1
|
Jacobson JM, Felber BK, Chen H, Pavlakis GN, Mullins JI, De Rosa SC, Kuritzkes DR, Tomaras GD, Kinslow J, Bao Y, Olefsky M, Rosati M, Bear J, Heptinstall JR, Zhang L, Sawant S, Hannaman D, Laird GM, Cyktor JC, Heath SL, Collier AC, Koletar SL, Taiwo BO, Tebas P, Wohl DA, Belaunzaran-Zamudio PF, McElrath MJ, Landay AL. The immunogenicity of an HIV-1 Gag conserved element DNA vaccine in people with HIV and receiving antiretroviral therapy. AIDS 2024; 38:963-973. [PMID: 38051788 PMCID: PMC11062837 DOI: 10.1097/qad.0000000000003804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
OBJECTIVE The primary objective of the study was to assess the immunogenicity of an HIV-1 Gag conserved element DNA vaccine (p24CE DNA) in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). DESIGN AIDS Clinical Trials Group A5369 was a phase I/IIa, randomized, double-blind, placebo-controlled study of PWH receiving ART with plasma HIV-1 RNA less than 50 copies/ml, current CD4 + T-cell counts greater than 500 cells/μl, and nadir CD4 + T-cell counts greater than 350 cells/μl. METHODS The study enrolled 45 participants randomized 2 : 1 : 1 to receive p24CE DNA vaccine at weeks 0 and 4, followed by p24CE DNA admixed with full-length p55 Gag DNA vaccine at weeks 12 and 24 (arm A); full-length p55 Gag DNA vaccine at weeks 0, 4, 12, and 24 (arm B); or placebo at weeks 0, 4, 12, and 24 (arm C). The active and placebo vaccines were administered by intramuscular electroporation. RESULTS There was a modest, but significantly greater increase in the number of conserved elements recognized by CD4 + and/or CD8 + T cells in arm A compared with arm C ( P = 0.014). The percentage of participants with an increased number of conserved elements recognized by T cells was also highest in arm A (8/18, 44.4%) vs. arm C (0/10, 0.0%) ( P = 0.025). There were no significant differences between treatment groups in the change in magnitude of responses to total conserved elements. CONCLUSION A DNA-delivered HIV-1 Gag conserved element vaccine boosted by a combination of this vaccine with a full-length p55 Gag DNA vaccine induced a new conserved element-directed cellular immune response in approximately half the treated PWH on ART.
Collapse
Affiliation(s)
- Jeffrey M Jacobson
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Huichao Chen
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - James I Mullins
- Departments of Microbiology, Medicine, and Global Health, University of Washington, Seattle, WA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Jennifer Kinslow
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Yajing Bao
- Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Jack R Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Lu Zhang
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Sheetal Sawant
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | | | | | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Sonya L Heath
- Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Ann C Collier
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Susan L Koletar
- Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, OH
| | - Babafemi O Taiwo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pablo Tebas
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A Wohl
- Division of Infectious Diseases, Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, NC
| | - Pablo F Belaunzaran-Zamudio
- Contractor, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| |
Collapse
|
2
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
3
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
4
|
Valentin A, Bergamaschi C, Rosati M, Angel M, Burns R, Agarwal M, Gergen J, Petsch B, Oostvogels L, Loeliger E, Chew KW, Deeks SG, Mullins JI, Pavlakis GN, Felber BK. Comparative immunogenicity of an mRNA/LNP and a DNA vaccine targeting HIV gag conserved elements in macaques. Front Immunol 2022; 13:945706. [PMID: 35935984 PMCID: PMC9355630 DOI: 10.3389/fimmu.2022.945706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
