1
|
Mudde ACA, Kuo CY, Kohn DB, Booth C. What a Clinician Needs to Know About Genome Editing: Status and Opportunities for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1139-1149. [PMID: 38246560 DOI: 10.1016/j.jaip.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy. Research on gene editing for inborn errors of immunity is still entirely preclinical, with no trials yet underway. However, with editing techniques maturing, scientists are investigating this novel form of gene therapy in context of an increasing number of inborn errors of immunity. Here, we present an overview of these studies and the recent progress moving these technologies closer to clinical benefit.
Collapse
Affiliation(s)
- Anne C A Mudde
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Caroline Y Kuo
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Donald B Kohn
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif; Department of Microbiology, Immunology & Molecular Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Uchiyama T, Kawai T, Nakabayashi K, Nakazawa Y, Goto F, Okamura K, Nishimura T, Kato K, Watanabe N, Miura A, Yasuda T, Ando Y, Minegishi T, Edasawa K, Shimura M, Akiba Y, Sato-Otsubo A, Mizukami T, Kato M, Akashi K, Nunoi H, Onodera M. Myelodysplasia after clonal hematopoiesis with APOBEC3-mediated CYBB inactivation in retroviral gene therapy for X-CGD. Mol Ther 2023; 31:3424-3440. [PMID: 37705244 PMCID: PMC10727956 DOI: 10.1016/j.ymthe.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Stem cell gene therapy using the MFGS-gp91phox retroviral vector was performed on a 27-year-old patient with X-linked chronic granulomatous disease (X-CGD) in 2014. The patient's refractory infections were resolved, whereas the oxidase-positive neutrophils disappeared within 6 months. Thirty-two months after gene therapy, the patient developed myelodysplastic syndrome (MDS), and vector integration into the MECOM locus was identified in blast cells. The vector integration into MECOM was detectable in most myeloid cells at 12 months after gene therapy. However, the patient exhibited normal hematopoiesis until the onset of MDS, suggesting that MECOM transactivation contributed to clonal hematopoiesis, and the blast transformation likely arose after the acquisition of additional genetic lesions. In whole-genome sequencing, the biallelic loss of the WT1 tumor suppressor gene, which occurred immediately before tumorigenesis, was identified as a potential candidate genetic alteration. The provirus CYBB cDNA in the blasts contained 108 G-to-A mutations exclusively in the coding strand, suggesting the occurrence of APOBEC3-mediated hypermutations during the transduction of CD34-positive cells. A hypermutation-mediated loss of oxidase activity may have facilitated the survival and proliferation of the clone with MECOM transactivation. Our data provide valuable insights into the complex mechanisms underlying the development of leukemia in X-CGD gene therapy.
Collapse
Affiliation(s)
- Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan.
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Yumiko Nakazawa
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Fumihiro Goto
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development, Tokyo, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Akane Miura
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Yasuda
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Yukiko Ando
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoko Minegishi
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Kaori Edasawa
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Marika Shimura
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Yumi Akiba
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Pediatric Hematology and Oncology, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoyuki Mizukami
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Pediatric Hematology and Oncology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
5
|
Bastone AL, Dziadek V, John-Neek P, Mansel F, Fleischauer J, Agyeman-Duah E, Schaudien D, Dittrich-Breiholz O, Schwarzer A, Schambach A, Rothe M. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol Ther Methods Clin Dev 2023; 30:515-533. [PMID: 37693949 PMCID: PMC10491817 DOI: 10.1016/j.omtm.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.
