1
|
Guevara RB, Fox BA, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Regulate Maturation of the Cyst Wall. mSphere 2020; 5:e00851-19. [PMID: 31941814 PMCID: PMC6968655 DOI: 10.1128/msphere.00851-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
After differentiation is triggered, the tachyzoite-stage Toxoplasma gondii parasitophorous vacuole membrane (PVM) has been hypothesized to transition into the cyst membrane that surrounds the cyst wall and encloses bradyzoites. Here, we tracked the localization of two PVM dense granule (GRA) proteins (GRA5 and GRA7) after in vitro differentiation of the tachyzoite stage parasitophorous vacuole into the mature cyst. GRA5 and GRA7 were visible at the cyst periphery at 6 h and at all later times after differentiation, suggesting that the PVM remained intact as it transitioned into the cyst membrane. By day 3 postdifferentiation, GRA5 and GRA7 were visible in a continuous pattern at the cyst periphery. In mature 7- and 10-day-old cysts permeabilized with a saponin pulse, GRA5 and GRA7 were localized to the cyst membrane and the cyst wall regions. Cysts at different stages of cyst development exhibited differential susceptibility to saponin permeabilization, and, correspondingly, saponin selectively removed GRA5 from the cyst membrane and cyst wall region in 10-day-old cysts. GRA5 and GRA7 were localized at the cyst membrane and cyst wall region at all times after differentiation of the parasitophorous vacuole, which supports a previous model proposing that the PVM develops into the cyst membrane. In addition, evaluation of Δgra3, Δgra5, Δgra7, Δgra8, and Δgra14 mutants revealed that PVM-localized GRAs were crucial to support the normal rate of accumulation of cyst wall proteins at the cyst periphery.IMPORTANCEToxoplasma gondii establishes chronic infection in humans by forming thick-walled cysts that persist in the brain. Once host immunity wanes, cysts reactivate to cause severe, and often lethal, toxoplasmic encephalitis. There is no available therapy to eliminate cysts or to prevent their reactivation. Furthermore, how the cyst membrane and cyst wall structures develop is poorly understood. Here, we visualized and tracked the localization of Toxoplasma parasitophorous vacuole membrane (PVM) dense granules (GRA) proteins during cyst development in vitro. PVM-localized GRA5 and GRA7 were found at the cyst membrane and cyst wall region throughout cyst development, suggesting that the PVM remains intact and develops into the cyst membrane. In addition, our results show that genetic deletion of PVM GRAs reduced the rate of accumulation of cyst wall cargo at the cyst periphery and suggest that PVM-localized GRAs mediate the development and maturation of the cyst wall and cyst membrane.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
2
|
Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, Rak C, Cantillana V, Dubremetz JF, Cesbron-Delauw MF, Taylor GA, Mercier C, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. mBio 2019; 10:e00589-19. [PMID: 31266861 PMCID: PMC6606796 DOI: 10.1128/mbio.00589-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Valeria Bellini
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Graciane Pètre
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Camille Rak
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Viviana Cantillana
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean-François Dubremetz
- Université Montpellier 2, Montpellier, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, Montpellier, France
| | - Marie-France Cesbron-Delauw
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Gregory A Taylor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, North Carolina, USA
| | - Corinne Mercier
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
3
|
Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii. PLoS One 2016; 11:e0159306. [PMID: 27458822 PMCID: PMC4961421 DOI: 10.1371/journal.pone.0159306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection.
Collapse
|
4
|
Braun L, Travier L, Kieffer S, Musset K, Garin J, Mercier C, Cesbron-Delauw MF. Purification of Toxoplasma dense granule proteins reveals that they are in complexes throughout the secretory pathway. Mol Biochem Parasitol 2007; 157:13-21. [PMID: 17959262 DOI: 10.1016/j.molbiopara.2007.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022]
Abstract
Dense granules are Apicomplexa specific secretory organelles. In Toxoplasma gondii, the dense granules proteins, named GRA proteins, are massively secreted into the parasitophorous vacuole (PV) shortly after invasion. Despite the presence of hydrophobic membrane segments, they are stored as both soluble and aggregated forms within the dense granules and are secreted as soluble forms into the vacuolar space where they further stably associate with PV membranes. In this study, we explored the unusual biochemical behavior of GRA proteins during their trafficking. Conventional chromatography indicated that the GRA proteins form high globular weight complexes within the parasite. To confirm these results, DeltaGRA knocked-out parasites were stably complemented with their respective HA-FLAG tagged GRA2 or GRA5. Purification of the tagged proteins by affinity chromatography showed that within the parasite and the PV soluble fraction, both the soluble GRA2-HA-FLAG and GRA5-HA-FLAG associate with several GRA proteins, the major ones being GRA3, GRA6 and GRA7. Following their insertion into the PV membranes, GRA2-HA-FLAG associated with GRA5 and GRA7 while GRA5-HA-FLAG associated with GRA7 only. Taken together, these data suggest that the GRA proteins form oligomeric complexes that may explain their solubility within the dense granules and the vacuolar matrix by sequestering their hydrophobic domains within the interior of the complex. Insertion into the PV membranes correlates with the decrease of the GRA partners number.