Immunogenicity of HIV-1 mRNA vaccine regimens was analyzed in a non-human primate animal model. Rhesus macaques immunized with mRNA in lipid nanoparticle (mRNA/LNP) formulation expressing HIV-1 Gag and Gag conserved regions (CE) as immunogens developed robust, durable antibody responses but low adaptive T-cell responses. Augmentation of the dose resulted in modest increases in vaccine-induced cellular immunity, with no difference in humoral responses. The gag mRNA/lipid nanoparticle (LNP) vaccine provided suboptimal priming of T cell responses for a heterologous DNA booster vaccination regimen. In contrast, a single immunization with gag mRNA/LNP efficiently boosted both humoral and cellular responses in macaques previously primed by a gag DNA-based vaccine. These anamnestic cellular responses were mediated by activated CD8+ T cells with a phenotype of differentiated T-bet+ cytotoxic memory T lymphocytes. The heterologous prime/boost regimens combining DNA and mRNA/LNP vaccine modalities maximized vaccine-induced cellular and humoral immune responses. Analysis of cytokine responses revealed a transient systemic signature characterized by the release of type I interferon, IL-15 and IFN-related chemokines. The pro-inflammatory status induced by the mRNA/LNP vaccine was also characterized by IL-23 and IL-6, concomitant with the release of IL-17 family of cytokines. Overall, the strong boost of cellular and humoral immunity induced by the mRNA/LNP vaccine suggests that it could be useful as a prophylactic vaccine in heterologous prime/boost modality and in immune therapeutic interventions against HIV infection or other chronic human diseases.
Collapse
Affiliation(s)
- Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cncer Institute, Bethesda, MD, United States
- Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Mahesh Agarwal
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | | | | | | | | | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- *Correspondence: Barbara K. Felber,
| |
Collapse
|
5
|
Broadly binding and functional antibodies and persisting memory B cells elicited by HIV vaccine PDPHV. NPJ Vaccines 2022; 7:18. [PMID: 35140230 PMCID: PMC8828892 DOI: 10.1038/s41541-022-00441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Since publishing our original reports on the safety and immunogenicity of a polyvalent DNA prime-protein boost HIV vaccine (PDPHV) which elicited high titer antibody responses with broad specificity, neutralizing activities to multiple HIV-1 subtypes, as well as poly-functional T cell responses, accumulated findings from other HIV vaccine studies indicated the important roles of Ig isotype distribution, Fc medicated functions and the persistence of memory immune responses which were not studied in previous PDPHV related reports. The current report provides further detailed characterization of these parameters in human volunteers receiving the PDPHV regimen. Antibody responses were assessed using IgG isotype and gp70-V1V2-binding ELISAs, peptide arrays, and antibody-dependent cellular cytotoxicity (ADCC) assays. B cell ELISPOT was used to detect gp120-specific memory B cells. Our results showed that the gp120-specific antibodies were primarily of the IgG1 isotype. HIV-1 envelope protein variable regions V1 and V2 were actively targeted by the antibodies as determined by specific binding to both peptide and V1V2-carrying scaffolds. The antibodies showed potent and broad ADCC responses. Finally, the B cell ELISPOT analysis demonstrated persistence of gp120-specific memory B cells for at least 6 months after the last dose. These data indicate that broadly reactive binding Abs and ADCC responses as well as durable gp120-specific memory B cells were elicited by the polyvalent heterologous prime-boost vaccination regimens and showed great promise as a candidate HIV vaccine.
Collapse
|
6
|
Hu X, Felber BK, Valentin A. Assessing Antigen-Specific Cellular Immune Responses upon HIV /SIV Plasmid DNA Vaccination in the Nonhuman Primate Model. Methods Mol Biol 2021; 2197:113-131. [PMID: 32827134 PMCID: PMC10802792 DOI: 10.1007/978-1-0716-0872-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Reliable detection and quantification of antigen-specific T cells are critical for assessing the immunogenicity of vaccine candidates. In this chapter, we describe the use of ELISpot and flow cytometry-based assays for efficient detection, mapping, and functional characterization of memory T lymphocytes in different tissues of rhesus macaques immunized with plasmid DNA. Flow cytometric assays provide a large amount of information, both phenotypic and functional, about individual cells, while the ELISpot is well suited for high throughput sample screening.