Collapse
Affiliation(s)
- Antonella L. Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Justiz-Vaillant AA, Williams-Persad AFA, Arozarena-Fundora R, Gopaul D, Soodeen S, Asin-Milan O, Thompson R, Unakal C, Akpaka PE. Chronic Granulomatous Disease (CGD): Commonly Associated Pathogens, Diagnosis and Treatment. Microorganisms 2023; 11:2233. [PMID: 37764077 PMCID: PMC10534792 DOI: 10.3390/microorganisms11092233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by a defect in the phagocytic function of the innate immune system owing to mutations in genes encoding the five subunits of the nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase enzyme complex. This review aimed to provide a comprehensive approach to the pathogens associated with chronic granulomatous disease (CGD) and its management. Patients with CGD, often children, have recurrent life-threatening infections and may develop infectious or inflammatory complications. The most common microorganisms observed in the patients with CGD are Staphylococcus aureus, Aspergillus spp., Candida spp., Nocardia spp., Burkholderia spp., Serratia spp., and Salmonella spp. Antibacterial prophylaxis with trimethoprim-sulfamethoxazole, antifungal prophylaxis usually with itraconazole, and interferon gamma immunotherapy have been successfully used in reducing infection in CGD. Haematopoietic stem cell transplantation (HCT) have been successfully proven to be the treatment of choice in patients with CGD.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Arlene Faye-Ann Williams-Persad
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Darren Gopaul
- Department of Internal Medicine, Port of Spain General Hospital, The University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | | | - Reinand Thompson
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago;
| |
Collapse
|
7
|
Sobrino S, Magnani A, Semeraro M, Martignetti L, Cortal A, Denis A, Couzin C, Picard C, Bustamante J, Magrin E, Joseph L, Roudaut C, Gabrion A, Soheili T, Cordier C, Lortholary O, Lefrere F, Rieux-Laucat F, Casanova JL, Bodard S, Boddaert N, Thrasher AJ, Touzot F, Taque S, Suarez F, Marcais A, Guilloux A, Lagresle-Peyrou C, Galy A, Rausell A, Blanche S, Cavazzana M, Six E. Severe hematopoietic stem cell inflammation compromises chronic granulomatous disease gene therapy. Cell Rep Med 2023; 4:100919. [PMID: 36706754 PMCID: PMC9975109 DOI: 10.1016/j.xcrm.2023.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
X-linked chronic granulomatous disease (CGD) is associated with defective phagocytosis, life-threatening infections, and inflammatory complications. We performed a clinical trial of lentivirus-based gene therapy in four patients (NCT02757911). Two patients show stable engraftment and clinical benefits, whereas the other two have progressively lost gene-corrected cells. Single-cell transcriptomic analysis reveals a significantly lower frequency of hematopoietic stem cells (HSCs) in CGD patients, especially in the two patients with defective engraftment. These two present a profound change in HSC status, a high interferon score, and elevated myeloid progenitor frequency. We use elastic-net logistic regression to identify a set of 51 interferon genes and transcription factors that predict the failure of HSC engraftment. In one patient, an aberrant HSC state with elevated CEBPβ expression drives HSC exhaustion, as demonstrated by low repopulation in a xenotransplantation model. Targeted treatments to protect HSCs, coupled to targeted gene expression screening, might improve clinical outcomes in CGD.
Collapse
Affiliation(s)
- Steicy Sobrino
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Alessandra Magnani
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Michaela Semeraro
- Clinical Investigation Center CIC 1419, Necker-Enfants Malades Hospital, GH Paris Centre, Université Paris Cité, AP-HP, Paris, France
| | - Loredana Martignetti
- Clinical Bioinformatics Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Akira Cortal
- Clinical Bioinformatics Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Adeline Denis
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Chloé Couzin
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Paris, France; Lymphocyte Activation and Susceptibility to EBV Infection Laboratory, INSERM UMR 1163, Imagine Institute, Paris, France; Centre de Références des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Paris, France; Human Genetics of Infectious Diseases Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Elisa Magrin
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Laure Joseph
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Cécile Roudaut
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Aurélie Gabrion
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Tayebeh Soheili
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Corinne Cordier
- Plateforme de Cytométrie en Flux, Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Olivier Lortholary
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Imagine Institute, Paris, France
| | - François Lefrere
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Department of Adult Hematology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Frédéric Rieux-Laucat
- Immunogenetics of Pediatric Autoimmune Diseases Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Jean-Laurent Casanova
- Human Genetics of Infectious Diseases Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Sylvain Bodard
- Department of Adult Radiology, Necker Enfants-Malades Hospital, AP-HP, Université Paris Cité, Paris, France; Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and UMR 1299, Imagine Institute, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - Adrian J Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fabien Touzot
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Sophie Taque
- CHU de Rennes, Département de Pédiatrie, Rennes, France
| | - Felipe Suarez
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Imagine Institute, Paris, France; Imagine Institute, Université Paris Cité, Paris, France
| | - Ambroise Marcais
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Imagine Institute, Paris, France
| | - Agathe Guilloux
- Mathematics and Modelization Laboratory, CNRS, Université Paris-Saclay, Université d'Evry, Evry, France
| | - Chantal Lagresle-Peyrou
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Anne Galy
- Genethon, Evry-Courcouronnes, France; Université Paris-Saclay, University Evry, Inserm, Genethon (UMR_S951), Evry-Courcouronnes, France
| | - Antonio Rausell
- Clinical Bioinformatics Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; Service de Médecine Génomique des Maladies Rares, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - Stephane Blanche
- Department of Pediatric Immunology, Hematology, and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France; Imagine Institute, Université Paris Cité, Paris, France.
