1
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu GJ, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2024:e13775. [PMID: 39551613 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Jingyue Liu
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shuohao Sun
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
2
|
Kim J, Maldonado J, Pan DW, Quiñones PM, Zenteno S, Oghalai JS, Ricci AJ. Semicircular canal drug delivery safely targets the inner ear perilymphatic space. JCI Insight 2024; 9:e173052. [PMID: 39513368 PMCID: PMC11601569 DOI: 10.1172/jci.insight.173052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/12/2024] [Indexed: 11/15/2024] Open
Abstract
Effective, reproducible, and safe delivery of therapeutics into the inner ear is required for the prevention and treatment of hearing loss. A commonly used delivery method is via the posterior semicircular canal (PSCC); however, its specific targeting within the cochlea remains unclear, impacting precision and reproducibility. To assess safety and target specificity, we conducted in vivo recordings of the pharmacological manipulations delivered through the PSCC. Measurements of auditory brainstem response (ABR), vibrometry, and vestibular behavioral and sensory-evoked potential (VsEP) revealed preserved hearing and vestibular functions after artificial perilymph injections. Injection of curare, a mechanoelectrical transducer (MET) channel blocker that affects hearing when in the endolymph, had no effect on ABR or VsEP thresholds. Conversely, injection of CNQX, an AMPA receptor blocker, or lidocaine, a Na+ channel blocker, which affects hearing when in the perilymph, significantly increased both thresholds, indicating that PSCC injections selectively target the perilymphatic space. In vivo tracking of gold nanoparticles confirmed their exclusive distribution in the perilymph during PSCC injection, supporting the pharmacological finding. Together, PSCC injection is a safe method for inner ear delivery, specifically targeting the perilymphatic space. Our findings will allow for precise delivery of therapeutics within the inner ear for therapeutic and research purposes.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Jesus Maldonado
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Dorothy W. Pan
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Patricia M. Quiñones
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Samantha Zenteno
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - John S. Oghalai
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Anthony J. Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Li L, Shen T, Liu S, Qi J, Zhao Y. Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Front Neurosci 2024; 18:1272786. [PMID: 38327848 PMCID: PMC10847333 DOI: 10.3389/fnins.2024.1272786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Sensorineural hearing loss (SNHL), a highly prevalent sensory impairment, results from a multifaceted interaction of genetic and environmental factors. As we continually gain insights into the molecular basis of auditory development and the growing compendium of deafness genes identified, research on gene therapy for SNHL has significantly deepened. Adeno-associated virus (AAV), considered a relatively secure vector for gene therapy in clinical trials, can deliver various transgenes based on gene therapy strategies such as gene replacement, gene silencing, gene editing, or gene addition to alleviate diverse types of SNHL. This review delved into the preclinical advances in AAV-based gene therapy for SNHL, spanning hereditary and acquired types. Particular focus is placed on the dual-AAV construction method and its application, the vector delivery route of mouse inner ear models (local, systemic, fetal, and cerebrospinal fluid administration), and the significant considerations in transforming from AAV-based animal model inner ear gene therapy to clinical implementation.
Collapse
Affiliation(s)
- Linke Li
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Shen
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines 2023; 11:3347. [PMID: 38137568 PMCID: PMC10741758 DOI: 10.3390/biomedicines11123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Up to 1.5 billion people worldwide suffer from various forms of hearing loss, with an additional 1.1 billion people at risk from various insults such as increased consumption of recreational noise-emitting devices and ageing. The most common type of hearing impairment is sensorineural hearing loss caused by the degeneration or malfunction of cochlear hair cells or spiral ganglion nerves in the inner ear. There is currently no cure for hearing loss. However, emerging frontier technologies such as gene, drug or cell-based therapies offer hope for an effective cure. In this review, we discuss the current therapeutic progress for the treatment of hearing loss. We describe and evaluate the major therapeutic approaches being applied to hearing loss and summarize the key trials and studies.
