1
|
Seifelnasr A, Zare F, Si XA, Xi J. Optimized gravity-driven intranasal drop administration delivers significant doses to the ostiomeatal complex and maxillary sinus. Drug Deliv Transl Res 2024; 14:1839-1859. [PMID: 38044376 DOI: 10.1007/s13346-023-01488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Chronic and allergic rhinosinusitis impacts approximately 12% of the global population. Challenges in rhinosinusitis treatment include paranasal sinus inaccessibility and variability in delivery efficiency among individuals. This study addresses these challenges of drug delivery by developing a high-efficiency, low-variability protocol for nasal drop delivery to the ostiomeatal complex (OMC) and maxillary sinus. Patient-specific nasal casts were dissected to reveal the configurations of conchae and meatus, providing insights into anatomical features amendable for sinus delivery. Fluorescent dye-enhanced videos visualized the dynamic liquid translocation in transparent nasal casts, allowing real-time assessment and quick adjustment to delivery parameters. Dosimetry to the OMC and maxillary sinus were quantified as drop count and mass using a precision scale. Key delivery factors, including the device type, formulation, and head-chin orientation, were systematically investigated in a cohort of ten nasal casts. Results show that both the squeeze bottle and soft-mist nasal pump yielded notably low doses to the OMC with high variability, and no dose from these two devices was detected within the maxillary sinuses. In contrast, the proposed approach, which included a curved nozzle surpassing the nasal valve and leveraged gravity-driven liquid translocation along the lateral nasal wall, delivered significant doses to the OMC and maxillary sinus. Iterative experimentations identified the optimal head tilt to be 40° and chin tilt to be° from the lateral recumbent position. Statistical analyses established the drop count required for effective OMC/sinus delivery. The proposed delivery protocol holds the potential to enhance chronic rhinosinusitis treatment outcomes with low variability. The dual role of nasal anatomy in posing challenges and offering opportunities highlights the need for future investigations using diverse formulations in a larger cohort of nasal models.
Collapse
Affiliation(s)
- Amr Seifelnasr
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Falmouth Hall 302I, Lowell, MA, 01854, USA
| | - Farhad Zare
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Falmouth Hall 302I, Lowell, MA, 01854, USA.
| |
Collapse
|
2
|
Liu Y, Wu D. Bi-directional nasal drug delivery systems: A scoping review of nasal particle deposition patterns and clinical application. Laryngoscope Investig Otolaryngol 2023; 8:1484-1499. [PMID: 38130248 PMCID: PMC10731484 DOI: 10.1002/lio2.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives To compare the deposition patterns within the nasal cavity between the bi-directional and unilateral nasal delivery systems. And to summarize the clinical application of the bi-directional nasal drug delivery devices. Data source PubMed, Cochrane Library, Embase, and Web of Science databases. Methods A scoping review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). We included studies exploring patterns and influencing factors of particle depositions within the nasal cavity among patients, healthy controls, and nose cast models using the bi-directional and unilateral nasal delivery system. The clinical application of the bi-directional delivery devices was also summarized. Results A total of 24 studies were included in this review. Bi-directional nasal delivery systems utilize forced exhalation to power the delivery of drugs to deeper areas of the nasal cavity and paranasal sinuses. Unilateral nasal delivery systems included traditional liquid spray pumps, the aerosol mask system, nebulization, and conventional nasal inhalation. Compared with unilateral delivery systems, the bi-directional nasal delivery system provided a more extensive and efficient nasal deposition in the nasal cavity, especially in the olfactory cleft, without lung deposition. Several parameters, including particle size, pulsatile flow, and nasal geometry, could significantly influence nasal deposition. The bi-directional nasal delivery system enables better delivery of steroids or sumatriptan to the sinonasal cavity's high and deep target sites. This bi-directional delivery device demonstrated an effective and well-tolerated treatment that produced high drug utilization, rapid absorption, and sustained symptom improvement among patients with chronic rhinosinusitis (CRS) or migraine. Conclusion The bi-directional nasal drug delivery systems demonstrated significantly higher drug deposition in superior and posterior regions of the nasal cavity than unilateral nasal delivery systems. Further studies should explore its potential role in delivering drugs to the olfactory cleft among patients with olfactory disorders and central nervous system diseases. Level of evidence N/A.
Collapse
Affiliation(s)
- Yuxing Liu
- Department of Otolaryngology‐Head and Neck SurgeryPeking University Third HospitalBeijingPR China
- Department of MedicinePeking UniversityBeijingPR China
| | - Dawei Wu
- Department of Otolaryngology‐Head and Neck SurgeryPeking University Third HospitalBeijingPR China
| |
Collapse
|
3
|
Chiang H, Martin HL, Sicard RM, Frank-Ito DO. Olfactory drug delivery with intranasal sprays after nasal midvault reconstruction. Int J Pharm 2023; 644:123341. [PMID: 37611854 PMCID: PMC10621325 DOI: 10.1016/j.ijpharm.2023.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Conductive olfaction and nose to brain drug delivery are important processes that remain limited by inadequate odorant or drug delivery to the olfactory airspace. Primary challenges include anatomic barriers and poor targeting to the olfactory region. This study uses computational fluid dynamics to investigate the effects of nasal midvault surgery on olfactory drug delivery with intranasal sprays. Soft tissue elevation, spreader flaps, and spreader grafts were performed on two fresh cadaveric specimens, using computed tomography for airway reconstruction. Nasal airflow and drug particle transport simulations were performed under these conditions: inhalation rate (15, 30 L/min), spray velocity (1, 5, 10 m/s), spray location (top, bottom, center, medial, lateral), head position (upright, supine, forward, backward), and particle size (1-100 µm). Simulation results were used to calculate drug particle deposition to the olfactory airspaces and bulbs. Total olfactory deposition was < 5% but attained a maximum of 36.33% when sorted by particle size. There was no association between nasal midvault surgery and olfactory deposition. No single parameter or technique demonstrated superior olfactory deposition, but smaller particle size, slower spray velocity, and higher inhalation rate tended to optimize olfactory deposition, providing important implications for future intranasal spray and drug design to target the olfactory airspace.
Collapse
Affiliation(s)
- Harry Chiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, NC, USA.
| | - Hannah L Martin
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, NC, USA
| | - Ryan M Sicard
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, NC, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dennis O Frank-Ito
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Nasal sprays for treating COVID-19: a scientific note. Pharmacol Rep 2023; 75:249-265. [PMID: 36848033 PMCID: PMC9969373 DOI: 10.1007/s43440-023-00463-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Clinical management of COVID-19 has been a daunting task. Due to the lack of specific treatment, vaccines have been regarded as the first line of defence. Innate responses and cell-mediated systemic immunity, including serum antibodies, have been the primary focus of practically all studies of the immune response to COVID-19. However, owing to the difficulties encountered by the conventional route, alternative routes for prophylaxis and therapy became the need of the hour. The first site invaded by SARS-CoV-2 is the upper respiratory tract. Nasal vaccines are already in different stages of development. Apart from prophylactic purposes, mucosal immunity can be exploited for therapeutic purposes too. The nasal route for drug delivery offers many advantages over the conventional route. Besides offering a needle-free delivery, they can be self-administered. They present less logistical burden as there is no need for refrigeration. The present article focuses on various aspects of nasal spray for eliminating COVID-19.
