA 95616, USA
| | - Jesse Yoo
- Clearside Biomedical, 900 North Point Parkway, Suite 200, Alpharetta, GA 30005, USA
| | - Donna Taraborelli
- Clearside Biomedical, 900 North Point Parkway, Suite 200, Alpharetta, GA 30005, USA
| | - Glenn Noronha
- Clearside Biomedical, 900 North Point Parkway, Suite 200, Alpharetta, GA 30005, USA
| |
Collapse
|
34
|
Gene Therapy in Retinal Dystrophies. Int J Mol Sci 2019; 20:ijms20225722. [PMID: 31739639 PMCID: PMC6888000 DOI: 10.3390/ijms20225722] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of clinically and genetically heterogeneous degenerative disorders. To date, mutations have been associated with IRDs in over 270 disease genes, but molecular diagnosis still remains elusive in about a third of cases. The methodologic developments in genome sequencing techniques that we have witnessed in this last decade have represented a turning point not only in diagnosis and prognosis but, above all, in the identification of new therapeutic perspectives. The discovery of new disease genes and pathogenetic mechanisms underlying IRDs has laid the groundwork for gene therapy approaches. Several clinical trials are ongoing, and the recent approval of Luxturna, the first gene therapy product for Leber congenital amaurosis, marks the beginning of a new era. Due to its anatomical and functional characteristics, the retina is the organ of choice for gene therapy, although there are quite a few difficulties in the translational approaches from preclinical models to humans. In the first part of this review, an overview of the current knowledge on methodological issues and future perspectives of gene therapy applied to IRDs is discussed; in the second part, the state of the art of clinical trials on the gene therapy approach in IRDs is illustrated.
Collapse
|
35
|
Zeng Y, Qian H, Wu Z, Marangoni D, Sieving PA, Bush RA. AAVrh-10 transduces outer retinal cells in rodents and rabbits following intravitreal administration. Gene Ther 2019; 26:386-398. [PMID: 31308478 PMCID: PMC11388630 DOI: 10.1038/s41434-019-0094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 01/11/2023]
Abstract
Recombinant adeno-associated virus (rAAV) has been widely used for gene delivery in animal models and successfully applied in clinical trials for treating inherited retinal disease. Although subretinal delivery of AAVs can effectively transduce photoreceptors and/or retinal pigmental epithelium (RPE), cells most affected by inherited retinal diseases, the procedure is invasive and complicated, and only delivers the gene to a limited retinal area. AAVs can also be delivered intravitreally to the retina, a much less invasive nonsurgical procedure. However, intravitreal administration of non-modified AAV serotypes tends to transduce only ganglion cells and inner nuclear layer cells. To date, most non-modified AAV serotypes that have been identified are incapable of efficiently transducing photoreceptors and/or RPE when delivered intravitreally. In this study, we investigate the retinal tropism of AAVrh10 vector administered by intravitreal injection to mouse, rat, and rabbit eyes. Our results demonstrate that AAVrh10 is capable of transducing not only inner retinal cells, but also outer retinal cells in all three species, though the transduction efficiency in rabbit was low. In addition, AAVrh10 preferentially transduced outer retinal cells in mouse models of retinal disease. Therefore, AAVrh10 vector could be a useful candidate to intravitreally deliver genes to photoreceptor and RPE cells.