Collapse
Affiliation(s)
- Laurence Braun
- UMR 5163/CNRS-Université Joseph Fourier, Domaine de la Merci, 38700 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Scorza T, D'Souza S, Laloup M, Dewit J, De Braekeleer J, Verschueren H, Vercammen M, Huygen K, Jongert E. A GRA1 DNA vaccine primes cytolytic CD8(+) T cells to control acute Toxoplasma gondii infection. Infect Immun 2003; 71:309-16. [PMID: 12496180 PMCID: PMC143232 DOI: 10.1128/iai.71.1.309-316.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protective immunity against Toxoplasma gondii is known to be mediated mainly by T lymphocytes and gamma interferon (IFN-gamma). The contribution of CD4(+) and CD8(+) T-lymphocyte subsets to protective immune responses against T. gondii infection, triggered by a GRA1 (p24) DNA vaccine, was assessed in this study. In vitro T-cell depletion experiments indicated that both CD4(+) and CD8(+) T-cell subsets produced IFN-gamma upon restimulation with a T. gondii lysate. In addition, the GRA1 DNA vaccine elicited CD8(+) T cells that were shown to have cytolytic activity against parasite-infected target cells and a GRA1-transfected cell line. C3H mice immunized with the GRA1 DNA vaccine showed 75 to 100% protection, while 0 to 25% of the mice immunized with the empty control vector survived challenge with T. gondii cysts. In vivo T-cell depletion experiments indicated that CD8(+) T cells were essential for the survival of GRA1-vaccinated C3H mice during the acute phase of T. gondii infection, while depletion of CD4(+) T cells led to an increase in brain cyst burden during the chronic phase of infection.
Collapse
Affiliation(s)
- T Scorza
- Department of Toxoplasmosis, Pasteur Institute of Brussels, 1180 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Vercammen M, Scorza T, Huygen K, De Braekeleer J, Diet R, Jacobs D, Saman E, Verschueren H. DNA vaccination with genes encoding Toxoplasma gondii antigens GRA1, GRA7, and ROP2 induces partially protective immunity against lethal challenge in mice. Infect Immun 2000; 68:38-45. [PMID: 10603366 PMCID: PMC97099 DOI: 10.1128/iai.68.1.38-45.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C57BL/6, C3H, and BALB/c mice were vaccinated with plasmids encoding Toxoplasma gondii antigens GRA1, GRA7, and ROP2, previously described as strong inducers of immunity. Seroconversion for the relevant antigen was obtained in the majority of the animals. T. gondii lysate stimulated specific T-cell proliferation and secretion of gamma interferon (IFN-gamma) in spleen cell cultures from vaccinated BALB/c and C3H mice but not in those from control mice. Although not proliferating, stimulated splenocytes from DNA-vaccinated C57BL/6 mice also produced IFN-gamma. No interleukin-4 was detected in the supernatants of lysate-stimulated splenocytes from DNA-vaccinated mice in any of the mouse strains evaluated. As in infected animals, a high ratio of specific immunoglobulin G2a (IgG2a) to IgG1 antibodies was found in DNA-vaccinated C3H mice, suggesting that a Th1-type response had been induced. For BALB/c mice, the isotype ratio of the antibody response to DNA vaccination was less polarized. The protective potential of DNA vaccination was demonstrated in C3H mice. C3H mice vaccinated with plasmid encoding GRA1, GRA7, or ROP2 were partially protected against a lethal oral challenge with cysts of two different T. gondii strains: survival rates increased from 10% in controls to at least 70% after vaccination in one case and from 50% to at least 90% in the other. In vaccinated C3H mice challenged with a nonlethal T. gondii dose, the number of brain cysts was significantly lower than in controls. DNA vaccination did not protect BALB/c or C57BL/6 mice. Our results demonstrate for the first time in an animal model a partially protective effect of DNA vaccination against T. gondii.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Disease Models, Animal
- Female
- Genes, Protozoan
- Immunity, Cellular
- Interferon-gamma/metabolism
- Interleukin-4/biosynthesis
- Lymphocyte Activation
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- T-Lymphocytes/immunology
- Toxoplasma/genetics
- Toxoplasma/immunology
- Toxoplasma/pathogenicity
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, DNA/pharmacology
Collapse
Affiliation(s)
- M Vercammen