| | - Emmanuelle Six
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
8
|
Mudde A, Booth C. Gene therapy for inborn error of immunity - current status and future perspectives. Curr Opin Allergy Clin Immunol 2023; 23:51-62. [PMID: 36539381 DOI: 10.1097/aci.0000000000000876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Development of hematopoietic stem cell (HSC) gene therapy (GT) for inborn errors of immunity (IEIs) continues to progress rapidly. Although more patients are being treated with HSC GT based on viral vector mediated gene addition, gene editing techniques provide a promising new approach, in which transgene expression remains under the control of endogenous regulatory elements. RECENT FINDINGS Many gene therapy clinical trials are being conducted and evidence showing that HSC GT through viral vector mediated gene addition is a successful and safe curative treatment option for various IEIs is accumulating. Gene editing techniques for gene correction are, on the other hand, not in clinical use yet, despite rapid developments during the past decade. Current studies are focussing on improving rates of targeted integration, while preserving the primitive HSC population, which is essential for future clinical translation. SUMMARY As HSC GT is becoming available for more diseases, novel developments should focus on improving availability while reducing costs of the treatment. Continued follow up of treated patients is essential for providing information about long-term safety and efficacy. Editing techniques have great potential but need to be improved further before the translation to clinical studies can happen.
Collapse
Affiliation(s)
- Anne Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital, London, UK
| |
Collapse
|
9
|
Meng Q, Sun H, Liu J. Precise somatic genome editing for treatment of inborn errors of immunity. Front Immunol 2022; 13:960348. [PMID: 36091069 PMCID: PMC9459235 DOI: 10.3389/fimmu.2022.960348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid advances in high throughput sequencing have substantially expedited the identification and diagnosis of inborn errors of immunity (IEI). Correction of faulty genes in the hematopoietic stem cells can potentially provide cures for the majority of these monogenic immune disorders. Given the clinical efficacies of vector-based gene therapies already established for certain groups of IEI, the recently emerged genome editing technologies promise to bring safer and more versatile treatment options. Here, we review the latest development in genome editing technologies, focusing on the state-of-the-art tools with improved precision and safety profiles. We subsequently summarize the recent preclinical applications of genome editing tools in IEI models, and discuss the major challenges and future perspectives of such treatment modalities. Continued explorations of precise genome editing for IEI treatment shall move us closer toward curing these unfortunate rare diseases.
Collapse
Affiliation(s)
- Qingzhou Meng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Morgan MA, Galla M, Grez M, Fehse B, Schambach A. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther 2021; 28:494-512. [PMID: 33753908 PMCID: PMC8455336 DOI: 10.1038/s41434-021-00237-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Takushi SE, Paik NY, Fedanov A, Prince C, Doering CB, Spencer HT, Chandrakasan S. Lentiviral Gene Therapy for Familial Hemophagocytic Lymphohistiocytosis Type 3, Caused by UNC13D Genetic Defects. Hum Gene Ther 2021; 31:626-638. [PMID: 32253931 DOI: 10.1089/hum.2019.329] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) is a rare disease caused by mutations to the UNC13D gene and the subsequent absence or decreased activity of the Munc13-4 protein. Munc13-4 is essential for the exocytosis of perforin and granzyme containing granules from cytotoxic cells. Without it, these cells are able to recognize an immunological insult but are unable to execute their cytotoxic functions. The result is a hyperinflammatory state that, if left untreated, is fatal. At present, the only curative treatment is hematopoietic stem cell transplantation (HSCT), but eligibility and response to this treatment are largely dependent on the ability to control inflammation before HSCT. In this study, we describe an optimized lentiviral vector that can restore Munc13-4 expression and degranulation capacity in both transduced FHL3 patient T cells and transduced hematopoietic stem cells from the FHL3 (Jinx) disease model.