Collapse
Affiliation(s)
- Yong Zeng
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dario Marangoni
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Cukras CA, Huryn LA, Jeffrey BG, Turriff A, Sieving PA. Analysis of Anatomic and Functional Measures in X-Linked Retinoschisis. Invest Ophthalmol Vis Sci 2019; 59:2841-2847. [PMID: 30025115 PMCID: PMC5987578 DOI: 10.1167/iovs.17-23297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine the symmetry of structural and functional parameters between eyes in patients with X-linked retinoschisis (XLRS), as well as changes in visual acuity and electrophysiology over time. Methods This is a single-center observational study of 120 males with XLRS who were evaluated at the National Eye Institute. Examinations included best-corrected visual acuity for all participants, as well as ERG recording and optical coherence tomography (OCT) on a subset of participants. Statistical analyses were performed using nonparametric Spearman correlations and linear regression. Results Our analyses demonstrated a statistically significant correlation of structural and functional measures between the two eyes of XLRS patients for all parameters. OCT central macular thickness (n = 78; Spearman r = 0.83, P < 0.0001) and ERG b/a ratio (n = 78; Spearman r = 0.82, P < 0.0001) were the most strongly correlated between a participant's eyes, whereas visual acuity was less strongly correlated (n = 120; Spearman r = 0.47, P < 0.0001). Stability of visual acuity was observed with an average change of less than one letter (n = 74; OD −0.66 and OS −0.70 letters) in a mean follow-up time of 6.8 years. There was no statistically significant change in the ERG b/a ratio within eyes over time. Conclusions Although a broad spectrum of clinical phenotypes is observed across individuals with XLRS, our study demonstrates a significant correlation of structural and functional findings between the two eyes and stability of measures of acuity and ERG parameters over time. These results highlight the utility of the fellow eye as a useful reference for monocular interventional trials.
Collapse
Affiliation(s)
- Catherine A Cukras
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,Ocular Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Laryssa A Huryn
- Ocular Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brett G Jeffrey
- Ocular Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Amy Turriff
- Ocular Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | |
Collapse
|
37
|
Wide-Field Swept-Source OCT and Angiography in X-Linked Retinoschisis. ACTA ACUST UNITED AC 2019; 3:178-185. [DOI: 10.1016/j.oret.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 11/17/2022]
|
38
|
Hardcastle AJ, Sieving PA, Sahel JA, Jacobson SG, Cideciyan AV, Flannery JG, Beltran WA, Aguirre GD. Translational Retinal Research and Therapies. Transl Vis Sci Technol 2018; 7:8. [PMID: 30225158 PMCID: PMC6138060 DOI: 10.1167/tvst.7.5.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
The following review summarizes the state of the art in representative aspects of gene therapy/translational medicine and evolves from a symposium held at the School of Veterinary Medicine, University of Pennsylvania on November 16, 2017 honoring Dr. Gustavo Aguirre, recipient of ARVO's 2017 Proctor Medal. Focusing on the retina, speakers highlighted current work on moving therapies for inherited retinal degenerative diseases from the laboratory bench to the clinic.
Collapse
Affiliation(s)
| | - Paul A Sieving
- Director, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Director of the UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA and Director, Institut de la Vision, Sorbonne Université-Inserm-CNRS, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John G Flannery
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - William A Beltran
- Department of Clinical Sciences and Advanced Medicine, Division of Experimental Retinal Therapies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Department of Clinical Sciences and Advanced Medicine, Division of Experimental Retinal Therapies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol Ther 2018; 26:2282-2294. [PMID: 30196853 DOI: 10.1016/j.ymthe.2018.05.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023] Open
Abstract
This study evaluated the safety and tolerability of ocular RS1 adeno-associated virus (AAV8-RS1) gene augmentation therapy to the retina of participants with X-linked retinoschisis (XLRS). XLRS is a monogenic trait affecting only males, caused by mutations in the RS1 gene. Retinoschisin protein is secreted principally in the outer retina, and its absence results in retinal cavities, synaptic dysfunction, reduced visual acuity, and susceptibility to retinal detachment. This phase I/IIa single-center, prospective, open-label, three-dose-escalation clinical trial administered vector to nine participants with pathogenic RS1 mutations. The eye of each participant with worse acuity (≤63 letters; Snellen 20/63) received the AAV8-RS1 gene vector by intravitreal injection. Three participants were assigned to each of three dosage groups: 1e9 vector genomes (vg)/eye, 1e10 vg/eye, and 1e11 vg/eye. The investigational product was generally well tolerated in all but one individual. Ocular events included dose-related inflammation that resolved with topical and oral corticosteroids. Systemic antibodies against AAV8 increased in a dose-related fashion, but no antibodies against RS1 were observed. Retinal cavities closed transiently in one participant. Additional doses and immunosuppressive regimens are being explored to pursue evidence of safety and efficacy (ClinicalTrials.gov: NCT02317887).
