1
|
Liu YB, Arystarkhova E, Sacino AN, Szabari MV, Lutz CM, Terrey M, Morsci NS, Jakobs TC, Lykke-Hartmann K, Brashear A, Napoli E, Sweadner KJ. Phenotype Distinctions in Mice Deficient in the Neuron-Specific α3 Subunit of Na,K-ATPase: Atp1a3 tm1Ling/+ and Atp1a3 +/D801Y. eNeuro 2024; 11:ENEURO.0101-24.2024. [PMID: 39111836 PMCID: PMC11360364 DOI: 10.1523/eneuro.0101-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
ATP1A3 is a Na,K-ATPase gene expressed specifically in neurons in the brain. Human mutations are dominant and produce an unusually wide spectrum of neurological phenotypes, most notably rapid-onset dystonia parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). Here we compared heterozygotes of two mouse lines, a line with little or no expression (Atp1a3tm1Ling/+) and a knock-in expressing p.Asp801Tyr (D801Y, Atp1a3 +/D801Y). Both mouse lines had normal lifespans, but Atp1a3 +/D801Y had mild perinatal mortality contrasting with D801N mice (Atp1a3 +/D801N), which had high mortality. The phenotypes of Atp1a3tm1Ling/+ and Atp1a3 +/D801Y were different, and testing of each strain was tailored to its symptom range. Atp1a3tm1Ling/+ mice displayed little at baseline, but repeated ethanol intoxication produced hyperkinetic motor abnormalities not seen in littermate controls. Atp1a3 +/D801Y mice displayed robust phenotypes: hyperactivity, diminished posture consistent with hypotonia, and deficiencies in beam walk and wire hang tests. Symptoms also included qualitative motor abnormalities that are not well quantified by conventional tests. Paradoxically, Atp1a3 +/D801Y showed sustained better performance than wild type on the accelerating rotarod. Atp1a3 +/D801Y mice were overactive in forced swimming and afterward had intense shivering, transient dystonic postures, and delayed recovery. Remarkably, Atp1a3 +/D801Y mice were refractory to ketamine anesthesia, which elicited hyperactivity and dyskinesia even at higher dose. Neither mouse line exhibited fixed dystonia (typical of RDP patients), spontaneous paroxysmal weakness (typical of AHC patients), or seizures but had consistent, measurable neurological abnormalities. A gradient of variation supports the importance of studying multiple Atp1a3 mutations in animal models to understand the roles of this gene in human disease.
Collapse
Affiliation(s)
- Yi Bessie Liu
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| | - Amanda N Sacino
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Margit V Szabari
- Department Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | - Tatjana C Jakobs
- Harvard Medical School, Boston, Massachusetts 02115
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114
| | | | - Allison Brashear
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Elenora Napoli
- Department of Neurology, University of California Davis School of Medicine, Sacramento, California 95817
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
2
|
Mazzocco C, Genevois C, Li Q, Doudnikoff E, Dutheil N, Leste-Lasserre T, Arotcarena ML, Bezard E. In vivo bioluminescence imaging of the intracerebral fibroin-controlled AAV-α-synuclein diffusion for monitoring the central nervous system and peripheral expression. Sci Rep 2024; 14:9710. [PMID: 38678103 PMCID: PMC11055870 DOI: 10.1038/s41598-024-60613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.
Collapse
Affiliation(s)
- Claire Mazzocco
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Coralie Genevois
- VIVOPTIC-TBM-Core Univ Bordeaux, UAR 3427, 33000, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, Manchester, M15 6WE, UK
| | - Evelyne Doudnikoff
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Nathalie Dutheil
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | | | - Marie-Laure Arotcarena
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France.
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France.
- Motac Neuroscience, Manchester, M15 6WE, UK.
