1
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
2
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
3
|
Beaufils M, Melka M, Brocard J, Benoit C, Debbah N, Mamchaoui K, Romero NB, Dalmas-Laurent AF, Quijano-Roy S, Fauré J, Rendu J, Marty I. Functional benefit of CRISPR-Cas9-induced allele deletion for RYR1 dominant mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102259. [PMID: 39071953 PMCID: PMC11278293 DOI: 10.1016/j.omtn.2024.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
More than 700 pathogenic or probably pathogenic variations have been identified in the RYR1 gene causing various myopathies collectively known as "RYR1-related myopathies." There is no treatment for these myopathies, and gene therapy stands out as one of the most promising approaches. In the context of a dominant form of central core disease due to a RYR1 mutation, we aimed at showing the functional benefit of inactivating specifically the mutated RYR1 allele by guiding CRISPR-Cas9 cleavages onto frequent single-nucleotide polymorphisms (SNPs) segregating on the same chromosome. Whole-genome sequencing was used to pinpoint SNPs localized on the mutant RYR1 allele and identified specific CRISPR-Cas9 guide RNAs. Lentiviruses encoding these guide RNAs and the SpCas9 nuclease were used to transduce immortalized patient myoblasts, inducing the specific deletion of the mutant RYR1 allele. The efficiency of the deletion was assessed at DNA and RNA levels, and at the functional level after monitoring calcium release induced by the stimulation of the RyR1-channel. This study provides in cellulo proof of concept regarding the benefits of mutant RYR1 allele deletion, in the case of a dominant RYR1 mutation, from both a molecular and functional perspective, and could apply potentially to 20% of all patients with a RYR1 mutation.
Collapse
Affiliation(s)
- Mathilde Beaufils
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Margaux Melka
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julie Brocard
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Clement Benoit
- University Grenoble Alpes, TIMC, CNRS UMR5525, 38000 Grenoble, France
| | - Nagi Debbah
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
- University Grenoble Alpes, TIMC, CNRS UMR5525, 38000 Grenoble, France
- University Grenoble Alpes, Departement de Pharmacochimie Moléculaire, CNRS UMR 5063, 38400 Saint-Martin-d'Hères, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75000 Paris, France
| | - Norma B. Romero
- Neuromuscular Morphology Unit, Institut de Myologie, Pitié-Salpêtrière Hospital, Sorbonne Université, 75000 Paris, France
| | | | - Susana Quijano-Roy
- Neuromuscular Unit (NEIDF), Child Neurology and ICU Department, Raymond-Poincaré Hospital, (APHP University Paris-Saclay), 92380 Garches, France
| | - Julien Fauré
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - John Rendu
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Isabelle Marty
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
4
|
Shaik S, Kumar R, Chaudhary M, Kaur C, Khurana N, Singh G. Artificial viruses: A nanotechnology based approach. Daru 2024; 32:339-352. [PMID: 38105369 PMCID: PMC11087390 DOI: 10.1007/s40199-023-00496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES The main objective of this work was to review and summarise the detailed literature available on viral nanoparticle and the strategies utilised for their manufacture along with their applications as therapeutic agents. DATA ACQUISITION The reported literature related to development and application of virus nanoparticles have been collected from electronic data bases like ScienceDirect, google scholar, PubMed by using key words like "viral nanoparticles", "targeted drug delivery" and "vaccines" and related combinations. RESULT From the detailed literature survey, virus nanoparticles were identified as carriers for the targeted delivery. Due to the presence of nanostructures in virus nanoparticles, these protect the drugs from the degradation in the gastrointestinal tract and in case of the delivery of gene medicine, they carry the nucleic acids to the target/susceptible host cells. Thus, artificial viruses are utilised for targeted delivery to specific organ in biomedical and biotechnological areas. CONCLUSION Thus, virus nanoparticles can be considered as viable option as drug/gene carrier in various healthcare sectors especially drug delivery and vaccine and can be explored further in future for the development of better drug delivery techniques.