Collapse
Affiliation(s)
- Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
7
|
Priming with DNA Expressing Trimeric HIV V1V2 Alters the Immune Hierarchy Favoring the Development of V2-Specific Antibodies in Rhesus Macaques. J Virol 2020; 95:JVI.01193-20. [PMID: 33087466 PMCID: PMC7944456 DOI: 10.1128/jvi.01193-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
The RV144 vaccine trial revealed a correlation between reduced risk of HIV infection and the level of nonneutralizing-antibody (Ab) responses targeting specific epitopes in the second variable domain (V2) of the HIV gp120 envelope (Env) protein, suggesting this region as a target for vaccine development. To favor induction of V2-specific Abs, we developed a vaccine regimen that included priming with DNA expressing an HIV V1V2 trimeric scaffold immunogen followed by booster immunizations with a combination of DNA and protein in rhesus macaques. Priming vaccination with DNA expressing the HIV recombinant subtype CRF01_AE V1V2 scaffold induced higher and broader V2-specific Ab responses than vaccination with DNA expressing CRF01_AE gp145 Env. Abs recognizing the V2 peptide that was reported as a critical target in RV144 developed only after the priming immunization with V1V2 DNA. The V2-specific Abs showed several nonneutralizing Fc-mediated functions, including ADCP and C1q binding. Importantly, robust V2-specific Abs were maintained upon boosting with gp145 DNA and gp120 protein coimmunization. In conclusion, priming with DNA expressing the trimeric V1V2 scaffold alters the hierarchy of humoral immune responses to V2 region epitopes, providing a method for more efficient induction and maintenance of V2-specific Env Abs associated with reduced risk of HIV infection.IMPORTANCE The aim of this work was to design and test a vaccine regimen focusing the immune response on targets associated with infection prevention. We demonstrated that priming with a DNA vaccine expressing only the HIV Env V1V2 region induces Ab responses targeting the critical region in V2 associated with protection. This work shows that V1V2 scaffold DNA priming immunization provides a method to focus immune responses to the desired target region, in the absence of immune interference by other epitopes. This induced immune responses with improved recognition of epitopes important for protective immunity, namely, V2-specific humoral immune responses inversely correlating with HIV risk of infection in the RV144 trial.
Collapse
|
8
|
Liu Y, Wang K, Massoud TF, Paulmurugan R. SARS-CoV-2 Vaccine Development: An Overview and Perspectives. ACS Pharmacol Transl Sci 2020; 3:844-858. [PMID: 33062951 PMCID: PMC7526333 DOI: 10.1021/acsptsci.0c00109] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019, abbreviated as COVID-19, is caused by a new strain of coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It started in late December 2019 in Wuhan, China, and by mid-March 2020, the disease had spread globally. As of July 17, 2020, this pandemic virus has infected 13.9 million people and claimed the life of approximately 593 000 people globally, and the numbers continue to climb. An unprecedented effort is underway to develop therapeutic and prophylactic strategies against this disease. Various drugs and vaccines are undergoing rapid development, and some of these are already in phase III clinical trials. Although Russia was the first to release a vaccine by skipping phase III clinical trials, there is no evidence of large-scale clinical trials, and the safety and efficacy of the vaccine are still a concern. Nevertheless, critical lessons can be learned and data garnered for developing promising vaccines against this rapidly emerging virus or other similar pathogens in the future. In this overview, we cover the available information on the various vaccine development initiatives by different companies, the potential strategies adopted for vaccine design, and the challenges and clinical impact expected from these vaccines. We also briefly discuss the possible role of these vaccines and the specific concerns for their use in patients with pre-existing disease conditions such as cardiovascular, lung, kidney, and liver diseases, cancer patients who are receiving immunosuppressive medications, including anticancer chemotherapies, and many other sensitive populations, such as children and the elderly.
