1
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
2
|
Hu H, Mosca R, Gomero E, van de Vlekkert D, Campos Y, Fremuth LE, Brown SA, Weesner JA, Annunziata I, d’Azzo A. AAV-mediated gene therapy for galactosialidosis: A long-term safety and efficacy study. Mol Ther Methods Clin Dev 2021; 23:644-658. [PMID: 34901309 PMCID: PMC8640647 DOI: 10.1016/j.omtm.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 11/05/2022]
Abstract
AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Yvan Campos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leigh E. Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A. Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Dhawan A, Lawlor MW, Mazariegos GV, McKiernan P, Squires JE, Strauss KA, Gupta D, James E, Prasad S. Disease burden of Crigler-Najjar syndrome: Systematic review and future perspectives. J Gastroenterol Hepatol 2020; 35:530-543. [PMID: 31495946 DOI: 10.1111/jgh.14853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Crigler-Najjar syndrome (CNS) results from biallelic mutations of UGT1A1 causing partial or total loss of uridine 5'-diphosphate glucuronyltransferase activity leading to unconjugated hyperbilirubinemia and its attendant risk for irreversible neurological injury (kernicterus). CNS is exceedingly rare and has been only partially characterized through relatively small studies, each comprising between two and 57 patients. METHODS A systematic literature review was conducted to consolidate data on the patient, caregiver, and societal burden of CNS. RESULTS Twenty-eight articles on clinical aspects of CNS were identified, but no published data on its humanistic or economic burden were found. In patients with complete UGT1A1 deficiency (type 1 CNS [CNS-I]), unconjugated bilirubin levels increase 3-6 mg/dL/day during the newborn period and reach neurologically dangerous levels between 5 and 14 days of age. Phototherapy is the mainstay of treatment but poses significant challenges to patients and their families. Despite consistent phototherapy, patients with CNS-I have worsening hyperbilirubinemia with advancing age. Liver transplantation is the only definitive therapy for CNS-I and is increasingly associated with excellent long-term survival but also incurs high costs, medical and surgical morbidities, and risks of immunosuppression. CONCLUSIONS Crigler-Najjar syndrome is associated with a substantial burden, even with existing standards of care. The development of novel disease-modifying therapies has the potential to reduce disease burden and improve the lives of CNS patients and their families.
Collapse
Affiliation(s)
- Anil Dhawan
- King's College Hospital NHS Foundation Trust, London, UK
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick McKiernan
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James E Squires
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Emma James
- Audentes Therapeutics, San Francisco, CA, USA
| | | |
Collapse
|
4
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death globally, mainly due to lack of effective treatments – a problem that gene therapy is poised to solve. Successful gene therapy requires safe and efficient delivery vectors, and recent advances in both viral and nonviral vectors have made an important impact on HCC gene therapy delivery. This review explores how adenoviral, retroviral and adeno-associated viral vectors have been modified to increase safety and delivery capacity, highlighting studies and clinical trials using these vectors for HCC gene therapy. Nanoparticles, liposomes, exosomes and virosomes are also featured in their roles as HCC gene delivery vectors. Finally, new discoveries in gene editing technology and their impacts on HCC gene therapy are discussed.