Collapse
|
5
|
Murphy BM, Chen JZ, Rolo M, Eldam M, Jordan L, Sivananthan SJ, Kinsey R, Guderian JA, Pedersen K, Abhyankar M, Petri WA, Fox CB, Finlay WH, Vehring R, Martin AR. Intranasal delivery of a synthetic Entamoeba histolytica vaccine containing adjuvant (LecA + GLA-3M-052 liposomes): in vitro characterization. Int J Pharm 2022; 626:122141. [PMID: 36058408 DOI: 10.1016/j.ijpharm.2022.122141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
Abstract
Amebiasis, a disease caused by the parasite Entamoeba histolytica, is estimated to cause millions of infections and at least 55,000 deaths globally each year. With no vaccine currently available, there is an urgent need for an accessible means of stimulating protective mucosal immunity. The objective of this study was to characterize the nasal spray of a novel amebiasis vaccine candidate from a syringe-based liquid atomization device, the Teleflex MAD Nasal™, in both adult and infant nasal airways. Human ergonomic testing was completed to determine realistic actuation parameters. Spray pattern, plume geometry, and droplet size distribution were measured to evaluate reproducibility of free plume characteristics. The Alberta Idealized Nasal Inlet (AINI) and three realistic infant nasal airways were used to determine the in vitro deposition profile in adult and infant airways, respectively. Collectively, in vitro results demonstrated the feasibility of delivering the vaccine candidate to target sites within the nasal airways. Penetration through the nasal airways that could lead to deposition in the lungs was below the limit of quantification for both adult and infant geometries, indicating a low likelihood of adverse events due to lung exposure. These results support continued investigation of intranasal delivery of the synthetic Entamoeba histolytica vaccine.
Collapse
Affiliation(s)
- Brynn M Murphy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - John Z Chen
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | - Lynn Jordan
- Proveris Scientific, Hudson, MA, United States
| | | | - Robert Kinsey
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | | | | | - Mayuresh Abhyankar
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Christopher B Fox
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Anatomically realistic nasal replicas capturing the range of nasal spray drug delivery in adults. Int J Pharm 2022; 622:121858. [PMID: 35643344 DOI: 10.1016/j.ijpharm.2022.121858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
To improve the relationships between commonly conducted in vitro studies for locally-acting nasal spray drug products with in vivo regional deposition, this study developed a set of in vitro adult nasal geometries that captured the range of nasal drug delivery to the region posterior to internal nasal valve (INV), also known as posterior delivery (PD), and evaluated their performance with existing in vivo data. The PD of fluticasone propionate (FP) and fluticasone furoate (FF) in 40 nasal cavities was statistically analyzed to identify three airway models representing the low, mean, and high PD in adults. The models were also externally validated by comparing the in vitro nasal deposition from a different drug product (mometasone furoate (MF)) with the relevant in vivo data. The three selected geometries represented the low, mean, and high PD with multiple nasal sprays. They were verified in terms of reproducibility of in vitro data and validated by showing a reasonable agreement with preexisting in vivo MF PD despite differences in administration and defining the regions. The three models are envisioned to potentially facilitate the development of locally-acting nasal sprays and provide a better understanding of how in vitro metrics relate to in vivo regional nasal deposition.
Collapse
|
7
|
Xi J, Lei LR, Zouzas W, April Si X. Nasally inhaled therapeutics and vaccination for COVID-19: Developments and challenges. MedComm (Beijing) 2021; 2:569-586. [PMID: 34977869 PMCID: PMC8706742 DOI: 10.1002/mco2.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
The nose is the initial site of viral infection, replication, and transmission in the human body. Nasally inhaled vaccines may act as a promising alternative for COVID-19 management in addition to intramuscular vaccination. In this review, the latest developments of nasal sprays either as repurposed or antiviral formulations were presented. Nasal vaccines based on traditional medicines, such as grapefruit seed extract, algae-isolated carrageenan, and Yogurt-fermenting Lactobacillus, are promising and under active investigations. Inherent challenges that hinder effective intranasal delivery were discussed in detail, which included nasal device issues and human nose physiological complexities. We examined factors related to nasal spray administration, including the nasal angiotensin I converting enzyme 2 (ACE2) locations as the delivery target, nasal devices, medication translocation after application, delivery methods, safety issues, and other nasal delivery options. The effects of human factors on nasal spray efficacy, such as nasal physiology, disease-induced physiological modifications, intersubject variability, and mucociliary clearance, were also examined. Finally, the potential impact of nasal vaccines on COVID-19 management in the developing world was discussed. It is concluded that effective delivery of nasal sprays to ACE2-rich regions is urgently needed, especially in the context that new variants may become unresponsive to current vaccines and more refractory to existing therapies.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Lameng Ray Lei
- Amphastar Pharmaceuticals, IncRancho CucamongaCaliforniaUSA
| | - William Zouzas
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Xiuhua April Si
- Department of AerospaceIndustrial and Mechanical EngineeringCalifornia Baptist UniversityRiversideCaliforniaUSA
| |
Collapse
|
8
|
In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13071079. [PMID: 34371770 PMCID: PMC8309016 DOI: 10.3390/pharmaceutics13071079] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The nasal cavity is an attractive route for both local and systemic drug delivery and holds great potential for access to the brain via the olfactory region, an area where the blood–brain barrier (BBB) is effectively absent. However, the olfactory region is located at the roof of the nasal cavity and only represents ~5–7% of the epithelial surface area, presenting significant challenges for the deposition of drug molecules for nose to brain drug delivery (NTBDD). Aerosolized particles have the potential to be directed to the olfactory region, but their specific deposition within this area is confounded by a complex combination of factors, which include the properties of the formulation, the delivery device and how it is used, and differences in inter-patient physiology. In this review, an in-depth examination of these different factors is provided in relation to both in vitro and in vivo studies and how advances in the fabrication of nasal cast models and analysis of aerosol deposition can be utilized to predict in vivo outcomes more accurately. The challenges faced in assessing the nasal deposition of aerosolized particles within the paediatric population are specifically considered, representing an unmet need for nasal and NTBDD to treat CNS disorders.
Collapse
|
9
|
Chen J, Martin AR, Finlay WH. Recent In Vitro and In Silico Advances in the Understanding of Intranasal Drug Delivery. Curr Pharm Des 2021; 27:1482-1497. [PMID: 33183191 DOI: 10.2174/1381612826666201112143230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Due to the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. OBJECTIVE The study aims to perform a summary of advances in the understanding of intranasal drug delivery based on recent in vitro and in silico studies. CONCLUSION The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers can more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for the potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.
Collapse
Affiliation(s)
- John Chen
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
In vitro - in vivo correlation of intranasal drug deposition. Adv Drug Deliv Rev 2021; 170:340-352. [PMID: 32918968 DOI: 10.1016/j.addr.2020.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
In vitro - in vivo correlation (IVIVC) allows prediction of in vivo drug deposition from a nasally inhaled drug based on in vitro drug measurements. In vitro measurements include physical particle characterization and, more recently, deposition studies using anatomical models. Currently, there is a lack of IVIVC for deposition measurements in anatomical models, especially for deposition patterns in various nasal cavity regions. Therefore, improvement of in vitro and in vivo measurement methods and knowledge about nasal deposition mechanisms should help IVIVC in the future.