Collapse
Affiliation(s)
- Sarah E Takushi
- Department of Immunology and Molecular Pathogenesis, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA.,Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Na Yoon Paik
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Andrew Fedanov
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Chengyu Prince
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Christopher B Doering
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Department of Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Department of Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shanmuganathan Chandrakasan
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Bone Marrow Transplant Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Designing Lentiviral Vectors for Gene Therapy of Genetic Diseases. Viruses 2021; 13:v13081526. [PMID: 34452394 PMCID: PMC8402868 DOI: 10.3390/v13081526] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Lentiviral vectors are the most frequently used tool to stably transfer and express genes in the context of gene therapy for monogenic diseases. The vast majority of clinical applications involves an ex vivo modality whereby lentiviral vectors are used to transduce autologous somatic cells, obtained from patients and re-delivered to patients after transduction. Examples are hematopoietic stem cells used in gene therapy for hematological or neurometabolic diseases or T cells for immunotherapy of cancer. We review the design and use of lentiviral vectors in gene therapy of monogenic diseases, with a focus on controlling gene expression by transcriptional or post-transcriptional mechanisms in the context of vectors that have already entered a clinical development phase.
Collapse
|
14
|
Schejtman A, Vetharoy W, Choi U, Rivat C, Theobald N, Piras G, Leon-Rico D, Buckland K, Armenteros-Monterroso E, Benedetti S, Ashworth MT, Rothe M, Schambach A, Gaspar HB, Kang EM, Malech HL, Thrasher AJ, Santilli G. Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47 phox-Deficient Chronic Granulomatous Disease. Hum Gene Ther 2021; 32:949-958. [PMID: 33740872 PMCID: PMC8575060 DOI: 10.1089/hum.2020.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited blood disorder of phagocytic cells that renders patients susceptible to infections and inflammation. A recent clinical trial of lentiviral gene therapy for the most frequent form of CGD, X-linked, has demonstrated stable correction over time, with no adverse events related to the gene therapy procedure. We have recently developed a parallel lentiviral vector for p47phox-deficient CGD (p47phoxCGD), the second most common form of this disease. Using this vector, we have observed biochemical correction of CGD in a mouse model of the disease. In preparation for clinical trial approval, we have performed standardized preclinical studies following Good Laboratory Practice (GLP) principles, to assess the safety of the gene therapy procedure. We report no evidence of adverse events, including mutagenesis and tumorigenesis, in human hematopoietic stem cells transduced with the lentiviral vector. Biodistribution studies of transduced human CD34+ cells indicate that the homing properties or engraftment ability of the stem cells is not negatively affected. CD34+ cells derived from a p47phoxCGD patient were subjected to an optimized transduction protocol and transplanted into immunocompromised mice. After the procedure, patient-derived neutrophils resumed their function, suggesting that gene correction was successful. These studies pave the way to a first-in-man clinical trial of lentiviral gene therapy for the treatment of p47phoxCGD.
Collapse
Affiliation(s)
- Andrea Schejtman
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Winston Vetharoy
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine Rivat
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Narda Theobald
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Giuseppa Piras
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Diego Leon-Rico
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Karen Buckland
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Elena Armenteros-Monterroso
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sara Benedetti
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michael T Ashworth
- Department of Histopathology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | | | - Elizabeth M Kang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
15
|
Garcia-Perez L, van Eggermond MCJA, Maietta E, van der Hoorn MLP, Pike-Overzet K, Staal FJT. A Novel Branched DNA-Based Flowcytometric Method for Single-Cell Characterization of Gene Therapy Products and Expression of Therapeutic Genes. Front Immunol 2021; 11:607991. [PMID: 33584681 PMCID: PMC7876092 DOI: 10.3389/fimmu.2020.607991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Many preclinical and clinical studies of hematopoietic stem cell-based gene therapy (GT) are based on the use of lentiviruses as the vector of choice. Assessment of the vector titer and transduction efficiency of the cell product is critical for these studies. Efficacy and safety of the modified cell product are commonly determined by assessing the vector copy number (VCN) using qPCR. However, this optimized and well-established method in the GT field is based on bulk population averages, which can lead to misinterpretation of the actual VCN per transduced cell. Therefore, we introduce here a single cell-based method that allows to unmask cellular heterogeneity in the GT product, even when antibodies are not available. We use Invitrogen's flow cytometry-based PrimeFlow™ RNA Assay with customized probes to determine transduction efficiency of transgenes of interest, promoter strength, and the cellular heterogeneity of murine and human stem cells. The assay has good specificity and sensitivity to detect the transgenes, as shown by the high correlations between PrimeFlow™-positive cells and the VCN. Differences in promoter strengths can readily be detected by differences in percentages and fluorescence intensity. Hence, we show a customizable method that allows to determine the number of transduced cells and the actual VCN per transduced cell in a GT product. The assay is suitable for all therapeutic genes for which antibodies are not available or too cumbersome for routine flow cytometry. The method also allows co-staining of surface markers to analyze differential transduction efficiencies in subpopulations of target cells.