Collapse
|
5
|
Perocheau DP, Cunningham SC, Lee J, Antinao Diaz J, Waddington SN, Gilmour K, Eaglestone S, Lisowski L, Thrasher AJ, Alexander IE, Gissen P, Baruteau J. Age-Related Seroprevalence of Antibodies Against AAV-LK03 in a UK Population Cohort. Hum Gene Ther 2019; 30:79-87. [PMID: 30027761 PMCID: PMC6343184 DOI: 10.1089/hum.2018.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapy. The presence of neutralizing antibodies (Nab) against AAV capsids decreases cell transduction efficiency and is a common exclusion criterion for participation in clinical trials. Novel engineered capsids are being generated to improve gene delivery to the target cells and facilitate success of clinical trials; however, the prevalence of antibodies against such capsids remains largely unknown. We therefore assessed the seroprevalence of antibodies against a novel synthetic liver-tropic capsid AAV-LK03. We measured seroprevalence of immunoglobulin (Ig)G (i.e., neutralizing and nonneutralizing) antibodies and Nab to AAV-LK03 in a cohort of 323 UK patients (including 260 pediatric) and 52 juvenile rhesus macaques. We also performed comparative analysis of seroprevalence of Nab against wild-type AAV8 and AAV3B capsids. Overall IgG seroprevalence for AAV-LK03 was 39% in human samples. The titer increased with age. Prevalence of Nab was 23%, 35%, and 18% for AAV-LK03, AAV3B, and AAV8, respectively, with the lowest seroprevalence between 3 and 17 years of age for all serotypes. Presence of Nab against AAV-LK03 decreased from 36% in the youngest cohort (birth to 6 months) to 7% in older primary school-age children (9-11 years) and then progressively increased to 54% in late adulthood. Cross-reactivity between serotypes was >60%. Nab seroprevalence in macaques was 62%, 85%, and 40% for AAV-LK03, AAV3B, and AAV8, respectively. When planning for AAV gene therapy clinical trials, knowing the seropositivity of the target population is critical. In the population studied, AAV seroprevalence for AAV serotypes tested was low. However, high cross-reactivity between AAV serotypes remains a barrier for re-injection. Shifts in Nab seroprevalence during the first decade need to be confirmed by longitudinal studies. This possibility suggests that pediatric patients could respond differently to AAV therapy according to age. If late childhood is an ideal age window, intervention at an early age when maternal Nab levels are high may be challenging. Nab-positive children excluded from trials could be rescreened for eligibility at regular intervals because this status may change.
Collapse
Affiliation(s)
- Dany P. Perocheau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Sharon C. Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney and Sydney Children's Hospital Network, Westmead, Australia
| | - Juhee Lee
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
- Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Kimberly Gilmour
- Clinical Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Simon Eaglestone
- Translational Research Office, University College London, London, United Kingdom
| | - Leszek Lisowski
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney and Sydney Children's Hospital Network, Westmead, Australia
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
- Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
| | - Adrian J. Thrasher
- Clinical Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- Infection, Immunity and Inflammation Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney and Sydney Children's Hospital Network, Westmead, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- MRC Laboratory for Molecular Biology, University College London, London, United Kingdom
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Torres-Torronteras J, Cabrera-Pérez R, Vila-Julià F, Viscomi C, Cámara Y, Hirano M, Zeviani M, Martí R. Long-Term Sustained Effect of Liver-Targeted Adeno-Associated Virus Gene Therapy for Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 2018; 29:708-718. [PMID: 29284302 DOI: 10.1089/hum.2017.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in TYMP, the gene encoding the enzyme thymidine phosphorylase (TP). TP dysfunction results in systemic accumulation of the noxious TP substrates thymidine and deoxyuridine. Gene therapy using either a lentiviral vector or adeno-associated vector (AAV) has proven to be a feasible strategy, as both vectors restore biochemical homeostasis in a murine model of the disease. This study shows that the effect of an AAV containing the TYMP coding sequence transcriptionally targeted to the liver persists long term in mice. Although the vector copy number was diluted and AAV-mediated liver TP activity eventually reduced or lost after 21 months at the lowest vector doses, the effect was sustained (with a negligible decrease in TP activity) and fully effective on nucleoside homeostasis for at least 21 months at a dose of 2 × 1012 vg/kg. Macroscopic visual inspection of the animals' organs at completion of the study showed no adverse effects associated with the treatment. These results further support the feasibility of gene therapy for MNGIE.
Collapse
Affiliation(s)
- Javier Torres-Torronteras
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Raquel Cabrera-Pérez
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Ferran Vila-Julià
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Carlo Viscomi
- 3 MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, United Kingdom
| | - Yolanda Cámara
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Michio Hirano
- 4 H. Houston Merritt Center, Department of Neurology, Columbia University Medical Center , New York, New York
| | - Massimo Zeviani
- 3 MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, United Kingdom
| | - Ramon Martí
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
7
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
8
|
Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A 2017; 114:E4812-E4821. [PMID: 28559317 DOI: 10.1073/pnas.1704766114] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.
