1
|
Almeida CF, Robriquet F, Vetter TA, Huang N, Neinast R, Hernandez-Rosario L, Rajakumar D, Arnold WD, McBride KL, Flanigan KM, Weiss RB, Wein N. Promising AAV.U7snRNAs vectors targeting DMPK improve DM1 hallmarks in patient-derived cell lines. Front Cell Dev Biol 2023; 11:1181040. [PMID: 37397246 PMCID: PMC10309041 DOI: 10.3389/fcell.2023.1181040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults and affects mainly the skeletal muscle, heart, and brain. DM1 is caused by a CTG repeat expansion in the 3'UTR region of the DMPK gene that sequesters muscleblind-like proteins, blocking their splicing activity and forming nuclear RNA foci. Consequently, many genes have their splicing reversed to a fetal pattern. There is no treatment for DM1, but several approaches have been explored, including antisense oligonucleotides (ASOs) aiming to knock down DMPK expression or bind to the CTGs expansion. ASOs were shown to reduce RNA foci and restore the splicing pattern. However, ASOs have several limitations and although being safe treated DM1 patients did not demonstrate improvement in a human clinical trial. AAV-based gene therapies have the potential to overcome such limitations, providing longer and more stable expression of antisense sequences. In the present study, we designed different antisense sequences targeting exons 5 or 8 of DMPK and the CTG repeat tract aiming to knock down DMPK expression or promote steric hindrance, respectively. The antisense sequences were inserted in U7snRNAs, which were then vectorized in AAV8 particles. Patient-derived myoblasts treated with AAV8. U7snRNAs showed a significant reduction in the number of RNA foci and re-localization of muscle-blind protein. RNA-seq analysis revealed a global splicing correction in different patient-cell lines, without alteration in DMPK expression.
Collapse
Affiliation(s)
- Camila F. Almeida
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Florence Robriquet
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Tatyana A. Vetter
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Nianyuan Huang
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Reid Neinast
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Dhanarajan Rajakumar
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - W. David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH, United States
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO, United States
| | - Kim L. McBride
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Kevin M. Flanigan
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neurology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Robert B. Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Nicolas Wein
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Wang Y, Liu T, Xiao W, Bai Y, Yue D, Feng L. Ox-LDL induced profound changes of small non-coding RNA in rat endothelial cells. Front Cardiovasc Med 2023; 10:1060719. [PMID: 36824457 PMCID: PMC9941181 DOI: 10.3389/fcvm.2023.1060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Atherosclerosis (AS) is a common cardiovascular disease with a high incidence rate and mortality. Endothelial cell injury and dysfunction are early markers of AS. Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of AS. Ox-LDL promotes endothelial cell apoptosis and induces inflammation and oxidative stress in endothelial cells. Small non-coding RNAs (sncRNAs) mainly include Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), microRNAs (miRNAs) and repeat-associated RNAs. Studies have shown that small non-coding RNAs play an increasingly important role in diseases. Methods We used ox-LDL to treat rat endothelial cells to simulate endothelial cell injury. The expression changes of sncRNA were analyzed by small RNA high-throughput sequencing, and the expression changes of piRNA, snoRNA, snRNA, miRNA and repeat-associated RNA were verified by quantitative polymerase chain reaction (qPCR). Results Small RNA sequencing showed that 42 piRNAs were upregulated and 38 piRNAs were downregulated in endothelial cells treated with ox-LDL. PiRNA DQ614630 promoted the apoptosis of endothelial cells. The snoRNA analysis results showed that 80 snoRNAs were upregulated and 68 snoRNAs were downregulated in endothelial cells with ox-LDL treatment, and snoRNA ENSRNOT00000079032.1 inhibited the apoptosis of endothelial cells. For snRNA, we found that 20 snRNAs were upregulated and 26 snRNAs were downregulated in endothelial cells with ox-LDL treatment, and snRNA ENSRNOT00000081005.1 increased the apoptosis of endothelial cells. Analysis of miRNAs indicated that 106 miRNAs were upregulated and 91 miRNAs were downregulated in endothelial cells with ox-LDL treatment, and miRNA rno-novel-136-mature promoted the apoptosis of endothelial cells. The repeat RNA analysis results showed that 4 repeat RNAs were upregulated and 6 repeat RNAs were downregulated in endothelial cells treated with ox-LDL. Discussion This study first reported the expression changes of sncRNAs in endothelial cells with ox-LDL treatment, which provided new markers for the diagnosis and treatment of endothelial cell injury.
Collapse
Affiliation(s)
| | | | - Wenying Xiao
- Department of Cardiology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | | | | | | |
Collapse
|
3
|
Filonova G, Aartsma-Rus A. Next steps for the optimization of exon therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:133-143. [PMID: 36655939 DOI: 10.1080/14712598.2023.2169070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION It is established that the exon-skipping approach can restore dystrophin in Duchenne muscular dystrophy (DMD) patients. However, dystrophin restoration levels are low, and the field is evolving to provide solutions for improved exon skipping. DMD is a neuromuscular disorder associated with chronic muscle tissue loss attributed to the lack of dystrophin, which causes muscle inflammation, fibrosis formation, and impaired regeneration. Currently, four antisense oligonucleotides (AONs) based on phosphorodiamidate morpholino oligomer (PMO) chemistry are approved by US Food and Drug Administration for exon skipping therapy of eligible DMD patients. AREAS COVERED This review describes a preclinical and clinical experience with approved and newly developed AONs for DMD, outlines efforts that have been done to enhance AON efficiency, reviews challenges of clinical trials, and summarizes the current state of the exon skipping approach in the DMD field. EXPERT OPINION The exon skipping approach for DMD is under development, and several chemical modifications with improved properties are under (pre)-clinical investigation. Despite existing advantages of these modifications, their safety and effectiveness have to be examined in clinical trials, which are planned or ongoing. Furthermore, we propose clinical settings using natural history controls to facilitate studying the functional effect of the therapy.
Collapse
Affiliation(s)
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Schellens R, de Vrieze E, Graave P, Broekman S, Nagel-Wolfrum K, Peters T, Kremer H, Collin RWJ, van Wijk E. Zebrafish as a Model to Evaluate a CRISPR/Cas9-Based Exon Excision Approach as a Future Treatment Option for EYS-Associated Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22179154. [PMID: 34502064 PMCID: PMC8431288 DOI: 10.3390/ijms22179154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactly one Laminin G and two EGF domains. Although the eysΔexon40-44 transcript was found at levels comparable to wild-type eys, and no unwanted off-target modifications were identified within the eys coding sequence after single-molecule sequencing, EysΔexon40-44 protein expression could not be detected. Visual motor response experiments revealed that eysΔexon40-44 larvae were visually impaired and histological analysis revealed a progressive degeneration of the retinal outer nuclear layer in these zebrafish. Altogether, the data obtained in our zebrafish model currently provide no indications for the skipping of EYS exons 37-41 as an effective future treatment strategy for EYS-associated RP.
Collapse
Affiliation(s)
- Renske Schellens
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
| | - Pam Graave
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
| | - Kerstin Nagel-Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany;
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Theo Peters
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Rob W. J. Collin
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
- Correspondence:
| |
Collapse
|