| |
Collapse
|
3
|
Patel SH, Panagiotakaki E, Papadopoulou MT, Fons C, De Grandis E, Vezyroglou A, Balestrini S, Hong H, Liu B, Prange L, Arzimanoglou A, Vavassori R, Mikati MA. Methodology of a Natural History Study of a Rare Neurodevelopmental Disorder: Alternating Hemiplegia of Childhood as a Prototype Disease. J Child Neurol 2023; 38:597-610. [PMID: 37728088 DOI: 10.1177/08830738231197861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Here, we describe the process of development of the methodology for an international multicenter natural history study of alternating hemiplegia of childhood as a prototype disease for rare neurodevelopmental disorders. We describe a systematic multistep approach in which we first identified the relevant questions about alternating hemiplegia of childhood natural history and expected challenges. Then, based on our experience with alternating hemiplegia of childhood and on pragmatic literature searches, we identified solutions to determine appropriate methods to address these questions. Specifically, these solutions included development and standardization of alternating hemiplegia of childhood-specific spell video-library, spell calendars, adoption of tailored methodologies for prospective measurement of nonparoxysmal and paroxysmal manifestations, unified data collection protocols, centralized data platform, adoption of specialized analysis methods including, among others, Cohen kappa, interclass correlation coefficient, linear mixed effects models, principal component, propensity score, and ambidirectional analyses. Similar approaches can, potentially, benefit in the study of other rare pediatric neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shital H Patel
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, USA
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Children's Hospital, Member of the ERN EpiCARE, Barcelona, Spain
| | - Elisa De Grandis
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, University College of London (UCL), Queen Square Institute of Neurology, London, UK
| | - Hwanhee Hong
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Beiyu Liu
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Lyndsey Prange
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, USA
| | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Rosaria Vavassori
- Euro Mediterranean Institute of Science and Technology IEMEST, Palermo, Italy
- Association AHC18+ e.V., member of the ERN EpiCARE Patient Advocacy Group (ePAG), Germany
| | - Mohamad A Mikati
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Pearl PL. Characterizing, classifying, and collecting spells in paroxysmal disorders - A need as targeted therapies approach for childhood neurological disorders. Eur J Paediatr Neurol 2023; 46:A2. [PMID: 37704551 DOI: 10.1016/j.ejpn.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Sentmanat MK, Papadopoulou MT, Prange L, Fons C, De Grandis E, Vezyroglou A, Boggs A, Su S, Comajuan M, Wuchich J, Jóhannesson S, Huaynate JA, Stagnaro M, Megvinov A, Patel S, Arzimanoglou A, Vavassori R, Panagiotakaki E, Mikati MA. Development and testing of methods to record and follow up spells in patients with alternating hemiplegia of childhood. Eur J Paediatr Neurol 2023; 46:98-107. [PMID: 37562161 DOI: 10.1016/j.ejpn.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Developing methods to record Alternating Hemiplegia of Childhood (AHC) spells is essential for clinical trials and patient care. OBJECTIVES Test the following hypotheses: 1) Video-library training improves participants' ability to correctly identify AHC spells. 2) A custom-designed event-calendar with weekly reviews results in consistent documentation of such events over time. 3) Use of an electronic diary (e-Diary) to register events is a useful tool. METHODS 1) A video-library of AHC type spells was developed along with specific training; the effect of the training was tested in 36 caregivers. 2) An event-calendar was similarly developed and provided to 5 caregivers with weekly videoconference meetings for 8 weeks. 3) An e-Diary was developed and offered to 33 patients; time of usage and caregivers' feedback (telephone interview) were analyzed. RESULTS 1) Video-library training: Wilcoxon test showed improvement in caregiver identification of spells (p = 0.047), Cohen's Kappa demonstrated high degree of agreement between caregivers'-experts' classifications (>0.9). 2) Event-calendar: 96.42% of entries had complete information; this did not change during follow up (p = 0.804). 3) e-Diary: whereas 52% of respondents used the e-Diary when offered (duration: 10.5 ± 8.1 months), 96.3% indicated they would use it in future studies. Those who used it for 13 months, were very likely to use it during the rest of that year. CONCLUSIONS Video-library training improved spell identification. Calendar with weekly reviews resulted in a sustained and consistent record keeping. Caregivers' e-Diary feedback was encouraging with long-term usage in many. These approaches could be helpful for AHC and, potentially, in similar disorders.
Collapse
Affiliation(s)
- Maria K Sentmanat
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | - Lyndsey Prange
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Carmen Fons
- EpiCARE-ERN Full Member, Italy; Department of Child Neurology, Sant Joan de Déu Children's Hospital, Barcelona, Spain
| | - Elisa De Grandis
- EpiCARE-ERN Full Member, Italy; Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - April Boggs
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Samantha Su
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Marion Comajuan
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | | | | | | | - Michela Stagnaro
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrey Megvinov
- Euro Mediterranean Institute of Science and Technology I.E.ME.S.T., Palermo, Italy
| | - Shital Patel
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA
| | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | - Rosaria Vavassori
- EpiCARE-ERN Full Member, Italy; Euro Mediterranean Institute of Science and Technology I.E.ME.S.T., Palermo, Italy; Association AHC18+ e.V., Germany
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospitals of Lyon (HCL), Lyon, France; EpiCARE-ERN Full Member, Italy
| | - Mohamad A Mikati
- Duke University Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Nott E, Behl KE, Brambilla I, Green TE, Lucente M, Vavassori R, Watson A, Dalla Bernardina B, Hildebrand MS. Rare. The importance of research, analysis, reporting and education in 'solving' the genetic epilepsies: A perspective from the European patient advocacy group for EpiCARE. Eur J Med Genet 2023; 66:104680. [PMID: 36623768 DOI: 10.1016/j.ejmg.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/14/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023]
Affiliation(s)
- E Nott
- European Patient Advocacy Group (ePAG) EpiCARE, France; Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK.