Collapse
|
12
|
Can computational fluid dynamic models help us in the treatment of chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2020; 29:21-26. [PMID: 33315616 DOI: 10.1097/moo.0000000000000682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to review the recent literature (January 2017-July 2020) on computational fluid dynamics (CFD) studies relating to chronic rhinosinusitis (CRS), including airflow within the pre and postoperative sinonasal cavity, virtual surgery, topical drug and saline delivery (sprays, nebulizers and rinses) and olfaction. RECENT FINDINGS Novel CFD-specific parameters (heat flux and wall shear stress) are highly correlated with patient perception of nasal patency. Increased ostial size markedly improves sinus ventilation and drug delivery. New virtual surgery tools allow surgeons to optimize interventions. Sinus deposition of nasal sprays is more effective with smaller, low-inertia particles, outside of the range produced by many commercially available products. Saline irrigation effectiveness is improved using greater volume, with liquid entering sinuses via 'flooding' of ostia rather than direct jet entry. SUMMARY CFD has provided new insights into sinonasal airflow, air-conditioning function, the nasal cycle, novel measures of nasal patency and the impact of polyps and sinus surgery on olfaction. The deposition efficiency of topical medications on sinus mucosa can be markedly improved through parametric CFD experiments by optimising nasal spray particle size and velocity, nozzle angle and insertion location, while saline irrigation effectiveness can be optimized by modelling squeeze bottle volume and head position. More sophisticated CFD models (inhalation and exhalation, spray particle and saline irrigation) will increasingly provide translational benefits in the clinical management of CRS.
Collapse
|
13
|
Yarragudi SB, Kumar H, Jain R, Tawhai M, Rizwan S. Olfactory Targeting of Microparticles Through Inhalation and Bi-directional Airflow: Effect of Particle Size and Nasal Anatomy. J Aerosol Med Pulm Drug Deliv 2020; 33:258-270. [PMID: 32423267 DOI: 10.1089/jamp.2019.1549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Targeting drugs to the olfactory region in the nasal cavity can bypass the restrictive blood-brain barrier and enhance their direct delivery to the brain. However, complex nasal geometry and its demographical variations can pose challenges for targeted drug deposition in the olfactory region. Deposition of particles in the nasal cavity is influenced by particle size, airflow rate, and nasal geometry. Therefore, this study investigated the effect of these parameters on regional microparticle deposition with the view to provide insights into the nose-to-brain delivery of drugs. Methods: In this study, three anatomically accurate human nasal cavities were reconstructed in silico and deposition of microparticles under nebulization and bi-directional airflow conditions was simulated. Microparticle deposition data were analyzed to gain insight into the effect of particle size and nasal geometry. Results: Maximum olfactory deposition was observed with particles in the size range of 8 to 12 μm under nebulization and 14 to 18 μm under bi-directional airflow condition. Geometric differences between subjects were shown to significantly impact overall and regional particle deposition and introduced inter-subject variability. Significant intra-subject variability in microparticle deposition was also observed in the bi-directional delivery cases. Conclusions: The data from this study suggest that tailoring particle size, combined with a delivery protocol, may provide a unique and pragmatic way to target drugs to the olfactory region. Differences in nasal anatomy among humans can cause variability in particle deposition and need to be considered in any future applications.
Collapse
Affiliation(s)
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ravi Jain
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Shakila Rizwan
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Ther Deliv 2020; 11:183-191. [PMID: 32046624 DOI: 10.4155/tde-2019-0086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This special report gives an insight in the rationale of utilizing the nasal cavity for drug administration and the formulation as well as characterization of nasal preparations. As the nose is an easy-to-access, noninvasive and versatile location for absorption, this route of delivery will play an increasingly important role in future drug product development both for new and repurposed drugs. The nose can be utilized for local and systemic delivery including drug delivery to the central nervous system and the immune system. Typical formulation strategies and future developments are reviewed, which nowadays mostly comprise liquid formulations. Although they are straight forward to develop, a number of aspects from choice of solvent, osmolarity, pH, viscosity and more need to be considered, which determine formulation characteristics, not at least nasal deposition. Nasal powders offer higher stability and, along with more sophisticated nasal devices, may play a major role in the future.
Collapse
|
15
|
Calmet H, Inthavong K, Eguzkitza B, Lehmkuhl O, Houzeaux G, Vázquez M. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. PLoS One 2019; 14:e0221330. [PMID: 31490971 PMCID: PMC6730903 DOI: 10.1371/journal.pone.0221330] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/06/2019] [Indexed: 01/03/2023] Open
Abstract
Deposition of polydisperse particles representing nasal spray application in a human nasal cavity was performed under transient breathing profiles of sniffing, constant flow, and breath hold. The LES turbulence model was used to describe the fluid phase. Particles were introduced into the flow field with initial spray conditions, including spray cone angle, insertion angle, and initial velocity. Since nasal spray atomizer design determines the particle conditions, fifteen particle size distributions were used, each defined by a log-normal distribution with a different volume mean diameter (Dv50). Particle deposition in the anterior region was approximately 80% when Dv50 > 50μm, and this decreased to 45% as Dv50 decreased to 10μ m for constant and sniff breathing conditions. The decrease in anterior deposition was countered with increased deposition in the middle and posterior regions. The significance of increased deposition in the middle region for drug delivery shows there is potential for nasal delivered drugs to reach the highly vascularised mucosal walls in the main nasal passages. For multiple targeted deposition sites, an optimisation equation was introduced where deposition results of any two targeted sites could be combined and a weighting between 0 to 1 was applied to each targeted site, representing the relative importance of each deposition site.
Collapse
Affiliation(s)
- Hadrien Calmet
- Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Barcelona, Spain
- * E-mail:
| | - Kiao Inthavong
- School of Engineering (Mechanical & Automotive), RMIT University, Bundoora, Victoria, Australia
| | - Beatriz Eguzkitza
- Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Barcelona, Spain
| | - Oriol Lehmkuhl
- Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Barcelona, Spain
| | - Guillaume Houzeaux
- Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Barcelona, Spain
| | - Mariano Vázquez
- Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Barcelona, Spain
| |
Collapse
|
16
|
Hosseini S, Golshahi L. An in vitro evaluation of importance of airway anatomy in sub-regional nasal and paranasal drug delivery with nebulizers using three different anatomical nasal airway replicas of 2-, 5- and 50-Year old human subjects. Int J Pharm 2019; 563:426-436. [DOI: 10.1016/j.ijpharm.2019.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 11/30/2022]
|
17
|
Kiaee M, Wachtel H, Noga ML, Martin AR, Finlay WH. An idealized geometry that mimics average nasal spray deposition in adults: A computational study. Comput Biol Med 2019; 107:206-217. [PMID: 30851506 DOI: 10.1016/j.compbiomed.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/18/2019] [Indexed: 11/30/2022]
Abstract
This work describes the development of an idealized geometry that mimics average regional deposition of nasal sprays within realistic adult nasal geometries. Previous simulation results in seven realistic nasal airways (Kiaee et al. Int. J. Num. Methods Biomed. Eng. 34: e2968, 2018) were used to establish target values of regional deposition. Characteristic geometric features observed to be common to all the realistic nasal airway geometries studied were extracted and included in the idealized geometry. Additional geometric features and size scaling were explored, in order to enhance deposition in specific regions based on the results of simulations done in preliminary versions of the idealized geometry. In total, more than one hundred thousand simulation cases were conducted across a range of particle parameters and geometric shapes in order to reach the final idealized geometry presented herein. For droplet velocities of 0-20 m/s, droplet sizes of 5-40 μm and at an inhalation flow rate of 15 l/min, regional deposition in the final idealized geometry compares favourably with average deposition in each of the vestibule, valve, olfactory, turbinate, nasopharynx, and outlet regions in the realistic geometries. The proposed idealized nasal geometry has potential for use in the development and testing of nasal drug delivery systems, allowing researchers to estimate in vivo regional nasal deposition patterns using a simple benchtop test apparatus.