Collapse
Affiliation(s)
- Laura Garcia-Perez
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Elisa Maietta
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
16
|
Abstract
Primary immunodeficiencies (PIDs) are a group of rare inherited disorders of the immune system. Many PIDs are devastating and require a definitive therapy to prevent progressive morbidity and premature mortality. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative for many PIDs, and while advances have resulted in improved outcomes, the procedure still carries a risk of mortality and morbidity from graft failure or graft-versus-host disease (GvHD). Autologous haematopoietic stem cell gene therapy (HSC GT) has the potential to correct genetic defects across haematopoietic lineages without the complications of an allogeneic approach. HSC GT for PID has been in development for the last two decades and the first licensed HSC-GT product for adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is now available. New gene editing technologies have the potential to circumvent some of the problems associated with viral gene-addition. HSC GT for PID shows great promise, but requires a unique approach for each disease and carries risks, notably insertional mutagenesis from gamma-retroviral gene addition approaches and possible off-target toxicities from gene-editing techniques. In this review, we discuss the development of HSC GT for PID and outline the current state of clinical development before discussing future developments in the field.
Collapse
Affiliation(s)
- Thomas A Fox
- University College London (UCL) Institute of Immunity and Transplantation, UCL, London, UK.,Department of Clinical Haematology, UCL Hospitals NHS Foundation Trust, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK.,Department of Paediatric Immunology, GOS Hospital for Sick Children NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Tucci F, Scaramuzza S, Aiuti A, Mortellaro A. Update on Clinical Ex Vivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Mol Ther 2020; 29:489-504. [PMID: 33221437 DOI: 10.1016/j.ymthe.2020.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gene transfer into autologous hematopoietic stem progenitor cells (HSPCs) has the potential to cure monogenic inherited disorders caused by an altered development and/or function of the blood system, such as immune deficiencies and red blood cell and platelet disorders. Gene-corrected HSPCs and their progeny can also be exploited as cell vehicles to deliver molecules into the circulation and tissues, including the central nervous system. In this review, we focus on the progress of clinical development of medicinal products based on HSPCs engineered and modified by integrating viral vectors for the treatment of monogenic blood disorders and metabolic diseases. Two products have reached the stage of market approval in the EU, and more are foreseen to be approved in the near future. Despite these achievements, several challenges remain for HSPC gene therapy (HSPC-GT) precluding a wider application of this type of gene therapy to a wider set of diseases while gene-editing approaches are entering the clinical arena.
Collapse
Affiliation(s)
- Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy.
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
18
|
Jofra Hernández R, Calabria A, Sanvito F, De Mattia F, Farinelli G, Scala S, Visigalli I, Carriglio N, De Simone M, Vezzoli M, Cecere F, Migliavacca M, Basso-Ricci L, Omrani M, Benedicenti F, Norata R, Rancoita PMV, Di Serio C, Albertini P, Cristofori P, Naldini L, Gentner B, Montini E, Aiuti A, Mortellaro A. Hematopoietic Tumors in a Mouse Model of X-linked Chronic Granulomatous Disease after Lentiviral Vector-Mediated Gene Therapy. Mol Ther 2020; 29:86-102. [PMID: 33010230 PMCID: PMC7791081 DOI: 10.1016/j.ymthe.2020.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/03/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder due to loss-of-function mutations in genes encoding the NADPH oxidase subunits. Hematopoietic stem and progenitor cell (HSPC) gene therapy (GT) using regulated lentiviral vectors (LVs) has emerged as a promising therapeutic option for CGD patients. We performed non-clinical Good Laboratory Practice (GLP) and laboratory-grade studies to assess the safety and genotoxicity of LV targeting myeloid-specific Gp91phox expression in X-linked chronic granulomatous disease (XCGD) mice. We found persistence of gene-corrected cells for up to 1 year, restoration of Gp91phox expression and NADPH oxidase activity in XCGD phagocytes, and reduced tissue inflammation after LV-mediated HSPC GT. Although most of the mice showed no hematological or biochemical toxicity, a small subset of XCGD GT mice developed T cell lymphoblastic lymphoma (2.94%) and myeloid leukemia (5.88%). No hematological malignancies were identified in C57BL/6 mice transplanted with transduced XCGD HSPCs. Integration pattern analysis revealed an oligoclonal composition with rare dominant clones harboring vector insertions near oncogenes in mice with tumors. Collectively, our data support the long-term efficacy of LV-mediated HSPC GT in XCGD mice and provide a safety warning because the chronic inflammatory XCGD background may contribute to oncogenesis.