Collapse
Affiliation(s)
- Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Fiona K. Leith
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Varda S. Sardesai
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
| | - Samuel McLenachan
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
- Vitroretinal Surgery, Royal Perth Hospital, Perth, WA 6000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
5
|
Wu F, Sambamurti K, Sha S. Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss. J Assoc Res Otolaryngol 2022; 23:569-578. [PMID: 36002664 PMCID: PMC9613825 DOI: 10.1007/s10162-022-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA.
| |
Collapse
|
6
|
St. Peter M, Brough DE, Lawrence A, Nelson-Brantley J, Huang P, Harre J, Warnecke A, Staecker H. Improving Control of Gene Therapy-Based Neurotrophin Delivery for Inner Ear Applications. Front Bioeng Biotechnol 2022; 10:892969. [PMID: 35721868 PMCID: PMC9204055 DOI: 10.3389/fbioe.2022.892969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Survival and integrity of the spiral ganglion is vital for hearing in background noise and for optimal functioning of cochlear implants. Numerous studies have demonstrated that supplementation of supraphysiologic levels of the neurotrophins BDNF and NT-3 by pumps or gene therapy strategies supports spiral ganglion survival. The endogenous physiological levels of growth factors within the inner ear, although difficult to determine, are likely extremely low within the normal inner ear. Thus, novel approaches for the long-term low-level delivery of neurotrophins may be advantageous. Objectives: This study aimed to evaluate the long-term effects of gene therapy-based low-level neurotrophin supplementation on spiral ganglion survival. Using an adenovirus serotype 28-derived adenovector delivery system, the herpes latency promoter, a weak, long expressing promoter system, has been used to deliver the BDNF or NTF3 genes to the inner ear after neomycin-induced ototoxic injury in mice. Results: Treatment of the adult mouse inner ear with neomycin resulted in acute and chronic changes in endogenous neurotrophic factor gene expression and led to a degeneration of spiral ganglion cells. Increased survival of spiral ganglion cells after adenoviral delivery of BDNF or NTF3 to the inner ear was observed. Expression of BDNF and NT-3 could be demonstrated in the damaged organ of Corti after gene delivery. Hearing loss due to overexpression of neurotrophins in the normal hearing ear was avoided when using this novel vector–promoter combination. Conclusion: Combining supporting cell-specific gene delivery via the adenovirus serotype 28 vector with a low-strength long expressing promoter potentially can provide long-term neurotrophin delivery to the damaged inner ear.
Collapse
Affiliation(s)
| | | | - Anna Lawrence
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
| | | | - Peixin Huang
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Jennifer Harre
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
- *Correspondence: Hinrich Staecker,
| |
Collapse
|
7
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Chen Z, Huang Y, Yu C, Liu Q, Qiu C, Wan G. Cochlear Sox2 + Glial Cells Are Potent Progenitors for Spiral Ganglion Neuron Reprogramming Induced by Small Molecules. Front Cell Dev Biol 2021; 9:728352. [PMID: 34621745 PMCID: PMC8490772 DOI: 10.3389/fcell.2021.728352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) relay the acoustic information to the central auditory circuits. Degeneration of SGNs is a major cause of sensorineural hearing loss and severely affects the effectiveness of cochlear implant therapy. Cochlear glial cells are able to form spheres and differentiate into neurons in vitro. However, the identity of these progenitor cells is elusive, and it is unclear how to differentiate these cells toward functional SGNs. In this study, we found that Sox2+ subpopulation of cochlear glial cells preserves high potency of neuronal differentiation. Interestingly, Sox2 expression was downregulated during neuronal differentiation and Sox2 overexpression paradoxically inhibited neuronal differentiation. Our data suggest that Sox2+ glial cells are potent SGN progenitor cells, a phenotype independent of Sox2 expression. Furthermore, we identified a combination of small molecules that not only promoted neuronal differentiation of Sox2– glial cells, but also removed glial cell identity and promoted the maturation of the induced neurons (iNs) toward SGN fate. In summary, we identified Sox2+ glial subpopulation with high neuronal potency and small molecules inducing neuronal differentiation toward SGNs.