Collapse
|
40
|
Bakall B, Klein KA, Hariprasad SM. Emerging Gene Therapy Treatments for Inherited Retinal Diseases. Ophthalmic Surg Lasers Imaging Retina 2018; 49:472-478. [DOI: 10.3928/23258160-20180628-02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Orès R, Mohand-Said S, Dhaenens CM, Antonio A, Zeitz C, Augstburger E, Andrieu C, Sahel JA, Audo I. Phenotypic Characteristics of a French Cohort of Patients with X-Linked Retinoschisis. Ophthalmology 2018; 125:1587-1596. [PMID: 29739629 DOI: 10.1016/j.ophtha.2018.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To analyze the retinal structure in patients with X-linked retinoschisis (XLRS) using spectral-domain OCT and to correlate the morphologic findings with visual acuity, electroretinographic results, and patient age. DESIGN Retrospective, observational study. PARTICIPANTS Data from 52 consecutive male patients with molecularly confirmed XLRS were collected retrospectively. METHODS Complete clinical evaluation included best-corrected visual acuity, full-field electroretinography, fundus photography, spectral-domain OCT, and fundus autofluorescence. Spectral-domain OCT images were analyzed to determine full thickness of the retina and tomographic structural changes. MAIN OUTCOME MEASURES Relationships between age, OCT, and visual acuity were assessed. RESULTS One hundred four eyes of 52 patients were included. The mean age at inclusion was 24±15 years (range, 3-57 years). The best-corrected visual acuity ranged from no light perception to 0.1 logarithm of the minimum angle of resolution (mean, 0.6±0.38 logarithm of the minimum angle of resolution). Macular schisis was found in 88% of eyes and macular atrophy was found in 11% of eyes, whereas peripheral schisis was present in 30% of eyes. A spoke-wheel pattern of high and low intensity was the most frequently observed fundus autofluorescence abnormality (51/94 eyes [54%]). The b-to-a amplitude ratio on bright-flash dark-adapted electroretinography was reduced significantly in 45 of 64 eyes (70%). Spectral-domain OCT was available for 97 eyes and showed foveoschisis in 76 of 97 eyes (78%), parafoveal schisis in 10 of 97 eyes (10%), and foveal atrophy in 11 of 97 eyes (11%). Mean central macular thickness (CMT) was of 373.6±140 μm. Cystoid changes were localized mainly in the inner nuclear layer (85/97 eyes [88%]). Qualitative defects in photoreceptor structures were found in most eyes (79/97 eyes [81%]), and the most frequent abnormality was an interruption of the photoreceptor cell outer segment tips (79/79 eyes [100%]). Older age correlated well with lower CMT (correlation coefficient [CC], -0.44; P < 0.001) and with lower photoreceptor outer segment (PROS) length (CC, -0.42; P < 0.001). Lower visual acuity correlated strongly with lower PROS length (CC, -0.53; P < 0.001). CONCLUSIONS This study underlined the wide variety of clinical features of XLRS. It highlighted the correlation between visual acuity, patient age, and OCT features, emphasizing the relevance of the latter as potential outcome measure in clinical trials.
Collapse
Affiliation(s)
- Raphaëlle Orès
- Centre de Maladies Rares "Dystrophies Rétiniennes d'Origine Génétique," DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - Saddek Mohand-Said
- Centre de Maladies Rares "Dystrophies Rétiniennes d'Origine Génétique," DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Claire-Marie Dhaenens
- Department of Biochemistry and Molecular Biology-UF Génopathies, Université Lille, Inserm UMR-S 1172, CHU Lille, Lille, France
| | - Aline Antonio
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Christina Zeitz
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Edouard Augstburger
- Centre de Maladies Rares "Dystrophies Rétiniennes d'Origine Génétique," DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - Camille Andrieu
- Centre de Maladies Rares "Dystrophies Rétiniennes d'Origine Génétique," DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - José-Alain Sahel
- Centre de Maladies Rares "Dystrophies Rétiniennes d'Origine Génétique," DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabelle Audo
- Centre de Maladies Rares "Dystrophies Rétiniennes d'Origine Génétique," DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.
| |
Collapse
|
42
|
Ito M, Ohno K. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations. Matrix Biol 2018; 68-69:628-636. [PMID: 29475025 DOI: 10.1016/j.matbio.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors.