| | - K E Behl
- Alternating Hemiplegia of Childhood UK (AHCUK) and Alternating Hemiplegia of Childhood Federation of Europe (AHCFE), UK
| | - I Brambilla
- European Patient Advocacy Group (ePAG) EpiCARE, France; Dravet Italia Onlus; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - T E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - M Lucente
- European Patient Advocacy Group (ePAG) EpiCARE, France; Associazione Italiana GLUT1 Onlus, Italy
| | - R Vavassori
- European Patient Advocacy Group (ePAG) EpiCARE, France; International Alternating Hemiplegia of Childhood Research Consortium (IAHCRC), USA; Alternating Hemiplegia of Childhood 18+ (AHC18+ e.V.) Association, Germany
| | - A Watson
- European Patient Advocacy Group (ePAG) EpiCARE, France; Ring20 Research and Support UK, UK
| | - B Dalla Bernardina
- Dravet Italia Onlus; Research Center for Pediatric Epilepsies Verona, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Italy
| | - M S Hildebrand
- Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| |
Collapse
|
7
|
Rghei AD, van Lieshout LP, Cao W, He S, Tierney K, Lopes JA, Zielinska N, Baracuhy EM, Campbell ESB, Minott JA, Guilleman MM, Hasson PC, Thompson B, Karimi K, Bridle BW, Susta L, Qiu X, Banadyga L, Wootton SK. Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Ther 2022:10.1038/s41434-022-00361-2. [PMID: 36050451 DOI: 10.1038/s41434-022-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022]
Abstract
Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 μg/mL and 195 μg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative "vaccine" strategy for those with compromised immune systems or in possible outbreak response scenarios.
Collapse
Affiliation(s)
- Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Wenguang Cao
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Shihua He
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Kevin Tierney
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Zielinska
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Enzo M Baracuhy
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena S B Campbell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Pamela C Hasson
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Logan Banadyga
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Parker LE, Wallace K, Thevathasan A, Funk E, Pratt M, Thamby J, Tran L, Prange L, Uchitel J, Boggs A, Minton M, Jasien J, Nagao KJ, Richards A, Cruse B, De-Lisle Dear G, Landstrom AP, Mikati MA. Characterization of sedation and anesthesia complications in patients with alternating hemiplegia of childhood. Eur J Paediatr Neurol 2022; 38:47-52. [PMID: 35390560 DOI: 10.1016/j.ejpn.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/05/2022] [Accepted: 03/17/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alternating hemiplegia of childhood (AHC) pathophysiology suggests predisposition to sedation and anesthesia complications. GOALS Hypotheses: 1) AHC patients experience high rates of sedation-anesthesia complications. 2) ATP1A3 mutation genotype positivity, age, and AHC severity correlate with more severe complications. 3) Prior short QTc correlates with cardiac rhythm complications. METHODS Analysis of 34 consecutive AHC patients who underwent sedation or anesthesia. Classification of complications: mild (not requiring intervention), moderate (intervention), severe (intervention, risk for permanent injury or potential life-threatening emergency). STATISTICS Fisher Exact test, Spearman correlations. RESULTS These patients underwent 129 procedures (3.79 ± 2.75 procedures/patient). Twelve (35%) experienced complications during at least one procedure. Fourteen/129 procedures (11%) manifested one or more complications (2.3% mild, 7% moderate, 1.6% severe). Of the total 20 observed complications, six (33.3%) were severe: apneas (2), seizures (2), bradycardia (1), ventricular fibrillation that responded to resuscitation (1). Moderate complications: non-life-threatening bradycardias, apneas, AHC spells or seizures. Complications occurred during sedation or anesthesia and during procedures or recovery periods. Patients with disease-associated ATP1A3 variants were more likely to have moderate or severe complications. There was no correlation between complications and age or AHC severity. Presence of prior short QTc correlated with cardiac rhythm complications. After this series was analyzed, another patient had severe recurrent laryngeal dystonia requiring tracheostomy following anesthesia with intubation. CONCLUSIONS During sedation or anesthesia, AHC patients, particularly those with ATP1A3 variants and prior short QTc, are at risk for complications consistent with AHC pathophysiology. Increased awareness is warranted during planning, performance, and recovery from such procedures.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States; Department of Pediatrics, Division of Cardiology, and Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Keri Wallace
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Arthur Thevathasan
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Emily Funk
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Milton Pratt
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Julie Thamby
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Linh Tran
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Lyndsey Prange
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Julie Uchitel
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - April Boggs
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Melissa Minton
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Joan Jasien
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Kanae Jennifer Nagao
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Amanda Richards