- Department of Toxoplasmosis, Pasteur Institute of Brussels, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner KP, Otto A, Müller EC, Sokolowska-Köhler W, Grabher G, Stöffler G. Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 1999. [PMID: 10451122 DOI: 10.1002/(sici)1522-2683(19990701)20:10%3c2100::aid-elps2100%3e3.0.co;2-d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, genomics has increased the understanding of many diseases. Proteomics is a rapidly growing research area that encompasses both genetic and environmental factors. The protein composition represents the functional status of a biological compartment. The five approaches presented here resulted in the detection of disease-associated proteins. Calgranulin B was upregulated in colorectal cancer, and hepatoma-derived aldose reductase-like protein was reexpressed in a rat model during hepatocarcinogenesis. In these two investigations, attention was focused on one protein, obviously differing in amount, directly after two-dimensional electrophoresis (2-DE). Additional methods, such as enzyme activity measurements and immunohistochemistry, confirmed the disease association of the two candidates resulting from 2-DE subtractive analysis. The following three investigations take advantage of the holistic potential of the 2-DE approach. The comparison of 2-DE patterns from dilated cardiomyopathy patients with those of controls revealed 25 statistically significant intensity differences, from which 12 were identified by amino acid analysis, Edman degradation or matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). A human myocardial 2-DE database was constructed, containing 3300 protein spots and 150 identified protein species. The number of identified proteins was limited by the capacity of our group, rather than by the principle of feasibility. Another field where proteomics proves to be a valuable tool in identifying proteins of importance for diagnosis is proteome analysis of pathogenic microorganisms such as Borrelia burgdorferi (Lyme disease) and Toxoplasma gondii (toxoplasmosis). Sera from patients with early or late symptoms of Lyme borreliosis contained antibodies of various classes against about 80 antigens each, containing the already described antigens OspA, B and C, flagellin, p83/100, and p39. Similarly, antibody reactivity to seven different marker antigens of T. gondii allowed differentiation between acute and latent toxoplasmosis, an important diagnostic tool in both pregnancy and immunosuppressed patients.
Collapse
Affiliation(s)
- P R Jungblut
- Max-Planck-Institut für Infektionsbiologie, Protein Analyse Einheit, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Geissler S, Sokolowska-Köhler W, Bollmann R, Jungblut PR, Presber W. Toxoplasma gondii infection: analysis of serological response by 2-DE immunoblotting. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 25:299-311. [PMID: 10459585 DOI: 10.1111/j.1574-695x.1999.tb01355.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii is known to cause a variety of diseases ranging from asymptomatic infections to serious conditions in immunocompromised hosts such as AIDS-patients or transplant recipients. In addition they may cause abortion or fetal abnormalities during pregnancy. Despite the clinical importance, diagnosis, treatment and prevention still remain unsatisfactory. Analysis of the parasitic cell determinants, recognized by specific humoral and cellular immune responses, may have important implications for diagnosis, therapy and vaccination strategies. Two-dimensional electrophoresis (2-DE) was used to resolve and compare protein patterns from Toxoplasma gondii strains RH and BK (mouse virulent strains). Comparison of silver-stained gels showed that 35.2% to 60.3% of the spots had the same position. In a second series of experiments, the reactivity of the spots with human sera was tested. Proteins were transferred to PVDF membranes and were detected with sera from different patient groups. Depending upon the immunoglobulin class (IgG, IgM, IgA or IgE) different epitope patterns were observed. Some of the spots seemed to be recognized in different stages of infection. Sera of two patients with similar serology and comparable stage of infection were compared in order to demonstrate an individual immune response.