Collapse
Affiliation(s)
- Milad Kiaee
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | | | - Michelle L Noga
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
18
|
Gänger S, Schindowski K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018; 10:pharmaceutics10030116. [PMID: 30081536 PMCID: PMC6161189 DOI: 10.3390/pharmaceutics10030116] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier are major obstacles in central nervous system (CNS) drug delivery, since they block most molecules from entering the brain. Alternative drug delivery routes like intraparenchymal or intrathecal are invasive methods with a remaining risk of infections. In contrast, nose-to-brain delivery is a minimally invasive drug administration pathway, which bypasses the blood-brain barrier as the drug is directed from the nasal cavity to the brain. In particular, the skull base located at the roof of the nasal cavity is in close vicinity to the CNS. This area is covered with olfactory mucosa. To design and tailor suitable formulations for nose-to-brain drug delivery, the architecture, structure and physico-chemical characteristics of the mucosa are important criteria. Hence, here we review the state-of-the-art knowledge about the characteristics of the nasal and, in particular, the olfactory mucosa needed for a rational design of intranasal formulations and dosage forms. Also, the information is suitable for the development of systemic or local intranasal drug delivery as well as for intranasal vaccinations.
Collapse
Affiliation(s)
- Stella Gänger
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
- Faculty of Medicine, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
19
|
Kiaee M, Wachtel H, Noga ML, Martin AR, Finlay WH. Regional deposition of nasal sprays in adults: A wide ranging computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2968. [PMID: 29453801 DOI: 10.1002/cnm.2968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Milad Kiaee
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | | | - Michelle L Noga
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery. Int J Pharm 2018; 543:83-95. [PMID: 29597035 DOI: 10.1016/j.ijpharm.2018.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/24/2018] [Accepted: 03/24/2018] [Indexed: 12/17/2022]
Abstract
The complex nasal structure poses obstacles for efficient nasal drug administration beyond the nasal valve, especially when targeting the olfactory region. This study numerically detailed the naturally inhaled nanoparticle transport process from the initial releasing locations to the final deposited sites using a realistic human nasal passage. Dispersed nanoparticles at different coronal cross-sections were partitioned into multiple groups according to their final deposited locations. Results showed inhaled nanoparticles are more likely to move along the septum. Olfactory deposited particles entered the nose through the inner superior corner of the nostril; the middle meatus deposited particles entered the nose through the top third of the nostril; the inferior deposited particles entered via the bottom floor regions of the nostril. Therefore, targeted nasal inhalation therapies that intentionally release therapeutic particles from these recognized regions at the nostril plane can considerably improve the resultant topical disposition doses. However, it remains challenging to completely prevent undesired particle depositions as particles coming from the same location may produce multiple-sites depositions due to partition overlapping. Nevertheless, the fraction of undesired particle deposition is anticipated to be reduced at a great extent compared to unplanned releasing approaches.
Collapse
|
21
|
Akintola AA, van Opstal AM, Westendorp RG, Postmus I, van der Grond J, van Heemst D. Effect of intranasally administered insulin on cerebral blood flow and perfusion; a randomized experiment in young and older adults. Aging (Albany NY) 2017; 9:790-802. [PMID: 28291957 PMCID: PMC5391232 DOI: 10.18632/aging.101192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
Insulin, a vasoactive modulator regulating peripheral and cerebral blood flow, has been consistently linked to aging and longevity. In this proof of principle study, using a randomized, double-blinded, placebo-controlled crossover design, we explored the effects of intranasally administered insulin (40IU) on cerebral blood flow (CBF) and perfusion in older (60-69 years, n=11) and younger (20-26 years, n=8) adults. Changes in CBF through the major cerebropetal arteries were assessed via phase contrast MR-angiography, and regional cortical tissue perfusion via pseudo-continuous arterial spin labelling. Total flow through the major cerebropetal arteries was unchanged in both young and old. In the older participants, intranasal insulin compared to placebo increased perfusion through the occipital gray matter (65.2±11.0 mL/100g/min vs 61.2±10.1 mL/100g/min, P=0.001), and in the thalamus (68.28±6.75 mL/100g/min versus 63.31±6.84 mL/100g/min, P=0.003). Thus, intranasal insulin improved tissue perfusion of the occipital cortical brain region and the thalamus in older adults.
Collapse
Affiliation(s)
- Abimbola A Akintola
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Anna M van Opstal
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rudi G Westendorp
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Public Health and Center for Healthy Aging, University of Copenhagen, Denmark
| | - Iris Postmus
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands.,Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands.,Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
| |
Collapse
|
22
|
Intranasal immunization with dry powder vaccines. Eur J Pharm Biopharm 2017; 122:167-175. [PMID: 29122735 DOI: 10.1016/j.ejpb.2017.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
Vaccination represents a cost-effective weapon for disease prevention and has proven to dramatically reduce the incidences of several diseases that once were responsible for significant mortality and morbidity worldwide. The nasal cavity constitutes the initial stage of the respiratory system and the first contact with inhaled pathogens. The intranasal (IN) route for vaccine administration is an attractive alternative to injection, due to the ease of administration as well as better patient compliance. Many published studies have demonstrated the safety and effectiveness of IN immunization with liquid vaccines. Currently, two liquid IN vaccines are available and both contain live attenuated influenza viruses. FluMist® was approved in 2003 in the United States, and Nasovac® H1N1 vaccine was approved in India in 2010. Preclinical studies showed that IN immunization with dry powder vaccines (DPVs) is feasible. Although there is not a commercially available DPV yet, DPVs have the inherent advantage of being relatively more stable than liquid vaccines. This review focuses on recent developments of DPVs as next-generation IN vaccines.
Collapse
|
23
|
Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release 2017; 268:364-389. [PMID: 28887135 DOI: 10.1016/j.jconrel.2017.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) restricts the transport of potential therapeutic moieties to the brain. Direct targeting the brain via olfactory and trigeminal neural pathways by passing the BBB has gained an important consideration for delivery of wide range of therapeutics to brain. Intranasal route of transportation directly delivers the drugs to brain without systemic absorption, thus avoiding the side effects and enhancing the efficacy of neurotherapeutics. Over the last several decades, different drug delivery systems (DDSs) have been studied for targeting the brain by the nasal route. Novel DDSs such as nanoparticles (NPs), liposomes and polymeric micelles have gained potential as useful tools for targeting the brain without toxicity in nasal mucosa and central nervous system (CNS). Complex geometry of the nasal cavity presented a big challenge to effective delivery of drugs beyond the nasal valve. Recently, pharmaceutical firms utilized latest and emerging nasal drug delivery technologies to overcome these barriers. This review aims to describe the latest development of brain targeted DDSs via nasal administration. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE Carbopol 934p (PubChem CID: 6581) Carboxy methylcellulose (PubChem CID: 24748) Penetratin (PubChem CID: 101111470) Poly lactic-co-glycolic acid (PubChem CID: 23111554) Tween 80 (PubChem CID: 5284448).