Collapse
Affiliation(s)
- Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chaorong Yu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Shew M, Wichova H, Warnecke A, Lenarz T, Staecker H. Evaluating Neurotrophin Signaling Using MicroRNA Perilymph Profiling in Cochlear Implant Patients With and Without Residual Hearing. Otol Neurotol 2021; 42:e1125-e1133. [PMID: 33973949 DOI: 10.1097/mao.0000000000003182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS MicroRNAs predicted to regulate neurotrophin signaling can be found in human perilymph. BACKGROUND Animal and human temporal bone studies suggest that spiral ganglion health can affect cochlear implant (CI) outcomes. Neurotrophins have been identified as a key factor in the maintenance of spiral ganglion health. Changes in miRNAs may regulate neurotrophin signaling and may reflect neurotrophin expression levels. METHODS Perilymph sampling was carried out in 18 patients undergoing cochlear implantation or stapedotomy. Expression of miRNAs in perilymph was evaluated using an Agilent miRNA gene chip. Using ingenuity pathway analysis (IPA) software, miRNAs targeting neurotrophin signaling pathway genes present in a cochlear cDNA library were annotated. Expression levels of miRNAs in perilymph were correlated to the patients' preoperative pure-tone average. RESULTS Expression of mRNAs coding for neurotrophins and their receptors were identified in tissue obtained from normal human cochlea during skull base surgery. We identified miRNAs predicted to regulate these signaling cascades, including miR-1207-5p, miR-4651, miR-103-3p, miR-100-5p, miR-221-3p, miR-200-3p. There was a correlation between poor preoperative hearing and lower expression of miR-1207 (predicted to regulate NTR3) and miR-4651 (predicted to regulate NTR2). Additionally, miR-3960, miR-4481, and miR-675 showed significant differences in expression level when comparing mild and profound hearing loss patients. CONCLUSIONS Expression of some miRNAs that are predicted to regulate neurotrophin signaling in the perilymph of cochlear implant patients vary with the patient's level of residual hearing. These miRNAs may serve as biomarkers for changes in neurotrophin signaling.
Collapse
Affiliation(s)
- Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Athanasia Warnecke
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
10
|
Verdoodt D, Peeleman N, Van Camp G, Van Rompaey V, Ponsaerts P. Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Front Cell Neurosci 2021; 15:728610. [PMID: 34526880 PMCID: PMC8435788 DOI: 10.3389/fncel.2021.728610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Hearing impairment is the most frequent sensory deficit, affecting 466 million people worldwide and has been listed by the World Health Organization (WHO) as one of the priority diseases for research into therapeutic interventions to address public health needs. Inner ear gene therapy is a promising approach to restore sensorineural hearing loss, for which several gene therapy applications have been studied and reported in preclinical animal studies. Objective: To perform a systematic review on preclinical studies reporting cochlear gene therapy, with a specific focus on transduction efficiency. Methods: An initial PubMed search was performed on April 1st 2021 using the PRISMA methodology. Preclinical in vivo studies reporting primary data regarding transduction efficiency of gene therapy targeting the inner ear were included in this report. Results: Thirty-six studies were included in this review. Transduction of various cell types in the inner ear can be achieved, according to the viral vector used. However, there is significant variability in the applied vector delivery systems, including promoter, viral vector titer, etc. Conclusion: Although gene therapy presents a promising approach to treat sensorineural hearing loss in preclinical studies, the heterogeneity of methodologies impedes the identification of the most promising tools for future use in inner ear therapies.
Collapse
Affiliation(s)
- Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Noa Peeleman
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Van Camp
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Kempfle JS, Duro MV, Zhang A, Amador CD, Kuang R, Lu R, Kashemirov BA, Edge AS, McKenna CE, Jung DH. A Novel Small Molecule Neurotrophin-3 Analogue Promotes Inner Ear Neurite Outgrowth and Synaptogenesis In vitro. Front Cell Neurosci 2021; 15:666706. [PMID: 34335184 PMCID: PMC8319950 DOI: 10.3389/fncel.2021.666706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/18/2021] [Indexed: 11/15/2022] Open
Abstract
Sensorineural hearing loss is irreversible and is associated with the loss of spiral ganglion neurons (SGNs) and sensory hair cells within the inner ear. Improving spiral ganglion neuron (SGN) survival, neurite outgrowth, and synaptogenesis could lead to significant gains for hearing-impaired patients. There has therefore been intense interest in the use of neurotrophic factors in the inner ear to promote both survival of SGNs and re-wiring of sensory hair cells by surviving SGNs. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) represent the primary neurotrophins in the inner ear during development and throughout adulthood, and have demonstrated potential for SGN survival and neurite outgrowth. We have pioneered a hybrid molecule approach to maximize SGN stimulation in vivo, in which small molecule analogues of neurotrophins are linked to bisphosphonates, which in turn bind to cochlear bone. We have previously shown that a small molecule BDNF analogue coupled to risedronate binds to bone matrix and promotes SGN neurite outgrowth and synaptogenesis in vitro. Because NT-3 has been shown in a variety of contexts to have a greater regenerative capacity in the cochlea than BDNF, we sought to develop a similar approach for NT-3. 