Collapse
Affiliation(s)
- S Geissler
- Department of Microbiology and Hygiene, Humboldt University, Charité, Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner KP, Otto A, Müller EC, Sokolowska-Köhler W, Grabher G, Stöffler G. Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 1999; 20:2100-10. [PMID: 10451122 DOI: 10.1002/(sici)1522-2683(19990701)20:10<2100::aid-elps2100>3.0.co;2-d] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In recent years, genomics has increased the understanding of many diseases. Proteomics is a rapidly growing research area that encompasses both genetic and environmental factors. The protein composition represents the functional status of a biological compartment. The five approaches presented here resulted in the detection of disease-associated proteins. Calgranulin B was upregulated in colorectal cancer, and hepatoma-derived aldose reductase-like protein was reexpressed in a rat model during hepatocarcinogenesis. In these two investigations, attention was focused on one protein, obviously differing in amount, directly after two-dimensional electrophoresis (2-DE). Additional methods, such as enzyme activity measurements and immunohistochemistry, confirmed the disease association of the two candidates resulting from 2-DE subtractive analysis. The following three investigations take advantage of the holistic potential of the 2-DE approach. The comparison of 2-DE patterns from dilated cardiomyopathy patients with those of controls revealed 25 statistically significant intensity differences, from which 12 were identified by amino acid analysis, Edman degradation or matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). A human myocardial 2-DE database was constructed, containing 3300 protein spots and 150 identified protein species. The number of identified proteins was limited by the capacity of our group, rather than by the principle of feasibility. Another field where proteomics proves to be a valuable tool in identifying proteins of importance for diagnosis is proteome analysis of pathogenic microorganisms such as Borrelia burgdorferi (Lyme disease) and Toxoplasma gondii (toxoplasmosis). Sera from patients with early or late symptoms of Lyme borreliosis contained antibodies of various classes against about 80 antigens each, containing the already described antigens OspA, B and C, flagellin, p83/100, and p39. Similarly, antibody reactivity to seven different marker antigens of T. gondii allowed differentiation between acute and latent toxoplasmosis, an important diagnostic tool in both pregnancy and immunosuppressed patients.
Collapse
Affiliation(s)
- P R Jungblut
- Max-Planck-Institut für Infektionsbiologie, Protein Analyse Einheit, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jacobs D, Vercammen M, Saman E. Evaluation of recombinant dense granule antigen 7 (GRA7) of Toxoplasma gondii for detection of immunoglobulin G antibodies and analysis of a major antigenic domain. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:24-9. [PMID: 9874659 PMCID: PMC95655 DOI: 10.1128/cdli.6.1.24-29.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dense granule protein 7 (GRA7) of Toxoplasma gondii was expressed in Escherichia coli as a fusion protein. The leader peptide contained a 25-amino-acid mouse tumor necrosis factor fragment and six histidyl residues. After purification by metal chelate affinity chromatography, the antigen was evaluated in an enzyme-linked immunosorbent assay for detection of immunoglobulin G (IgG). For two sets of IgG-positive human serum samples, obtained from routine screening, an overall sensitivity of 81% was obtained. For chronic-phase sera, the sensitivity of detection was 79%, but chronic-phase sera with low titers were more difficult to detect (65% sensitivity for sera with immunofluorescence titer of 1/64). When GRA7 was combined with Tg34AR (rhoptry protein 2 C-terminal fragment), the sensitivity rose to 96%. For a set of acute-phase serum samples tested on GRA7, the sensitivity of detection was 94%, and high-titer IgM-positive sera were detected at an especially high rate. In contrast, when Tg34AR was used, the sensitivity was only 85% for this latter set of serum samples. Three truncated GRA7 fragments containing the same leader peptide as that of recombinant GRA7 were produced. The shortest fragment (97 N-terminal amino acids) was not reactive with human sera or with a specific anti-GRA7 monoclonal antibody, while the two larger fragments were reactive. The most important antigenic domain of GRA7 for human sera was localized between residues 97 and 146. The epitope for the specific monoclonal antibody could be further narrowed down by the use of synthetic peptides, but this epitope is not recognized by sera from T. gondii-infected humans. These results indicate that GRA7 may be considered as an additional tool for studying the immune response to T. gondii.