Collapse
Affiliation(s)
- Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Mengrui Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Muhammad Wasim Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| |
Collapse
|
24
|
Silberstein S. AVP-825: a novel intranasal delivery system for low-dose sumatriptan powder in the treatment of acute migraine. Expert Rev Clin Pharmacol 2017; 10:821-832. [DOI: 10.1080/17512433.2017.1339600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Xi J, Wang Z, Nevorski D, White T, Zhou Y. Nasal and Olfactory Deposition with Normal and Bidirectional Intranasal Delivery Techniques: In Vitro Tests and Numerical Simulations. J Aerosol Med Pulm Drug Deliv 2016; 30:118-131. [PMID: 27977306 DOI: 10.1089/jamp.2016.1295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Intranasal delivery protocols that can effectively deposit drugs to the olfactory region are severely lacking. Furthermore, it is still challenging to quantify nasal deposition on a regional or local basis, which is crucial in assessing the performance of targeted olfactory drug delivery. OBJECTIVES To visually and quantitatively compare drug depositions in the nose and olfactory region with normal and bidirectional breathing patterns with vibrating mesh and jet nebulizers. METHODS A sectional nose cast was developed based on an anatomically accurate nasal airway model to visualize deposition patterns and quantify regional doses. Sar-Gel was used to visualize the deposition pattern inside the nose and the delivered doses were measured using a high precision scale. Numerical modeling was performed to understand the underlying mechanisms in both the normal and bidirectional deliveries. RESULTS Results show that the bidirectional technique yielded higher deposition in both the nasal cavity and the olfactory region for both nebulizers. However, the vibrating mesh nebulizer was found to be more responsive to the bidirectional breathing and elicited more increase in the olfactory delivery than the PARI Sinus. The deposition patterns under the bidirectional breathing are highly different between the two nasal passages, with more dispersed distributions in the nasal passage with exiting flows. For both nebulizers, reducing the inhalation flow rates increased the nasal dose, but decreased the olfactory dose, which was consistent between in vitro measurements and numerical simulations. CONCLUSIONS The bi directional technique with a vibrating mesh nebulizer is recommended for both nasal systematic and olfactory drug deliveries. The Sar-Gel based method in combination with sectional nasal casts appears to be a practical approach to visualize local depositions.
Collapse
Affiliation(s)
- Jinxiang Xi
- 1 School of Engineering and Technology, Central Michigan University , Mount Pleasant, Michigan
| | - Zhaoxuan Wang
- 1 School of Engineering and Technology, Central Michigan University , Mount Pleasant, Michigan
| | - Danielle Nevorski
- 1 School of Engineering and Technology, Central Michigan University , Mount Pleasant, Michigan
| | - Thomas White
- 1 School of Engineering and Technology, Central Michigan University , Mount Pleasant, Michigan
| | - Yue Zhou
- 2 Aerosol and Respiratory Dosimetry Program, Lovelace Respiratory Research Institute , Albuquerque, New Mexico
| |
Collapse
|
26
|
Nasal Drug Delivery. Drug Deliv 2016. [DOI: 10.1201/9781315382579-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Xi J, Yuan JE, Si XA. Simulation study of electric-guided delivery of 0.4µm monodisperse and polydisperse aerosols to the ostiomeatal complex. Comput Biol Med 2016; 72:1-12. [PMID: 26969803 DOI: 10.1016/j.compbiomed.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Despite the high prevalence of rhinosinusitis, current inhalation therapy shows limited efficacy due to extremely low drug delivery efficiency to the paranasal sinuses. Novel intranasal delivery systems are needed to enhance targeted delivery to the sinus with therapeutic dosages. An optimization framework for intranasal drug delivery was developed to target polydisperse charged aerosols to the ostiomeatal complex (OMC) with electric guidance. The delivery efficiency of a group of charged aerosols recently reported in the literature was numerically assessed and optimized in an anatomically accurate nose-sinus model. Key design variables included particle charge number, particle size and distribution, electrode strength, and inhalation velocity. Both monodisperse and polydisperse aerosol profiles were considered. Results showed that the OMC delivery efficiency was highly sensitive to the applied electric field and electrostatic charges carried by the particles. Through the synthesis of electric-guidance and point drug release, focused deposition with significantly enhanced dosage in the OMC can be achieved. For 0.4 µm charged aerosols, an OMC delivery efficiency of 51.6% was predicted for monodisperse aerosols and 34.4% for polydisperse aerosols. This difference suggested that the aerosol profile exerted a notable effect on intranasal deliveries. Sensitivity analysis indicated that the OMC deposition fraction was highly sensitive to the charge and size of particles and was less sensitive to the inhalation velocity considered in this study. Experimental studies are needed to validate the numerically optimized designs. Further studies are warranted to investigate the targeted OMC delivery with both electric and acoustics controls, the latter of which has the potential to further deliver the drug particles into the sinus cavity.
Collapse
Affiliation(s)
- Jinxiang Xi
- School of Engineering and Technology, Central Michigan University, 1200 South Franklin Street, Mount Pleasant, MI 48858, USA.
| | - Jiayao Eddie Yuan
- School of Engineering and Technology, Central Michigan University, 1200 South Franklin Street, Mount Pleasant, MI 48858, USA
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA
| |
Collapse
|
28
|
Linakis MW, Roberts JK, Lala AC, Spigarelli MG, Medlicott NJ, Reith DM, Ward RM, Sherwin CMT. Challenges Associated with Route of Administration in Neonatal Drug Delivery. Clin Pharmacokinet 2015; 55:185-96. [DOI: 10.1007/s40262-015-0313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Xi J, Yuan JE, Si XA, Hasbany J. Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis. Int J Nanomedicine 2015; 10:4847-61. [PMID: 26257521 PMCID: PMC4525801 DOI: 10.2147/ijn.s87382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite the prevalence of rhinosinusitis that affects 10%-15% of the population, current inhalation therapy shows limited efficacy. Standard devices deliver <5% of the drugs to the sinuses due to the complexity of nose structure, secluded location of the sinus, poor ventilation, and lack of control of particle motions inside the nasal cavity. METHODS An electric-guided delivery system was developed to guide charged particles to the ostiomeatal complex (OMC). Its performance was numerically assessed in an MRI-based nose-sinus model. Key design variables related to the delivery device, drug particles, and patient breathing were determined using sensitivity analysis. A two-stage optimization of design variables was conducted to obtain the best performance of the delivery system using the Nelder-Mead algorithm. RESULTS AND DISCUSSION The OMC delivery system exhibited high sensitivity to the applied electric field and electrostatic charges carried by the particles. Through the synthesis of electric guidance and point drug release, the new delivery system eliminated particle deposition in the nasal valve and turbinate regions and significantly enhanced the OMC doses. An OMC delivery efficiency of 72.4% was obtained with the optimized design, which is one order of magnitude higher than the standard nasal devices. Moreover, optimization is imperative to achieve a sound delivery protocol because of the large number of design variables. The OMC dose increased from 45.0% in the baseline model to 72.4% in the optimized system. The optimization framework developed in this study can be easily adapted for the delivery of drugs to other sites in the nose such as the ethmoid sinus and olfactory region.