Collapse
|
9
|
Nienhuis AW, Nathwani AC, Davidoff AM. Gene Therapy for Hemophilia. Mol Ther 2017; 25:1163-1167. [PMID: 28411016 PMCID: PMC5417837 DOI: 10.1016/j.ymthe.2017.03.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
The X-linked bleeding disorder hemophilia causes frequent and exaggerated bleeding that can be life-threatening if untreated. Conventional therapy requires frequent intravenous infusions of the missing coagulation protein (factor VIII [FVIII] for hemophilia A and factor IX [FIX] for hemophilia B). However, a lasting cure through gene therapy has long been sought. After a series of successes in small and large animal models, this goal has finally been achieved in humans by in vivo gene transfer to the liver using adeno-associated viral (AAV) vectors. In fact, multiple recent clinical trials have shown therapeutic, and in some cases curative, expression. At the same time, cellular immune responses against the virus have emerged as an obstacle in humans, potentially resulting in loss of expression. Transient immune suppression protocols have been developed to blunt these responses. Here, we provide an overview of the clinical development of AAV gene transfer for hemophilia, as well as an outlook on future directions.
Collapse
Affiliation(s)
- Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Amit C Nathwani
- Department of Haematology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
10
|
Berntorp E, Dargaud Y, Hart D, Lobet S, Mancuso ME, d'Oiron R, Perry D, Pollard D, van den Berg M, Blatný J, Chambost H, Doria AS, Holme PA, Kaczmarek R, Mantovani L, McLaughlin P, Nanayakkara L, Petrini P, Sannié T, Laane E, Maia R, Dettoraki A, Farrell A, Halimeh S, Raza S, Taylor S. The second Team Haemophilia Education Meeting, 2016, Frankfurt, Germany. Eur J Haematol 2017; 98 Suppl 85:1-15. [DOI: 10.1111/ejh.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Erik Berntorp
- Skåne University Hospital; Lund University; Malmö Sweden
| | - Yesim Dargaud
- Clinical Haemostasis Unit; Lyon Hospital; University of Lyon; Lyon France
| | - Daniel Hart
- Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Sébastien Lobet
- Service d'hématologie; Cliniques Universitaires Saint-Luc; Brussels Belgium
| | - Maria Elisa Mancuso
- Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre; Milan Italy
| | - Roseline d'Oiron
- Centre for Haemophilia and Rare Congenital Bleeding Disorders; University Hospitals Paris-Sud; AP-HP Bicêtre Hospital; Le Kremlin-Bicêtre France
| | - David Perry
- Addenbrooke's Hospital; University of Cambridge; Cambridge UK
| | - Debra Pollard
- Katharine Dormandy Haemophilia & Thrombosis Centre; Royal Free Hospital; London UK
| | - Marijke van den Berg
- Department of Health and Epidemiology; University of Utrecht; Utrecht The Netherlands
| | - Jan Blatný
- Department of Paediatric Haematology; Children's University Hospital and Masaryk University; Brno Czech Republic
| | - Hervé Chambost
- Department of Paediatrics; La Timone Children Hospital; APHM and Aix-Marseille University; Marseille France
| | - Andrea S. Doria
- Department of Diagnostic Imaging; The Hospital for Sick Children; Toronto ON Canada
- Department of Medical Imaging; University of Toronto; Toronto ON Canada
| | - Pål André Holme
- Department of Haematology and Institute of Clinical Medicine; Oslo University and Oslo University Hospital; Rikshospitalet Norway
| | - Radoslaw Kaczmarek
- Hirszfeld Institute of Immunology and Experimental Therapy; Wroclaw Poland
| | - Lorenzo Mantovani
- Public Health; CESP-Center of Public Health Research; University of Milano-Bicocca; Milan Italy
| | - Paul McLaughlin
- Department of Physiotherapy; Katharine Dormandy Haemophilia Centre; Royal Free Hospital; London UK
| | | | - Pia Petrini
- Department of Paediatrics; Karolinska University Hospital; Stockholm Sweden
| | - Thomas Sannié
- Association Française des Hémophilies (AFH); Paris France
| | | | - Raquel Maia
- Paediatric Haematology Unit; Dona Estefânia Hospital; Lisbon Portugal
| | - Athina Dettoraki
- Haemophilia Centre and Haemostasis Unit; ‘Aghia Sophia’ Children's Hospital; Athens Greece
| | | | - Susan Halimeh
- Gerinnungszentrum Rhein-Ruhr (GZRR); Duisburg Germany
| | - Sayma Raza
- Oxford University Hospitals NHS Foundation Trust; Oxford UK
| | - Stephanie Taylor
- Oxford Haemophilia and Thrombosis Centre; Oxford University Hospitals Foundation Trust; Oxford UK
| |
Collapse
|
11
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|