Collapse
Affiliation(s)
- Raisa Jofra Hernández
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pathology Unit, Department of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Farinelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Visigalli
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Carriglio
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maura De Simone
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Vezzoli
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Cecere
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossana Norata
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Albertini
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Cristofori
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Non-Clinical Safety In Vivo Translation Research, Glaxo Smith Kline, Ware, UK
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Medical School, Vita-Salute San Raffaele University, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Medical School, Vita-Salute San Raffaele University, Milan, Italy.
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Fischer A, Hacein-Bey-Abina S. Gene therapy for severe combined immunodeficiencies and beyond. J Exp Med 2020; 217:132743. [PMID: 31826240 PMCID: PMC7041706 DOI: 10.1084/jem.20190607] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
This review describes how gene therapy of severe combined immunodeficiency became a reality, primarily based on the expected selective advantage conferred by transduction of hematopoietic progenitor cells. Thus, it resulted in a progressive extension to the treatment of other primary immunodeficiencies. Ex vivo retrovirally mediated gene therapy has been shown within the last 20 yr to correct the T cell immunodeficiency caused by γc-deficiency (SCID X1) and adenosine deaminase (ADA) deficiency. The rationale was brought up by the observation of the revertant of SCIDX1 and ADA deficiency as a kind of natural gene therapy. Nevertheless, the first attempts of gene therapy for SCID X1 were associated with insertional mutagenesis causing leukemia, because the viral enhancer induced transactivation of oncogenes. Removal of this element and use of a promoter instead led to safer but still efficacious gene therapy. It was observed that a fully diversified T cell repertoire could be generated by a limited set (<1,000) of progenitor cells. Further advances in gene transfer technology, including the use of lentiviral vectors, has led to success in the treatment of Wiskott–Aldrich syndrome, while further applications are pending. Genome editing of the mutated gene may be envisaged as an alternative strategy to treat SCID diseases.
Collapse
Affiliation(s)
- Alain Fischer
- Imagine Institute, Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Salima Hacein-Bey-Abina
- Unité de Technologies Chimiques et Biologiques pour la Santé, UMR8258 Centre National de la Recherche Scientifique - U1267 Institut National de la Santé et de la Recherche Médicale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
20
|
Preclinical Development of Autologous Hematopoietic Stem Cell-Based Gene Therapy for Immune Deficiencies: A Journey from Mouse Cage to Bed Side. Pharmaceutics 2020; 12:pharmaceutics12060549. [PMID: 32545727 PMCID: PMC7357087 DOI: 10.3390/pharmaceutics12060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).