Collapse
Affiliation(s)
- Jinxiang Xi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Jiayao Eddie Yuan
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA
| | - James Hasbany
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
30
|
Influence of Dosage Form, Formulation, and Delivery Device on Olfactory Deposition and Clearance: Enhancement of Nose-to-CNS Uptake. J Pharm Innov 2015. [DOI: 10.1007/s12247-015-9222-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Cady RK, McAllister PJ, Spierings ELH, Messina J, Carothers J, Djupesland PG, Mahmoud RA. A randomized, double-blind, placebo-controlled study of breath powered nasal delivery of sumatriptan powder (AVP-825) in the treatment of acute migraine (The TARGET Study). Headache 2014; 55:88-100. [PMID: 25355310 PMCID: PMC4320758 DOI: 10.1111/head.12472] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Abstract
Objective To evaluate the efficacy and safety of AVP-825, a drug–device combination of low-dose sumatriptan powder (22 mg loaded dose) delivered intranasally through a targeted Breath Powered device vs an identical device containing lactose powder (placebo device) in the treatment of migraine headache. Background Early treatment of migraine headaches is associated with improved outcome, but medication absorption after oral delivery may be delayed in migraineurs because of reduced gastric motility. Sumatriptan powder administered with an innovative, closed-palate, Bi-Directional, Breath Powered intranasal delivery mechanism is efficiently absorbed across the nasal mucosa and produces fast absorption into the circulation. Results from a previously conducted placebo-controlled study of AVP-825 showed a high degree of headache relief with an early onset of action (eg, 74% AVP-825 vs 38% placebo device at 1 hour, P < .01). Methods In this double-blind, placebo-controlled, parallel-group study in adults with a history of migraine with or without aura, participants were randomized via computer-generated lists to AVP-825 or placebo device to treat a single migraine headache of moderate or severe intensity. The primary endpoint was headache relief (defined as reduction of headache pain intensity from severe or moderate migraine headache to mild or none) at 2 hours post-dose. Results Two hundred and thirty patients (116 AVP-825 and 114 placebo device) were randomized, of whom 223 (112 and 111, respectively) experienced a qualifying migraine headache (their next migraine headache that reached moderate or severe intensity). A significantly greater proportion of AVP-825 patients reported headache relief at 2 hours post-dose compared with those using the placebo device (68% vs 45%, P = .002, odds ratio 2.53, 95% confidence interval [1.45, 4.42]). Between-group differences in headache relief were evident as early as 15 minutes, reached statistical significance at 30 minutes post-dose (42% vs 27%, P = .03), and were sustained at 24 hours (44% vs 24%, P = .002) and 48 hours (34% vs 20%, P = .01). Thirty-four percent of patients treated with AVP-825 were pain-free at 2 hours compared with 17% using the placebo device (P = .008). More AVP-825 patients reported meaningful pain relief (patient interpretation) of migraine within 2 hours of treatment vs placebo device (70% vs 45%, P < .001), and fewer required rescue medication (37% vs 52%, P = .02). Total migraine freedom (patients with no headache, nausea, phonophobia, photophobia, or vomiting) reached significance following treatment with AVP-825 at 1 hour (19% vs 9%; P = .04). There were no serious adverse events (AEs), and no systemic AEs occurred in more than one patient. Chest pain or pressure was not reported, and only one patient taking AVP-825 reported mild paresthesia. No other triptan sensations were reported. Conclusions Targeted delivery of a low-dose of sumatriptan powder via a novel, closed-palate, Breath Powered, intranasal device (AVP-825) provided fast relief of moderate or severe migraine headache in adults that reached statistical significance over placebo by 30 minutes. The treatment was well tolerated with a low incidence of systemic AEs.
Collapse
|
32
|
The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv 2014; 5:709-33. [PMID: 25090283 DOI: 10.4155/tde.14.41] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intricate pathophysiology of brain disorders, difficult access to the brain, and the complexity and high risks and costs of drug development represent major hurdles for improving therapies. Nose-to-brain drug transport offers an attractive alternative or addition to formulation-only strategies attempting to enhance drug penetration into the CNS. Although still a matter of controversy, many studies in animals claim direct nose-to-brain transport along the olfactory and trigeminal nerves, circumventing the traditional barriers to CNS entry. Some clinical trials in man also suggest nose-to-brain drug delivery, although definitive proof in man is lacking. This review focuses on new nasal delivery technologies designed to overcome inherent anatomical and physiological challenges and facilitate more efficient and targeted drug delivery for CNS disorders.
Collapse
|
33
|
Djupesland PG, Messina JC, Mahmoud RA. Breath powered nasal delivery: a new route to rapid headache relief. Headache 2014; 53 Suppl 2:72-84. [PMID: 24024605 PMCID: PMC3786533 DOI: 10.1111/head.12186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 12/02/2022]
Abstract
The nose offers an attractive noninvasive alternative for drug delivery. Nasal anatomy, with a large mucosal surface area and high vascularity, allows for rapid systemic absorption and other potential benefits. However, the complex nasal geometry, including the narrow anterior valve, poses a serious challenge to efficient drug delivery. This barrier, plus the inherent limitations of traditional nasal delivery mechanisms, has precluded achievement of the full potential of nasal delivery. Breath Powered bi-directional delivery, a simple but novel nasal delivery mechanism, overcomes these barriers. This innovative mechanism has now been applied to the delivery of sumatriptan. Multiple studies of drug deposition, including comparisons of traditional nasal sprays to Breath Powered delivery, demonstrate significantly improved deposition to superior and posterior intranasal target sites beyond the nasal valve. Pharmacokinetic studies in both healthy subjects and migraineurs suggest that improved deposition of sumatriptan translates into improved absorption and pharmacokinetics. Importantly, the absorption profile is shifted toward a more pronounced early peak, representing nasal absorption, with a reduced late peak, representing predominantly gastrointestinal (GI) absorption. The flattening and “spreading out” of the GI peak appears more pronounced in migraine sufferers than healthy volunteers, likely reflecting impaired GI absorption described in migraineurs. In replicated clinical trials, Breath Powered delivery of low-dose sumatriptan was well accepted and well tolerated by patients, and onset of pain relief was faster than generally reported in previous trials with noninjectable triptans. Interestingly, Breath Powered delivery also allows for the potential of headache-targeted medications to be better delivered to the trigeminal nerve and the sphenopalatine ganglion, potentially improving treatment of various types of headache. In brief, Breath Powered bi-directional intranasal delivery offers a new and more efficient mechanism for nasal drug delivery, providing an attractive option for improved treatment of headaches by enabling or enhancing the benefits of current and future headache therapies.
Collapse
|
34
|
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv 2014; 23:681-93. [PMID: 24901207 DOI: 10.3109/10717544.2014.920431] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. OBJECTIVE The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. METHODS Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. RESULTS AND CONCLUSION The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.