1Aa is a small molecule analogue of NT-3 that has been shown to activate cells through TrkC, the NT-3 receptor, although its activity on SGNs has not previously been described. Herein we describe the design and synthesis of 1Aa and a covalent conjugate of 1Aa with risedronate, Ris-1Aa. We demonstrate that both 1Aa and Ris-1Aa stimulate neurite outgrowth in SGN cultures at a significantly higher level compared to controls. Ris-1Aa maintained its neurotrophic activity when bound to hydroxyapatite, the primary mineral component of bone. Both 1Aa and Ris-1Aa promote significant synaptic regeneration in cochlear explant cultures, and both 1Aa and Ris-1Aa appear to act at least partly through TrkC. Our results provide the first evidence that a small molecule analogue of NT-3 can stimulate SGNs and promote regeneration of synapses between SGNs and inner hair cells. Our findings support the promise of hydroxyapatite-targeting bisphosphonate conjugation as a novel strategy to deliver neurotrophic agents to SGNs encased within cochlear bone.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology, University Medical Center Tübingen, Tübingen, Germany
| | - Marlon V Duro
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Andrea Zhang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Carolina D Amador
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Richard Kuang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Ryan Lu
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Albert S Edge
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, Nie G, He Y. The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol 2021; 37:751-771. [PMID: 33723744 PMCID: PMC8490244 DOI: 10.1007/s10565-021-09596-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Background Noise-induced hearing loss represents a commonly diagnosed type of hearing disability, severely impacting the quality of life of individuals. The current work is aimed at assessing the effects of DNA methylation on noise-induced hearing loss. Methods Blocking DNA methyltransferase 1 (DNMT1) activity with a selective inhibitor RG108 or silencing DNMT1 with siRNA was used in this study. Auditory brainstem responses were measured at baseline and 2 days after trauma in mice to assess auditory functions. Whole-mount immunofluorescent staining and confocal microcopy of mouse inner ear specimens were performed to analyze noise-induced damage in cochleae and the auditory nerve at 2 days after noise exposure. Results The results showed that noise exposure caused threshold elevation of auditory brainstem responses and cochlear hair cell loss. Whole-mount cochlea staining revealed a reduction in the density of auditory ribbon synapses between inner hair cells and spiral ganglion neurons. Inhibition of DNA methyltransferase activity via a non-nucleoside specific pharmacological inhibitor, RG108, or silencing of DNA methyltransferase-1 with siRNA significantly attenuated ABR threshold elevation, hair cell damage, and the loss of auditory synapses. Conclusions This study suggests that inhibition of DNMT1 ameliorates noise-induced hearing loss and indicates that DNMT1 may be a promising therapeutic target. Graphical abstract Graphical Headlights • RG108 protected against noise-induced hearing loss • RG108 administration protected against noise-induced hair cell loss and auditory neural damage. • RG108 administration attenuated oxidative stress-induced DNA damage and subsequent apoptosis-mediated cell loss in the cochlea after noise exposure. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s10565-021-09596-y.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shan Zeng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Wen Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Liping Zhao
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chengfu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Guohui Nie
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
13
|
Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021; 168:118-133. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
According to the World Health Organization, hearing loss affects over 466 million people worldwide and is the most common human sensory impairment. It is estimated that genetic factors contribute to the causation of approximately 50% of congenital hearing loss. Yet, curative approaches to reversing or preventing genetic hearing impairment are still limited. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) systems enable programmable and targeted gene editing in highly versatile manners and offer new gene therapy strategies for genetic hearing loss. Here, we summarize the most common deafness-associated genes, illustrate recent strategies undertaken by using CRISPR-Cas9 systems for targeted gene editing and further compare the CRISPR strategies to non-CRISPR gene therapies. We also examine the merits of different vehicles and delivery forms of genome editing agents. Lastly, we describe the development of animal models that could facilitate the eventual clinical applications of the CRISPR technology to the treatment of genetic hearing diseases.