- Department of Otolaryngology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Belinda Cruse
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine (Royal Melbourne Hospital), Faculty of Medicine, Health and Dentistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Guy De-Lisle Dear
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, and Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Mohamad A Mikati
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
9
|
Cruz ED, Rahim F, Lemmon M, Mikati MA. US Food and Drug Administration Facilitated Pediatric Approval Programs: Application to Pediatric Neurological Disorders. J Child Neurol 2022; 37:222-231. [PMID: 35135372 DOI: 10.1177/08830738211037470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crucial time is often lost while waiting for approval of therapies for pediatric neurological disorders, many of which have aggressive manifestations with devastating effects. There are logistical, ethical, and financial impediments that face the studies needed to determine efficacy and safety of therapies in children. In this article, the authors present the Food and Drug Administration's programs aimed at facilitating the development of pediatric drugs, focusing on their application to pediatric neurological disorders. They also provide examples of drugs that received, or are currently enrolled in, these programs. Reflecting upon the commonalities of drugs receiving these designations, the authors highlight underlying ethical issues related to pediatric drug development and emphasize the need for structured incentives to stimulate approval and production of drug therapies for pediatric neurology patients. By consolidating information that applies to drug approval of pediatric neurological disorders, stakeholders in drug development can enhance treatment development for these disorders.
Collapse
Affiliation(s)
- Emily Da Cruz
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Faraan Rahim
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Monica Lemmon
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Ng HWY, Ogbeta JA, Clapcote SJ. Genetically altered animal models for ATP1A3-related disorders. Dis Model Mech 2021; 14:272403. [PMID: 34612482 PMCID: PMC8503543 DOI: 10.1242/dmm.048938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the past 20 years, particularly with the advent of exome sequencing technologies, autosomal dominant and de novo mutations in the gene encoding the neurone-specific α3 subunit of the Na+,K+-ATPase (NKA α3) pump, ATP1A3, have been identified as the cause of a phenotypic continuum of rare neurological disorders. These allelic disorders of ATP1A3 include (in approximate order of severity/disability and onset in childhood development): polymicrogyria; alternating hemiplegia of childhood; cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss syndrome; relapsing encephalopathy with cerebellar ataxia; and rapid-onset dystonia-parkinsonism. Some patients present intermediate, atypical or combined phenotypes. As these disorders are currently difficult to treat, there is an unmet need for more effective therapies. The molecular mechanisms through which mutations in ATP1A3 result in a broad range of neurological symptoms are poorly understood. However, in vivo comparative studies using genetically altered model organisms can provide insight into the biological consequences of the disease-causing mutations in NKA α3. Herein, we review the existing mouse, zebrafish, Drosophila and Caenorhabditis elegans models used to study ATP1A3-related disorders, and discuss their potential contribution towards the understanding of disease mechanisms and development of novel therapeutics.
Collapse
Affiliation(s)
- Hannah W Y Ng
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jennifer A Ogbeta
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.,European Network for Research on Alternating Hemiplegia (ENRAH), 1120 Vienna, Austria
| |
Collapse
|
11
|
Uchitel J, Wallace K, Tran L, Abrahamsen T, Hunanyan A, Prange L, Jasien J, Caligiuri L, Pratt M, Rikard B, Fons C, De Grandis E, Vezyroglou A, Heinzen EL, Goldstein DB, Vavassori R, Papadopoulou MT, Cocco I, Moré R, Arzimanoglou A, Panagiotakaki E, Mikati MA. Alternating hemiplegia of childhood: evolution over time and mouse model corroboration. Brain Commun 2021; 3:fcab128. [PMID: 34396101 PMCID: PMC8361420 DOI: 10.1093/braincomms/fcab128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Keri Wallace
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Linh Tran
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Tavis Abrahamsen
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Arsen Hunanyan
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Lyndsey Prange
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Laura Caligiuri
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Milton Pratt
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Blaire Rikard
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Children’s Hospital, Member of the ERN EpiCARE, Barcelona 08950, Spain
| | - Elisa De Grandis
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa 16147, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London WC1N 3JH, UK
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Rosaria Vavassori
- Euro Mediterranean Institute of Science and Technology I.E.ME.ST, Palermo 90139, Italy
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Isabella Cocco
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Rebecca Moré
- Department of Paediatric Neurology Outpatient Clinic/Neonatal Paediatrics and Intensive Care, University Hospital of Rouen, Rouen 76000, France
| | | | | | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|