Collapse
Affiliation(s)
- Amrish Kumar
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Aditya Nath Pandey
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Sunil Kumar Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| |
Collapse
|
35
|
Obaidi M, Offman E, Messina J, Carothers J, Djupesland PG, Mahmoud RA. Improved pharmacokinetics of sumatriptan with Breath Powered™ nasal delivery of sumatriptan powder. Headache 2013; 53:1323-33. [PMID: 23992438 PMCID: PMC4232272 DOI: 10.1111/head.12167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2013] [Indexed: 12/01/2022]
Abstract
Objectives.— The purpose of this study was to directly compare the pharmacokinetic (PK) profile of 22-mg sumatriptan powder delivered intranasally with a novel Breath Powered™ device (11 mg in each nostril) vs a 20-mg sumatriptan liquid nasal spray, a 100-mg oral tablet, and a 6-mg subcutaneous injection. Background.— A prior PK study found that low doses of sumatriptan powder delivered intranasally with a Breath Powered device were efficiently and rapidly absorbed. An early phase clinical trial with the same device and doses found excellent tolerability with high response rates and rapid onset of pain relief, approaching the benefits of injection despite significantly lower predicted drug levels. Methods.— An open-label, cross-over, comparative bioavailability study was conducted in 20 healthy subjects at a single center in the USA. Following randomization, fasted subjects received a single dose of each of the 4 treatments separated by a 7-day washout. Blood samples were taken pre-dose and serially over 14 hours post-dose for PK analysis. Results.— Quantitative measurement of residuals in used Breath Powered devices demonstrated that the devices delivered 8 ± 0.9 mg (mean ± standard deviation) of sumatriptan powder in each nostril (total dose 16 mg). Although the extent of systemic exposure over 14 hours was similar following Breath Powered delivery of 16-mg sumatriptan powder and 20-mg liquid nasal spray (area under the curve [AUC]0-∞ 64.9 ng*hour/mL vs 61.1 ng*hour/mL), sumatriptan powder, despite a 20% lower dose, produced 27% higher peak exposure (Cmax 20.8 ng/mL vs 16.4 ng/mL) and 61% higher exposure in the first 30 minutes compared with the nasal spray (AUC0-30 minutes 5.8 ng*hour/mL vs 3.6 ng*hour/mL). The magnitude of difference is larger on a per-milligram basis. The absorption profile following standard nasal spray demonstrated bimodal peaks, consistent with lower early followed by higher later absorptions. In contrast, the profile following Breath Powered delivery showed higher early and lower late absorptions. Relative to the 100-mg oral tablet (Cmax 70.2 ng/mL, AUC0-∞, 308.8 ng*hour/mL) and 6-mg injection (Cmax 111.6 ng/mL, AUC0-∞ 128.2 ng*hour/mL), the peak and overall exposure following Breath Powered intranasal delivery of sumatriptan powder was substantially lower. Conclusions.— Breath Powered intranasal delivery of sumatriptan powder is a more efficient form of drug delivery, producing a higher peak and earlier exposure with a lower delivered dose than nasal spray and faster absorption than either nasal spray or oral administration. It also produces a significantly lower peak and total systemic exposure than oral tablet or subcutaneous injection.
Collapse
|
36
|
Khalili S, Tkachenko N, Rotenberg B. A novel device for delivery of intranasal particulate medication: a pilot study. Int Forum Allergy Rhinol 2013; 3:905-10. [PMID: 23868855 DOI: 10.1002/alr.21199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/14/2013] [Accepted: 06/06/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intranasal medication delivery for allergic rhinitis (AR) is considered a mainstay of therapy but is hampered by poor compliance. Among reasons given are unpleasant sensations associated with spray penetration into the pharynx. Our objective was to study a novel method of particle delivery to the nose that would abrogate these issues. METHODS This was a double-blind, randomized study. Subjects who met study criteria underwent intranasal particle delivery using a novel device (Trivair Nasal Deposition System; Trimel Pharmaceuticals, Toronto, Canada) that delivered anhydrous lactose particles into the nose via a transoral air puff (thus elevating soft palate and blocking the nasopharynx). Subjects had nostrils randomized into 4 groups (particle sizes 5 μm and 50 μm × doses 12.5 mg and 25 mg). Particle deposition was assessed at 1 minute, 10 minutes, and 30 minutes on the inferior turbinate, middle turbinate, and nasopharynx, respectively, using high-definition endoscopic photography. Each image was compared using an expert blinded 2-person panel for percentage particles remaining. Nonparametric data was assessed using the Wilcoxon signed-rank test via Strata software. RESULTS Twelve nostrils in total met study criteria. The results showed no difference in effectiveness of nasal particle retention between the groups based on particle size or dose. No particles entered the nasopharynx or oropharynx. CONCLUSION This study provides proof-of-principle data that the Trivair Nasal Deposition System is effective at retaining medication in the nose without pharyngeal penetration. Larger studies on this device are warranted.
Collapse
Affiliation(s)
- Sammy Khalili
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
37
|
Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res 2013; 3:42-62. [PMID: 23316447 PMCID: PMC3539067 DOI: 10.1007/s13346-012-0108-9] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nasal delivery is the logical choice for topical treatment of local diseases in the nose and paranasal sinuses such as allergic and non-allergic rhinitis and sinusitis. The nose is also considered an attractive route for needle-free vaccination and for systemic drug delivery, especially when rapid absorption and effect are desired. In addition, nasal delivery may help address issues related to poor bioavailability, slow absorption, drug degradation, and adverse events in the gastrointestinal tract and avoids the first-pass metabolism in the liver. However, when considering nasal delivery devices and mechanisms, it is important to keep in mind that the prime purpose of the nasal airway is to protect the delicate lungs from hazardous exposures, not to serve as a delivery route for drugs and vaccines. The narrow nasal valve and the complex convoluted nasal geometry with its dynamic cyclic physiological changes provide efficient filtration and conditioning of the inspired air, enhance olfaction, and optimize gas exchange and fluid retention during exhalation. However, the potential hurdles these functional features impose on efficient nasal drug delivery are often ignored. With this background, the advantages and limitations of existing and emerging nasal delivery devices and dispersion technologies are reviewed with focus on their clinical performance. The role and limitations of the in vitro testing in the FDA guidance for nasal spray pumps and pressurized aerosols (pressurized metered-dose inhalers) with local action are discussed. Moreover, the predictive value and clinical utility of nasal cast studies and computer simulations of nasal airflow and deposition with computer fluid dynamics software are briefly discussed. New and emerging delivery technologies and devices with emphasis on Bi-Directional™ delivery, a novel concept for nasal delivery that can be adapted to a variety of dispersion technologies, are described in more depth.
Collapse
|
38
|
Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective. Ther Deliv 2012; 3:195-208. [PMID: 22834197 DOI: 10.4155/tde.11.149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Delivery of drug therapeutics across the blood-brain barrier is a challenging task for pharmaceutical scientists. Nasal-to-CNS drug delivery has shown promising results in preclinical efficacy models and investigatory human clinical trials. The further development of this technology with respect to the establishment of valid, predictable preclinical species models, translatable pharmacokinetic-pharmacodynamic relationships and definition of toxicology impact will help attract additional pharmaceutical investment in this drug-delivery approach. Further discoveries in nasal nanotechnology, targeted delivery devices and diagnostic olfactory imaging will serve to fuel the advancements in this area of drug delivery.