Collapse
|
14
|
Schwieger J, Hamm A, Gepp MM, Schulz A, Hoffmann A, Lenarz T, Scheper V. Alginate-encapsulated brain-derived neurotrophic factor-overexpressing mesenchymal stem cells are a promising drug delivery system for protection of auditory neurons. J Tissue Eng 2020; 11:2041731420911313. [PMID: 32341778 PMCID: PMC7168777 DOI: 10.1177/2041731420911313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/08/2020] [Indexed: 12/23/2022] Open
Abstract
The cochlear implant outcome is possibly improved by brain-derived neurotrophic factor treatment protecting spiral ganglion neurons. Implantation of genetically modified mesenchymal stem cells may enable the required long-term brain-derived neurotrophic factor administration. Encapsulation of mesenchymal stem cells in ultra-high viscous alginate may protect the mesenchymal stem cells from the recipient’s immune system and prevent their uncontrolled migration. Alginate stability and survival of mesenchymal stem cells in alginate were evaluated. Brain-derived neurotrophic factor production was measured and its protective effect was analyzed in dissociated rat spiral ganglion neuron co-culture. Since the cochlear implant is an active electrode, alginate–mesenchymal stem cell samples were electrically stimulated and alginate stability and mesenchymal stem cell survival were investigated. Stability of ultra-high viscous-alginate and alginate–mesenchymal stem cells was proven. Brain-derived neurotrophic factor production was detectable and spiral ganglion neuron survival, bipolar morphology, and neurite outgrowth were increased. Moderate electrical stimulation did not affect the mesenchymal stem cell survival and their viability was good within the investigated time frame. Local drug delivery by ultra-high viscous-alginate-encapsulated brain-derived neurotrophic factor–overexpressing mesenchymal stem cells is a promising strategy to improve the cochlear implant outcome.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Anika Hamm
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Michael M Gepp
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany.,Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - André Schulz
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Andrea Hoffmann
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| |
Collapse
|
15
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
16
|
rAAV-Mediated Cochlear Gene Therapy: Prospects and Challenges for Clinical Application. J Clin Med 2020; 9:jcm9020589. [PMID: 32098144 PMCID: PMC7073754 DOI: 10.3390/jcm9020589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, pioneering molecular gene therapy for inner-ear disorders have achieved experimental hearing improvements after a single local or systemic injection of adeno-associated, virus-derived vectors (rAAV for recombinant AAV) encoding an extra copy of a normal gene, or ribozymes used to modify a genome. These results hold promise for treating congenital or later-onset hearing loss resulting from monogenic disorders with gene therapy approaches in patients. In this review, we summarize the current state of rAAV-mediated inner-ear gene therapies including the choice of vectors and delivery routes, and discuss the prospects and obstacles for the future development of efficient clinical rAAV-mediated cochlear gene medicine therapy.
Collapse
|
17
|
Van De Water TR. Historical Aspects of Gene Therapy and Stem Cell Therapy in the Treatment of Hearing and Balance Disorder. Anat Rec (Hoboken) 2020; 303:390-407. [DOI: 10.1002/ar.24332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas R. Van De Water
- Cochlear Implant Research Program, Department of Otolaryngology, University of Miami Ear InstituteUniversity of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
18
|
Büning H, Schambach A, Morgan M, Rossi A, Wichova H, Staecker H, Warnecke A, Lenarz T. Challenges and advances in translating gene therapy for hearing disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1707077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Braunschweig, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Rossi
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, USA
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, USA
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Talaei S, Schnee ME, Aaron KA, Ricci AJ. Dye Tracking Following Posterior Semicircular Canal or Round Window Membrane Injections Suggests a Role for the Cochlea Aqueduct in Modulating Distribution. Front Cell Neurosci 2019; 13:471. [PMID: 31736710 PMCID: PMC6833940 DOI: 10.3389/fncel.2019.00471] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critical to understanding function at the systems level. Additionally, there is a growing need for drug delivery to the inner ear for preventive and restorative treatments to the pathologies associated with hearing and balance dysfunction. We compare drug delivery to neonatal and adult inner ear by injection into the posterior semicircular canal (PSCC) or through the round window membrane (RWM). PSCC injections produced higher levels of dye delivery within the cochlea than did RWM injections. Neonatal PSCC injections produced a gradient in dye distribution; however, adult distributions were relatively uniform. RWM injections resulted in an early base to apex gradient that became more uniform over time, post injection. RWM injections lead to higher levels of dye distributions in the brain, likely demonstrating that injections can traverse the cochlea aqueduct. We hypothesize the relative position of the cochlear aqueduct between injection site and cochlea is instrumental in dictating dye distribution within the cochlea. Dye distribution is further compounded by the ability of some chemicals to cross inner ear membranes accessing the blood supply as demonstrated by the rapid distribution of gentamicin-conjugated Texas red (GTTR) throughout the body. These data allow for a direct evaluation of injection mode and age to compare strengths and weaknesses of the two approaches.