Collapse
|
21
|
Schejtman A, Aragão-Filho WC, Clare S, Zinicola M, Weisser M, Burns SO, Booth C, Gaspar HB, Thomas DC, Condino-Neto A, Thrasher AJ, Santilli G. Lentiviral gene therapy rescues p47 phox chronic granulomatous disease and the ability to fight Salmonella infection in mice. Gene Ther 2020; 27:459-469. [PMID: 32533104 PMCID: PMC7500983 DOI: 10.1038/s41434-020-0164-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Chronic granulomatous disease (CGD) is an inherited primary immunodeficiency disorder characterised by recurrent and often life-threatening infections and hyperinflammation. It is caused by defects of the phagocytic NADPH oxidase, a multicomponent enzyme system responsible for effective pathogen killing. A phase I/II clinical trial of lentiviral gene therapy is underway for the most common form of CGD, X-linked, caused by mutations in the gp91phox subunit of the NADPH oxidase. We propose to use a similar strategy to tackle p47phox-deficient CGD, caused by mutations in NCF1, which encodes the p47phox cytosolic component of the enzymatic complex. We generated a pCCLCHIM-p47phox lentiviral vector, containing the chimeric Cathepsin G/FES myeloid promoter and a codon-optimised version of the human NCF1 cDNA. Here we show that transduction with the pCCLCHIM-p47phox vector efficiently restores p47phox expression and biochemical NADPH oxidase function in p47phox-deficient human and murine cells. We also tested the ability of our gene therapy approach to control infection by challenging p47phox-null mice with Salmonella Typhimurium, a leading cause of sepsis in CGD patients, and found that mice reconstituted with lentivirus-transduced hematopoietic stem cells had a reduced bacterial load compared with untreated mice. Overall, our results potentially support the clinical development of a gene therapy approach using the pCCLCHIM-p47phox vector.
Collapse
Affiliation(s)
- Andrea Schejtman
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Walmir Cutrim Aragão-Filho
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust genome Campus, Hinxton, Cambridge, UK
| | - Marta Zinicola
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maren Weisser
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Siobhan O Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK.,Institute for Immunity and Transplantation, University College London, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| | - Hubert B Gaspar
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Orchard Therapeutics, London, UK
| | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| | - Giorgia Santilli
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
22
|
Kohn DB, Booth C, Kang EM, Pai SY, Shaw KL, Santilli G, Armant M, Buckland KF, Choi U, De Ravin SS, Dorsey MJ, Kuo CY, Leon-Rico D, Rivat C, Izotova N, Gilmour K, Snell K, Dip JXB, Darwish J, Morris EC, Terrazas D, Wang LD, Bauser CA, Paprotka T, Kuhns DB, Gregg J, Raymond HE, Everett JK, Honnet G, Biasco L, Newburger PE, Bushman FD, Grez M, Gaspar HB, Williams DA, Malech HL, Galy A, Thrasher AJ. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med 2020; 26:200-206. [PMID: 31988463 PMCID: PMC7115833 DOI: 10.1038/s41591-019-0735-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder of phagocytic cells1,2. We report the initial results of nine severely affected X-linked CGD (X-CGD) patients who received ex vivo autologous CD34+ hematopoietic stem and progenitor cell-based lentiviral gene therapy following myeloablative conditioning in first-in-human studies (trial registry nos. NCT02234934 and NCT01855685). The primary objectives were to assess the safety and evaluate the efficacy and stability of biochemical and functional reconstitution in the progeny of engrafted cells at 12 months. The secondary objectives included the evaluation of augmented immunity against bacterial and fungal infection, as well as assessment of hematopoietic stem cell transduction and engraftment. Two enrolled patients died within 3 months of treatment from pre-existing comorbidities. At 12 months, six of the seven surviving patients demonstrated stable vector copy numbers (0.4-1.8 copies per neutrophil) and the persistence of 16-46% oxidase-positive neutrophils. There was no molecular evidence of either clonal dysregulation or transgene silencing. Surviving patients have had no new CGD-related infections, and six have been able to discontinue CGD-related antibiotic prophylaxis. The primary objective was met in six of the nine patients at 12 months follow-up, suggesting that autologous gene therapy is a promising approach for CGD patients.