Collapse
Affiliation(s)
- Yi Liu
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
- Department
of Critical Care Medicine, The Second Affiliated
Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
| | - Tarik F. Massoud
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
| | - Ramasamy Paulmurugan
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
| |
Collapse
|
9
|
Rezaei T, Khalili S, Baradaran B, Mosafer J, Rezaei S, Mokhtarzadeh A, de la Guardia M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316:116-137. [PMID: 31669566 DOI: 10.1016/j.jconrel.2019.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Abstract
According to WHO (World Health Organization) reports, more than 770,000 people died from HIV and almost 1.7 million people becoming newly infected in the worldwide in 2018. Therefore, many attempts should be done to produce a forceful vaccine to control the AIDS. DNA-based vaccines have been investigated for HIV vaccination by researches during the recent 20 years. The DNA vaccines are novel approach for induction of both type of immune responses (cellular and humoral) in the host cells and have many advantages including high stability, fast and easy of fabrication and absence of severe side effects when compared with other vaccination methods. Recent studies have been focused on vaccine design, immune responses and on the use of adjuvants as a promising strategy for increased level of responses, delivery approaches by viral and non-viral methods and vector design for different antigens of HIV virus. In this review, we outlined the aforementioned advances on HIV DNA vaccines. Then we described the future trends in clinical trials as a strong strategy even in healthy volunteers and the potential developments in control and prevention of HIV.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sarah Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
10
|
Perdiguero B, Sánchez-Corzo C, S Sorzano CO, Mediavilla P, Saiz L, Esteban M, Gómez CE. Induction of Broad and Polyfunctional HIV-1-Specific T Cell Responses by the Multiepitopic Protein TMEP-B Vectored by MVA Virus. Vaccines (Basel) 2019; 7:vaccines7030057. [PMID: 31261918 PMCID: PMC6789790 DOI: 10.3390/vaccines7030057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
A human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) vaccine able to induce long-lasting immunity remains a major challenge. We previously designed a T cell multiepitopic immunogen including protective conserved epitopes from HIV-1 Gag, Pol and Nef proteins (TMEP-B), that induced potent HIV-1-specific CD8 T cells when vectored by DNA and combined with the vaccine candidate modified vaccinia virus Ankara (MVA)-B. Here, we described the vectorization of TMEP-B in MVA (MVA-TMEP) and evaluated the T cell immunogenicity profile elicited in mice when administered in homologous (MVA/MVA) or heterologous (DNA/MVA) prime/boost vector regimens or using homologous or heterologous inserts. The heterologous vector regimen was superior to the homologous protocol in inducing T cell responses. DNA-TMEP-primed animals boosted with MVA-TMEP or MVA-B exhibited the highest magnitudes of HIV-1-specific CD8, CD4 and T follicular helper (Tfh) cells, with MVA-TMEP significantly expanding Gag-specific CD8 T cell responses. In the homologous vector regimen, all groups exhibited similar HIV-1-specific CD8 and CD4 T cell responses, but both MVA-B/MVA-B and MVA-TMEP/MVA-TMEP combinations elicited higher Gag-Pol-Nef (GPN)-specific CD8 T cell responses compared to MVA-TMEP/MVA-B. Our results revealed an enhanced induction of HIV-1-specific T cell responses by TMEP-B when vectored in both DNA and MVA, and supported their use in combined prime/boost strategies for HIV-1 prevention and/or therapy.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Carlos Oscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pilar Mediavilla
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Lidia Saiz
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Perdiguero B, Raman SC, Sánchez-Corzo C, Sorzano COS, Valverde JR, Esteban M, Gómez CE. Potent HIV-1-Specific CD8 T Cell Responses Induced in Mice after Priming with a Multiepitopic DNA-TMEP and Boosting with the HIV Vaccine MVA-B. Viruses 2018; 10:v10080424. [PMID: 30104537 PMCID: PMC6116222 DOI: 10.3390/v10080424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Suresh C Raman
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Carlos Oscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - José Ramón Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|