Collapse
Affiliation(s)
- Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
43
|
Campbell M, Cassidy PS, O'Callaghan J, Crosbie DE, Humphries P. Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension. Prog Retin Eye Res 2017; 62:120-133. [PMID: 28951125 DOI: 10.1016/j.preteyeres.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/20/2017] [Indexed: 11/25/2022]
Abstract
Protein levels of endothelial tight-junctions of the inner retinal microvasculature, together with those of Schlemm's canal, can be readily manipulated by RNA interference (RNAi), resulting in the paracellular clefts between such cells to be reversibly modulated. This facilitates access to the retina of systemically-deliverable low molecular weight, potentially therapeutic compounds, while also allowing potentially toxic material, for example, soluble Amyloid-β1-40, to be removed from the retina into the peripheral circulation. The technique has also been shown to be highly effective in alleviation of pathological cerebral oedema and we speculate that it may therefore have similar utility in the oedematous retina. Additionally, by manipulating endothelial tight-junctions of Schlemm's canal, inflow of aqueous humour from the trabecular meshwork into the Canal can be radically enhanced, suggesting a novel avenue for control of intraocular pressure. Here, we review the technology underlying this approach together with specific examples of clinical targets that are, or could be, amenable to this novel form of genetic intervention.
Collapse
Affiliation(s)
- Matthew Campbell
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland.
| | - Paul S Cassidy
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Jeffrey O'Callaghan
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Darragh E Crosbie
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Pete Humphries
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
44
|
Marangoni D, Yong Z, Kjellström S, Vijayasarathy C, A Sieving P, Bush RA. Rearing Light Intensity Affects Inner Retinal Pathology in a Mouse Model of X-Linked Retinoschisis but Does Not Alter Gene Therapy Outcome. Invest Ophthalmol Vis Sci 2017; 58:1656-1664. [PMID: 28297725 PMCID: PMC5361586 DOI: 10.1167/iovs.16-21016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose To test the effects of rearing light intensity on retinal function and morphology in the retinoschisis knockout (Rs1-KO) mouse model of X-linked retinoschisis, and whether it affects functional outcome of RS1 gene replacement. Methods Seventy-six Rs1-KO mice were reared in either cyclic low light (LL, 20 lux) or moderate light (ML, 300 lux) and analyzed at 1 and 4 months. Retinal function was assessed by electroretinogram and cavity size by optical coherence tomography. Expression of inward-rectifier K+ channel (Kir4.1), water channel aquaporin-4 (AQP4), and glial fibrillary acidic protein (GFAP) were analyzed by Western blotting. In a separate study, Rs1-KO mice reared in LL (n = 29) or ML (n = 27) received a unilateral intravitreal injection of scAAV8-hRs-IRBP at 21 days, and functional outcome was evaluated at 4 months by electroretinogram. Results At 1 month, no functional or structural differences were found between LL- or ML-reared Rs1-KO mice. At 4 months, ML-reared Rs1-KO mice showed significant reduction of b-wave amplitude and b-/a-wave ratio with no changes in a-wave, and a significant increase in cavity size, compared to LL-reared animals. Moderate light rearing increased Kir4.1 expression in Rs1-KO mice by 4 months, but not AQP4 and GFAP levels. Administration of scAAV8-hRS1-IRBP to Rs1-KO mice showed similar improvement of inner retinal ERG function independent of LL or ML rearing. Conclusions Rearing light conditions affect the development of retinal cavities and post-photoreceptor function in Rs1-KO mice. However, the effect of rearing light intensity does not interact with the efficacy of RS1 gene replacement in Rs1-KO mice.
Collapse
Affiliation(s)
- Dario Marangoni
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Zeng Yong
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Sten Kjellström
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States 2National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
45
|
Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes (Basel) 2017; 8:genes8020053. [PMID: 28134823 PMCID: PMC5333042 DOI: 10.3390/genes8020053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions.
Collapse
|
46
|
Huang SS, High K, Toso R. Ocular Gene Therapy-The Future Is Now. Asia Pac J Ophthalmol (Phila) 2016; 5:227-8. [PMID: 27488063 DOI: 10.1097/apo.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|