Collapse
Affiliation(s)
- Sara Talaei
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael E Schnee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ksenia A Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
20
|
Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019; 28:R65-R79. [PMID: 31227837 PMCID: PMC6796998 DOI: 10.1093/hmg/ddz129] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.
Collapse
Affiliation(s)
- Ryotaro Omichi
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seiji B Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M139NT, UK
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Pinyon JL, von Jonquieres G, Crawford EN, Duxbury M, Al Abed A, Lovell NH, Klugmann M, Wise AK, Fallon JB, Shepherd RK, Birman CS, Lai W, McAlpine D, McMahon C, Carter PM, Enke YL, Patrick JF, Schilder AG, Marie C, Scherman D, Housley GD. Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes. Hear Res 2019; 380:137-149. [DOI: 10.1016/j.heares.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
|
22
|
AAV-Mediated Neurotrophin Gene Therapy Promotes Improved Survival of Cochlear Spiral Ganglion Neurons in Neonatally Deafened Cats: Comparison of AAV2-hBDNF and AAV5-hGDNF. J Assoc Res Otolaryngol 2019; 20:341-361. [PMID: 31222416 PMCID: PMC6646500 DOI: 10.1007/s10162-019-00723-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/15/2019] [Indexed: 01/22/2023] Open
Abstract
Outcomes with contemporary cochlear implants (CI) depend partly upon the survival and condition of the cochlear spiral ganglion (SG) neurons. Previous studies indicate that CI stimulation can ameliorate SG neural degeneration after deafness, and brain-derived neurotrophic factor (BDNF) delivered by an osmotic pump can further improve neural survival. However, direct infusion of BDNF elicits undesirable side effects, and osmotic pumps are impractical for clinical application. In this study, we explored the potential for two adeno-associated viral vectors (AAV) to elicit targeted neurotrophic factor expression in the cochlea and promote improved SG and radial nerve fiber survival. Juvenile cats were deafened prior to hearing onset by systemic aminoglycoside injections. Auditory brainstem responses showed profound hearing loss by 16-18 days postnatal. At ~ 4 weeks of age, AAV2-GFP (green fluorescent protein), AAV5-GFP, AAV2-hBDNF, or AAV5-hGDNF (glial-derived neurotrophic factor) was injected through the round window unilaterally. For GFP immunofluorescence, animals were studied ~ 4 weeks post-injection to assess cell types transfected and their distributions. AAV2-GFP immunofluorescence demonstrated strong expression of the GFP reporter gene in residual inner (IHCs), outer hair cells (OHCs), inner pillar cells, and in some SG neurons throughout the cochlea. AAV5-GFP elicited robust transduction of IHCs and some SG neurons, but few OHCs and supporting cells. After AAV-neurotrophic factor injections, animals were studied ~ 3 months post-injection to evaluate neural survival. AAV5-hGDNF elicited a modest neurotrophic effect, with 6 % higher SG density, but had no trophic effect on radial nerve fiber survival, and undesirable ectopic fiber sprouting occurred. AAV2-hBDNF elicited a similar 6 % increase in SG survival, but also resulted in greatly improved radial nerve fiber survival, with no ectopic fiber sprouting. A further study assessed whether AAV2-hBDNF neurotrophic effects would persist over longer post-injection periods. Animals examined 6 months after virus injection showed substantial neurotrophic effects, with 14 % higher SG density and greatly improved radial nerve fiber survival. Our results suggest that AAV-neurotrophin gene therapy can elicit expression of physiological concentrations of neurotrophins in the cochlea, supporting improved SG neuronal and radial nerve fiber survival while avoiding undesirable side effects. These studies also demonstrate the potential for application of cochlear gene therapy in a large mammalian cochlea comparable to the human cochlea and in an animal model of congenital/early acquired deafness.
Collapse
|