Collapse
Affiliation(s)
- Shareef Shaik
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
5
|
Wherley TJ, Thomas S, Millay DP, Saunders T, Roy S. Molecular regulation of myocyte fusion. Curr Top Dev Biol 2024; 158:53-82. [PMID: 38670716 PMCID: PMC11503471 DOI: 10.1016/bs.ctdb.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Myocyte fusion is a pivotal process in the development and regeneration of skeletal muscle. Failure during fusion can lead to a range of developmental as well as pathological consequences. This review aims to comprehensively explore the intricate processes underlying myocyte fusion, from the molecular to tissue scale. We shed light on key players, such as the muscle-specific fusogens - Myomaker and Myomixer, in addition to some lesser studied molecules contributing to myocyte fusion. Conserved across vertebrates, Myomaker and Myomixer play a crucial role in driving the merger of plasma membranes of fusing myocytes, ensuring the formation of functional muscle syncytia. Our multiscale approach also delves into broader cell and tissue dynamics that orchestrate the timing and positioning of fusion events. In addition, we explore the relevance of muscle fusogens to human health and disease. Mutations in fusogen genes have been linked to congenital myopathies, providing unique insights into the molecular basis of muscle diseases. We conclude with a discussion on potential therapeutic avenues that may emerge from manipulating the myocyte fusion process to remediate skeletal muscle disorders.
Collapse
Affiliation(s)
- Tanner J Wherley
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Serena Thomas
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Timothy Saunders
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Pediatrics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Asokan A, Shen S. Redirecting AAV vectors to extrahepatic tissues. Mol Ther 2023; 31:3371-3375. [PMID: 37805712 PMCID: PMC10727976 DOI: 10.1016/j.ymthe.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors are the current benchmark for systemic delivery of gene therapies to multiple organs in vivo. Despite clinical successes, safe and effective gene delivery to extrahepatic tissues has proven challenging due to dose limiting toxicity arising from high liver uptake of AAV vectors. Deeper understanding of AAV structure, receptor biology, and pharmacology has enabled the design and engineering of liver-de-targeted capsids ushering in several new vector candidates. This next generation of AAVs offers significant promise for extrahepatic gene delivery to cardiovascular, musculoskeletal, and neurological tissues with improved safety profiles.
Collapse
Affiliation(s)
- Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Shen Shen
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA, USA.
| |
Collapse
|
7
|
Duan D. Lethal immunotoxicity in high-dose systemic AAV therapy. Mol Ther 2023; 31:3123-3126. [PMID: 37822079 PMCID: PMC10638066 DOI: 10.1016/j.ymthe.2023.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023] Open
Abstract
High-dose systemic gene therapy with adeno-associated virus (AAV) is in clinical trials to treat various inherited diseases. Despite remarkable success in spinal muscular atrophy and promising results in other diseases, fatality has been observed due to liver, kidney, heart, or lung failure. Innate and adaptive immune responses to the vector play a critical role in the toxicity. Host factors also contribute to patient death. This mini-review summarizes clinical findings and calls for concerted efforts from all stakeholders to better understand the mechanisms underlying lethality in AAV gene therapy and to develop effective strategies to prevent/treat high-dose systemic AAV-gene-therapy-induced immunotoxicity.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology and Department of Neurology, School of Medicine, Department of Biomedical Sciences, College of Veterinary Medicine, Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
8
|
Büning H, Morgan M, Schambach A. Skeletal muscle-directed gene therapy: hijacking the fusogenic properties of muscle cells. Signal Transduct Target Ther 2023; 8:340. [PMID: 37699901 PMCID: PMC10497515 DOI: 10.1038/s41392-023-01584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 09/14/2023] Open
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, 30625, Germany.
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Li Z, Gonçalves MA. AAV-vectored base editor trans-splicing delivers dystrophin repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:900-902. [PMID: 37346982 PMCID: PMC10280080 DOI: 10.1016/j.omtn.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Zhen Li
- Leiden University Medical Centre, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A.F.V. Gonçalves
- Leiden University Medical Centre, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| |
Collapse
|
10
|
Abstract
Duchenne muscular dystrophy (DMD) was named more than 150 years ago. About four decades ago, the DMD gene was discovered, and the reading frame shift was determined as the genetic underpinning. These pivotal findings significantly changed the landscape of DMD therapy development. Restoration of dystrophin expression with gene therapy became a primary focus. Investment in gene therapy has led to the approval of exon skipping by regulatory agencies, multiple clinical trials of systemic microdystrophin therapy using adeno-associated virus vectors, and revolutionary genome editing therapy using the CRISPR technology. However, many important issues surfaced during the clinical translation of DMD gene therapy (such as low efficiency of exon skipping, immune toxicity-induced serious adverse events, and patient death). In this issue of Human Gene Therapy, several research articles highlighted some of the latest developments in DMD gene therapy. Importantly, a collection of articles from experts in the field reviewed the progress, major challenges, and future directions of DMD gene therapy. These insightful discussions have significant implications for gene therapy of other neuromuscular diseases.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|