1
|
Wang H, Georgakopoulou A, Nizamis E, Mok KW, Eluère R, Policastro RA, Valdmanis PN, Lieber A. Auto-expansion of in vivo HDAd-transduced hematopoietic stem cells by constitutive expression of tHMGA2. Mol Ther Methods Clin Dev 2024; 32:101319. [PMID: 39282078 PMCID: PMC11399618 DOI: 10.1016/j.omtm.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
We developed an in vivo hematopoietic stem cell (HSC) gene therapy approach that does not require cell transplantation. To achieve therapeutically relevant numbers of corrected cells, we constructed HSC-tropic HDAd5/35++ vectors expressing a 3' UTR truncated HMGA2 gene and a GFP reporter gene. A SB100x transposase vector mediated random integration of the tHMGA2/GFP transgene cassette. HSCs in mice were mobilized by subcutaneous injections of G-CSF and AMD3100/Plerixafor and intravenously injected with the integrating tHMGA2/GFP vector. This resulted in a slow but progressive, competitive expansion of GFP+ PBMCs, reaching about 50% by week 44 with further expansion in secondary recipients. Expansion occurred at the level of HSCs as well as at the levels of myeloid, lymphoid, and erythroid progenitors within the bone marrow and spleen. Importantly, based on genome-wide integration site analyses, expansion was polyclonal, without any signs of clonal dominance. Whole-exome sequencing did not show significant differences in the genomic instability indices between tHGMGA2/GFP mice and untreated control mice. Auto-expansion by tHMGA2 was validated in humanized mice. This is the first demonstration that simple injections of mobilization drugs and HDAd vectors can trigger auto-expansion of in vivo transduced HSCs resulting in transgene-marking rates that, theoretically, are curative for hemoglobinopathies.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | | | | | | | - Paul N Valdmanis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Nasiri K, Mohammadzadehsaliani S, Kheradjoo H, Shabestari AM, Eshaghizadeh P, Pakmehr A, Alsaffar MF, Al-Naqeeb BZT, Yasamineh S, Gholizadeh O. Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects. Cell Commun Signal 2023; 21:103. [PMID: 37158893 PMCID: PMC10165295 DOI: 10.1186/s12964-023-01122-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their significant capability to reconstitute and preserve a functional hematopoietic system in long-term periods after transplantation into conditioned hosts. HSCs are thus crucial cellular targets for the continual repair of inherited hematologic, metabolic, and immunologic disorders. In addition, HSCs can undergo various fates, such as apoptosis, quiescence, migration, differentiation, and self-renewal. Viruses continuously pose a remarkable health risk and request an appropriate, balanced reaction from our immune system, which as well as affects the bone marrow (BM). Therefore, disruption of the hematopoietic system due to viral infection is essential. In addition, patients for whom the risk-to-benefit ratio of HSC transplantation (HSCT) is acceptable have seen an increase in the use of HSCT in recent years. Hematopoietic suppression, BM failure, and HSC exhaustion are all linked to chronic viral infections. Virus infections continue to be a leading cause of morbidity and mortality in HSCT recipients, despite recent advancements in the field. Furthermore, whereas COVID-19 manifests initially as an infection of the respiratory tract, it is now understood to be a systemic illness that significantly impacts the hematological system. Patients with advanced COVID-19 often have thrombocytopenia and blood hypercoagulability. In the era of COVID-19, Hematological manifestations of COVID-19 (i.e., thrombocytopenia and lymphopenia), the immune response, and HSCT may all be affected by the SARS-CoV-2 virus in various ways. Therefore, it is important to determine whether exposure to viral infections may affect HSCs used for HSCT, as this, in turn, may affect engraftment efficiency. In this article, we reviewed the features of HSCs, and the effects of viral infections on HSCs and HSCT, such as SARS-CoV-2, HIV, cytomegalovirus, Epstein-Barr virus, HIV, etc. Video Abstract.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | | | | | - Parisa Eshaghizadeh
- Department of Dental Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azin Pakmehr
- Medical Doctor, Tehran University of Medical Science, Tehran, Iran
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department / AL-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | | | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Li C, Georgakopoulou A, Newby GA, Chen PJ, Everette KA, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, Huang L, Wang H, Kiem HP, Liu DR, Yannaki E, Lieber A. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 2023; 141:2085-2099. [PMID: 36800642 PMCID: PMC10163316 DOI: 10.1182/blood.2022018252] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the β-globin gene. Current gene therapy studies are mainly focused on lentiviral vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor-expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of βS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Peter J. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kelcee A. Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kiriaki Paschoudi
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Hematological Laboratory, Second Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Anna K. Anderson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Theodore Koob
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Lishan Huang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Li C, Anderson AK, Wang H, Gil S, Kim J, Huang L, Germond A, Baldessari A, Nelson V, Bar KJ, Peterson CW, Bui J, Kiem HP, Lieber A. Stable HIV decoy receptor expression after in vivo HSC transduction in mice and NHPs: Safety and efficacy in protection from SHIV. Mol Ther 2023; 31:1059-1073. [PMID: 36760126 PMCID: PMC10124088 DOI: 10.1016/j.ymthe.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/15/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
We aim to develop an in vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. In vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of ∼100 μg/mL (mice) and >20 μg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1 μg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were ∼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the in vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA.
| | - Anna Kate Anderson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Jiho Kim
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Lishan Huang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Audrey Germond
- Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - Audrey Baldessari
- Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - Veronica Nelson
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher W Peterson
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - John Bui
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, Division of Allergy and Infection Diseases, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA 98195, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
6
|
Li C, Georgakopoulou A, Newby GA, Everette KA, Nizamis E, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, Huang L, Wang H, Kiem HP, Liu DR, Yannaki E, Lieber A. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies. JCI Insight 2022; 7:e162939. [PMID: 36006707 PMCID: PMC9675455 DOI: 10.1172/jci.insight.162939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with β-thalassemia or sickle cell disease and hereditary persistence of fetal hemoglobin (HPFH) possessing 30% fetal hemoglobin (HbF) appear to be symptom free. Here, we used a nonintegrating HDAd5/35++ vector expressing a highly efficient and accurate version of an adenine base editor (ABE8e) to install, in vivo, a -113 A>G HPFH mutation in the γ-globin promoters in healthy CD46/β-YAC mice carrying the human β-globin locus. Our in vivo hematopoietic stem cell (HSC) editing/selection strategy involves only s.c. and i.v. injections and does not require myeloablation and HSC transplantation. In vivo HSC base editing in CD46/β-YAC mice resulted in > 60% -113 A>G conversion, with 30% γ-globin of β-globin expressed in 70% of erythrocytes. Importantly, no off-target editing at sites predicted by CIRCLE-Seq or in silico was detected. Furthermore, no critical alterations in the transcriptome of in vivo edited mice were found by RNA-Seq. In vitro, in HSCs from β-thalassemia and patients with sickle cell disease, transduction with the base editor vector mediated efficient -113 A>G conversion and reactivation of γ-globin expression with subsequent phenotypic correction of erythroid cells. Because our in vivo base editing strategy is safe and technically simple, it has the potential for clinical application in developing countries where hemoglobinopathies are prevalent.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Kelcee A. Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Evangelos Nizamis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Kiriaki Paschoudi
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Hematological Laboratory, Second Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Anna K. Anderson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Theodore Koob
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Lishan Huang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|