Collapse
Affiliation(s)
| | - Claire Booth
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Elizabeth M Kang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung-Yun Pai
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kit L Shaw
- University of California, Los Angeles, CA, USA
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Myriam Armant
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen F Buckland
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Diego Leon-Rico
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Christine Rivat
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Natalia Izotova
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kimberly Gilmour
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Katie Snell
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Jinhua Xu-Bayford Dip
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Jinan Darwish
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Emma C Morris
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Leo D Wang
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- City of Hope, Beckman Research Institute, Duarte, CA, USA
| | | | | | - Douglas B Kuhns
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John Gregg
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Luca Biasco
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | | | | | - H Bobby Gaspar
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
- Orchard Therapeutics, London, UK
| | - David A Williams
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Galy
- Genethon, Evry, France
- Inserm, University of Evry, Université Paris Saclay Genethon, Evry, France
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
23
|
Hematopoietic stem cell gene therapy: The optimal use of lentivirus and gene editing approaches. Blood Rev 2019; 40:100641. [PMID: 31761379 DOI: 10.1016/j.blre.2019.100641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Due to pioneering in vitro investigations on gene modification, gene engineering platforms have incredibly improved to a safer and more powerful tool for the treatment of multiple blood and immune disorders. Likewise, several clinical trials have been initiated combining autologous hematopoietic stem cell transplantation (auto-HSCT) with gene therapy (GT) tools. As several GT modalities such as lentivirus and gene editing tools have a long developmental path ahead to diminish its negative side effects, it is hard to decide which modality is optimal for treating a specific disease. Gene transfer by lentiviruses is the platform of choice for loss-of-mutation diseases, whereas gene correction/addition or gene disruption by gene editing tools, mainly CRISPR/Cas9, is likely to be more efficient in diseases where tight regulation is needed. Therefore, in this review, we compiled pertinent information about lentiviral gene transfer and CRISPR/Cas9 gene editing, their evolution to a safer platform for HSCT, and their applications on other types of gene disorders based on the etiology of the disease and cell fitness.
Collapse
|
24
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
25
|
|
26
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
27
|
Do HV, Khanna R, Gotschall R. Challenges in treating Pompe disease: an industry perspective. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:291. [PMID: 31392203 DOI: 10.21037/atm.2019.04.15] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease is a rare inherited metabolic disorder of defective lysosomal glycogen catabolism due to a deficiency in acid alpha-glucosidase (GAA). Alglucosidase alfa enzyme replacement therapy (ERT) using recombinant human GAA (rhGAA ERT) is the only approved treatment for Pompe disease. Alglucosidase alfa has provided irrefutable clinical benefits, but has not been an optimal treatment primarily due to poor drug targeting of ERT to skeletal muscles. Several critical factors contribute to this inefficiency. Some are inherent to the anatomy of the body that cannot be altered, while others may be addressed with better drug design and engineering. The knowledge gained from alglucosidase alfa ERT over the past 2 decades has allowed us to better understand the challenges that hinder its effectiveness. In this review, we detail the problems which must be overcome for improving drug targeting and clinical efficacy. These same issues may also impact therapeutic enzymes derived from gene therapies, and thus, have important implications for the development of next generation therapies for Pompe.
Collapse
Affiliation(s)
- Hung V Do
- Amicus Therapeutics, Inc., Cranbury, NJ, USA
| | | | | |
Collapse
|
28
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Cardiomyocyte Progenitor Cells as a Functional Gene Delivery Vehicle for Long-Term Biological Pacing. Molecules 2019; 24:molecules24010181. [PMID: 30621310 PMCID: PMC6337610 DOI: 10.3390/molecules24010181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 01/16/2023] Open
Abstract
Sustained pacemaker function is a challenge in biological pacemaker engineering. Human cardiomyocyte progenitor cells (CMPCs) have exhibited extended survival in the heart after transplantation. We studied whether lentivirally transduced CMPCs that express the pacemaker current If (encoded by HCN4) can be used as functional gene delivery vehicle in biological pacing. Human CMPCs were isolated from fetal hearts using magnetic beads coated with Sca-1 antibody, cultured in nondifferentiating conditions, and transduced with a green fluorescent protein (GFP)- or HCN4-GFP-expressing lentivirus. A patch-clamp analysis showed a large hyperpolarization-activated, time-dependent inward current (−20 pA/pF at −140 mV, n = 14) with properties typical of If in HCN4-GFP-expressing CMPCs. Gap-junctional coupling between CMPCs and neonatal rat ventricular myocytes (NRVMs) was demonstrated by efficient dye transfer and changes in spontaneous beating activity. In organ explant cultures, the number of preparations showing spontaneous beating activity increased from 6.3% in CMPC/GFP-injected preparations to 68.2% in CMPC/HCN4-GFP-injected preparations (P < 0.05). Furthermore, in CMPC/HCN4-GFP-injected preparations, isoproterenol induced a significant reduction in cycle lengths from 648 ± 169 to 392 ± 71 ms (P < 0.05). In sum, CMPCs expressing HCN4-GFP functionally couple to NRVMs and induce physiologically controlled pacemaker activity and may therefore provide an attractive delivery platform for sustained pacemaker function.
Collapse
|