1
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Zhou X, Liu J, Xiao S, Liang X, Li Y, Mo F, Xin X, Yang Y, Gao C. Adeno-Associated Virus Engineering and Load Strategy for Tropism Modification, Immune Evasion and Enhanced Transgene Expression. Int J Nanomedicine 2024; 19:7691-7708. [PMID: 39099791 PMCID: PMC11296317 DOI: 10.2147/ijn.s459905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Gene therapy aims to add, replace or turn off genes to help treat disease. To date, the US Food and Drug Administration (FDA) has approved 14 gene therapy products. With the increasing interest in gene therapy, feasible gene delivery vectors are necessary for inserting new genes into cells. There are different kinds of gene delivery vectors including viral vectors like lentivirus, adenovirus, retrovirus, adeno-associated virus et al, and non-viral vectors like naked DNA, lipid vectors, polymer nanoparticles, exosomes et al, with viruses being the most commonly used. Among them, the most concerned vector is adeno-associated virus (AAV) because of its safety, natural ability to efficiently deliver gene into cells and sustained transgene expression in multiple tissues. In addition, the AAV genome can be engineered to generate recombinant AAV (rAAV) containing transgene sequences of interest and has been proven to be a safe gene vector. Recently, rAAV vectors have been approved for the treatment of various rare diseases. Despite these approvals, some major limitations of rAAV remain, namely nonspecific tissue targeting and host immune response. Additional problems include neutralizing antibodies that block transgene delivery, a finite transgene packaging capacity, high viral titer used for per dose and high cost. To deal with these challenges, several techniques have been developed. Based on differences in engineering methods, this review proposes three strategies: gene engineering-based capsid modification (capsid modification), capsid surface tethering through chemical conjugation (surface tethering), and other formulations loaded with AAV (virus load). In addition, the major advantages and limitations encountered in rAAV engineering strategies are summarized.
Collapse
Affiliation(s)
- Xun Zhou
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuang Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoqing Liang
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Fengzhen Mo
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Chunsheng Gao
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Dooley J, Hughes JG, Needham EJ, Palios KA, Liston A. The potential of gene delivery for the treatment of traumatic brain injury. J Neuroinflammation 2024; 21:183. [PMID: 39069631 DOI: 10.1186/s12974-024-03156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Therapeutics for traumatic brains injuries constitute a global unmet medical need. Despite the advances in neurocritical care, which have dramatically improved the survival rate for the ~ 70 million patients annually, few treatments have been developed to counter the long-term neuroinflammatory processes and accompanying cognitive impairments, frequent among patients. This review looks at gene delivery as a potential therapeutic development avenue for traumatic brain injury. We discuss the capacity of gene delivery to function in traumatic brain injury, by producing beneficial biologics within the brain. Gene delivery modalities, promising vectors and key delivery routes are discussed, along with the pathways that biological cargos could target to improve long-term outcomes for patients. Coupling blood-brain barrier crossing with sustained local production, gene delivery has the potential to convert proteins with useful biological properties, but poor pharmacodynamics, into effective therapeutics. Finally, we review the limitations and health economics of traumatic brain injury, and whether future gene delivery approaches will be viable for patients and health care systems.
Collapse
Affiliation(s)
- James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Jasmine G Hughes
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Edward J Needham
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
6
|
Abstract
Gene therapy using adeno-associated virus (AAV) is a rapidly developing technology with widespread treatment potential. AAV2 vectors injected directly into the brain by stereotaxic brain surgery have shown good results in treating aromatic l-amino acid decarboxylase deficiency. Moreover, gene therapy using the AAV9 vector, which crosses the blood-brain barrier, has been performed in more than 2000 patients worldwide as a disease-modifying therapy for spinal muscular atrophy. AAV vectors have been applied to the development of gene therapies for various pediatric diseases. Gene therapy trials for hemophilia and ornithine transcarbamylase deficiency are underway. Clinical trials are planned for glucose transporter I deficiency, Niemann-Pick disease type C, and spinocerebellar ataxia type 1. The genome of AAV vectors is located in the episome and is rarely integrated into chromosomes, making the vectors safe. However, serious adverse events such as hepatic failure and thrombotic microangiopathy have been reported, and ongoing studies are focusing on developing more efficient vectors to reduce required dosages.
Collapse
|
7
|
Jäschke N, Büning H. Adeno-Associated Virus Vector Design-Moving the Adeno-Associated Virus to a Bioengineered Therapeutic Nanoparticle. Hematol Oncol Clin North Am 2022; 36:667-685. [PMID: 35778330 DOI: 10.1016/j.hoc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the number of market-approved gene therapies is still low, this new class of therapeutics has become an integral part of modern medicine. The success and safety of gene therapy depend on the vectors used to deliver the therapeutic material. Adeno-associated virus (AAV) vectors have emerged as the most frequently used delivery system for in vivo gene therapy. This success was achieved with first-generation vectors, using capsids derived from natural AAV serotypes. Their broad tropism, the high seroprevalence for many of the AAV serotypes in the human population, and the high vector doses needed to transduce a sufficient number of therapy-relevant target cells are challenges that are addressed by engineering the capsid and the vector genome, improving the efficacy of these biological nanoparticles.
Collapse
Affiliation(s)
- Nico Jäschke
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; German Center for Infection Research, Partner Site Hannover-Braunschweig.
| |
Collapse
|
8
|
Gene-based therapeutics for rare genetic neurodevelopmental psychiatric disorders. Mol Ther 2022; 30:2416-2428. [PMID: 35585789 PMCID: PMC9263284 DOI: 10.1016/j.ymthe.2022.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
We are in an emerging era of gene-based therapeutics with significant promise for rare genetic disorders. The potential is particularly significant for genetic central nervous system disorders that have begun to achieve Food and Drug Administration approval for select patient populations. This review summarizes the discussions and presentations of the National Institute of Mental Health-sponsored workshop "Gene-Based Therapeutics for Rare Genetic Neurodevelopmental Psychiatric Disorders," which was held in January 2021. Here, we distill the points raised regarding various precision medicine approaches related to neurodevelopmental and psychiatric disorders that may be amenable to gene-based therapies.
Collapse
|
9
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|