Collapse
Affiliation(s)
- D Jacobs
- Innogenetics NV, Ghent B-9052, Belgium.
| | | | | |
Collapse
|
11
|
Jacobs D, Dubremetz JF, Loyens A, Bosman F, Saman E. Identification and heterologous expression of a new dense granule protein (GRA7) from Toxoplasma gondii. Mol Biochem Parasitol 1998; 91:237-49. [PMID: 9566517 DOI: 10.1016/s0166-6851(97)00204-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunoscreening of an expression library constructed with Toxoplasma gondii tachyzoite mRNA with sera from toxoplasmosis-positive humans has led to the identification of a new parasite antigen. Sequence analysis of the gene encoding this antigen allowed the calculation of the theoretical molecular mass (25,857 Da) and showed that the protein contains a putative signal sequence. The C-terminal region contains two hydrophobic regions, the last of which has the characteristics of a membrane-spanning domain. When the protein was heterologously expressed in E. coli and tested by Western blot, it reacted with the human sera originally used for screening. The new antigen also reacted with a monoclonal antibody raised against the entire parasite. Ultrastructural analysis showed that the protein is localized in the dense granules. After host cell invasion, the protein is secreted into the vacuolar network, the parasitophorous vacuole membrane, and into extensions protruding in the cytoplasm. Therefore, it is suggested to designate this new dense granule protein GRA7, following the established nomenclature for this protein family.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/analysis
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Base Sequence
- Blotting, Western
- Chlorocebus aethiops
- Cytoplasmic Granules/chemistry
- DNA, Complementary
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Antibody Technique
- Genes, Protozoan
- Humans
- Microscopy, Electron
- Molecular Sequence Data
- Protozoan Proteins/analysis
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/biosynthesis
- Toxoplasma/chemistry
- Toxoplasma/genetics
- Toxoplasma/immunology
- Toxoplasma/ultrastructure
- Vero Cells
Collapse
Affiliation(s)
- D Jacobs
- Innogenetics N.V., Gent, Belgium.
| | | | | | | | | |
Collapse
|
12
|
Sims TA, Hay J. Host-parasite relationship between congenital Toxoplasma infection and mouse brain: role of small vessels. Parasitology 1995; 110 ( Pt 2):123-7. [PMID: 7885730 DOI: 10.1017/s0031182000063873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Small vessels showing inflammatory cell infiltrates were invariably observed in the vicinity of intact Toxoplasma tissue cysts within the brains of mice congenitally infected with the protozoan. Lymphocytes were observed in intimate contact with the luminal aspect of the endothelium, penetrating into the thickened basal lamina and in the perivascular area, which also contained macrophages and neutrophilic granulocytes. Rarely, lymphocytes were observed attached to the outer membrane of the host neurone which contained a Toxoplasma tissue cyst and within the inflammatory infiltrate associated with a disintegrating cyst. An hypothesis is presented which combines these morphological observations to explain the events associated with tissue cyst associated recrudescence of latent Toxoplasma infection in mouse brain.
Collapse
Affiliation(s)
- T A Sims
- University Department of Pathology, Leicester Royal Infirmary
| | | |
Collapse
|
13
|
Saavedra R, Hérion P. Human T-cell clones against Toxoplasma gondii: production of interferon-gamma, interleukin-2, and strain cross-reactivity. Parasitol Res 1991; 77:379-85. [PMID: 1679934 DOI: 10.1007/bf00931632] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The soluble fraction from a sonicate of Toxoplasma gondii tachyzoites (termed F3) was shown to induce dose-dependent blastic transformation of peripheral-blood mononuclear cells (PBMC) from seropositive individuals only and was used to isolate a panel of T-cell clones from the PBMC of an immune donor. Proliferation assays using F3 showed that 15 (14 CD4+ and 1 CD8+) of the 18 isolated clones were specific for T. gondii. In response to antigen stimulation, 5 of the 15 clones produced detectable levels of interleukin-2 (IL-2, 0.2-15 u/ml) and 9 clones produced significant levels of interferon-gamma (IFN-gamma, 17.5-1400 IU/ml). Seven of the 7 T-cell clones tested reacted with two different Toxoplasma strains (RH and Wiktor). When used as antigen-presenting cells, an autologous B-lymphoblastoid cell line could efficiently present the antigen to only three of the six T-cell clones tested. This study identifies and characterizes cellular probes that could be useful for future vaccine design.
Collapse
Affiliation(s)
- R Saavedra
- Service de Génétique Appliquée, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|