Collapse
|
39
|
Buttini F, Colombo P, Rossi A, Sonvico F, Colombo G. Particles and powders: Tools of innovation for non-invasive drug administration. J Control Release 2012; 161:693-702. [DOI: 10.1016/j.jconrel.2012.02.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 01/07/2023]
|
40
|
Saladini B, Bigucci F, Cerchiara T, Gallucci MC, Luppi B. Microparticles based on chitosan/pectin polyelectrolyte complexes for nasal delivery of tacrine hydrochloride. Drug Deliv Transl Res 2012; 3:33-41. [DOI: 10.1007/s13346-012-0086-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
KLEVEN MARIT, MELAAEN MORTENC, DJUPESLAND PERG. COMPUTATIONAL FLUID DYNAMICS (CFD) APPLIED IN THE DRUG DELIVERY DESIGN PROCESS TO THE NASAL PASSAGES: A REVIEW. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519411004526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computer fluid dynamics (CFD) has for many years now been employed to study and solve fluid problems in the industry and offers an attractive method for accurately describing systems at a reasonable cost. Computer-aided methods are becoming increasingly important in medicine. Due to a combination of increased computer efficiency and advanced numerical techniques, the realism of these simulations has been enhanced in recent years. Over the past decade, computer-aided design has emerged as a method that is both sufficiently rigorous and efficient to be used for studies of the fluid dynamics in complex airway structures like the nasal airway. Physical experiments in vitro and in vivo are often expensive and time-consuming, and CFD has gained increasing attention as a tool in the design process of devices delivering drugs to the respiratory tract. This paper provides a review of the development of CFD in the studies of nasal airway fluid dynamics, particle and filtering properties in health and disease. Special emphasis is given to studies related to CFD studies used in the development of nasal drug delivery devices. The accuracy and value of CFD for the study of drug delivery design to the nose is reviewed in comparison to experimental results with other methods. Some important challenges when dealing with grid generation and flow simulations in these complex geometries with variable multiphase flow patterns in alternate directions are discussed.
Collapse
Affiliation(s)
- MARIT KLEVEN
- Telemark Technological Research Institute/Telemark, University College, Kjølnes Ring, NO-3918 Porsgrunn, Norway
| | - MORTEN C. MELAAEN
- Telemark Technological Research Institute/Telemark, University College, Kjølnes Ring, NO-3918 Porsgrunn, Norway
| | - PER G. DJUPESLAND
- OptiNose AS, Oslo Innovation Center, Gaustadalleen 21, NO-0349 Oslo, Norway
| |
Collapse
|
42
|
Djupesland PG, Skretting A. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump. J Aerosol Med Pulm Drug Deliv 2012; 25:280-9. [PMID: 22251061 DOI: 10.1089/jamp.2011.0924] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Delivery of powder formulations to the nose is an attractive alternative for many drugs and vaccines. This study compared the regional nasal deposition and clearance patterns of lactose powder delivered by the OptiNose powder device (Opt-Powder; OptiNose US Inc., Yardley, PA, USA) to that of liquid aerosol administered via a traditional hand-actuated liquid spray pump (Rexam SP270, Rexam Pharma, France). METHODS The study was an open-label, crossover design in seven healthy subjects (five females, two males). The regional nasal deposition and clearance patterns of the Opt-Powder device were compared to a traditional liquid spray pump by dynamic gamma camera imaging after administration of either (99m)Tc-labeled lactose powder or liquid (99m)Tc- diethelyne triamine pentaacetic acid-aerosol. The gamma camera images were scaled and aligned with sagittal magnetic resonance images to identify nasal regions. Possible deposition of radiolabeled material in the lungs following both methods of delivery was also evaluated. RESULTS Both powder and spray were distributed to all of the nasal regions. The Opt-Powder device, however, achieved significantly larger initial deposition in the upper and middle posterior regions of the nose than spray (upper posterior region; Opt-Powder 18.3% ± 11.5 vs. Spray 2.4% ± 1.8, p<0.02; sum of upper and middle posterior regions; Opt-Powder 53.5% ± 18.5 vs. Spray 15.7% ± 13.8, p<0.02). The summed initial deposition to the lower anterior and posterior regions for spray was three times higher compared to Opt-Powder (Opt-Powder 17.4% ± 24.5 vs. Spray 59.4% ± 18.2, p<0.04). OptiNose powder delivery resulted in more rapid overall nasal clearance. No lung deposition was observed. CONCLUSIONS The initial deposition following powder delivery was significantly larger in the ciliated mucosa of the upper and posterior nasal regions, whereas less was deposited in the lower regions. Overall nasal clearance of powder was slower initially, but due to retention in anterior nonciliated regions the overall nasal clearance after spray was slower.
Collapse
|
43
|
Deposition of aerosols delivered by nasal route with jet and mesh nebulizers. Int J Pharm 2011; 407:87-94. [PMID: 21256943 DOI: 10.1016/j.ijpharm.2011.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/11/2011] [Accepted: 01/16/2011] [Indexed: 11/21/2022]
Abstract
PURPOSE To quantify the amount of aerosol deposited in different parts of the airways with a commercially available nasal sonic jet nebulizer (NJN) using a sound effect, and to compare its performance with a new nasal mesh nebulizer (NMN). METHODS Seven healthy non-smoking male volunteers aged 21-36 years with a mean weight of 77±10 kg were included in this single-center study. Both nebulizer systems were loaded with (99m)Tc-DTPA and scintigraphies were performed with a gamma camera. Particle size distribution of the aerosols produced by the two nebulizer systems was measured. RESULTS There was no statistical difference between the two nebulizers in terms of fraction of particles smaller than 5 μm (44±4% vs 45±2%) (p>0.9). Aerosol deposition in the nasal region was 73±10% (% of aerosol deposited in airways) with the NJN, and 99±3% with the NMN (p=0.01). Total nasal deposition was 9.6±1.9% of the nebulizer charge with the NJN and 28.4±8.9% with the NMN (p=0.01). 0.5±0.3% of the nebulizer charge was deposited in the maxillary sinuses with the NJN, compared to 2.2±1.6% with the NMN (p=0.01). CONCLUSION Although the two nebulizers had the same particle size, NMN significantly improved aerosol deposition in nasal cavity and prevents deposition into the lungs.
Collapse
|
44
|
Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 2010; 7:884-93. [PMID: 20420446 DOI: 10.1021/mp100029t] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intranasal delivery has been shown to noninvasively deliver drugs from the nose to the brain in minutes along the olfactory and trigeminal nerve pathways, bypassing the blood-brain barrier. However, no one has investigated whether nasally applied drugs target orofacial structures, despite high concentrations observed in the trigeminal nerve innervating these tissues. Following intranasal administration of lidocaine to rats, trigeminally innervated structures (teeth, temporomandibular joint (TMJ), and masseter muscle) were found to have up to 20-fold higher tissue concentrations of lidocaine than the brain and blood as measured by ELISA. This concentration difference could allow intranasally administered therapeutics to treat disorders of orofacial structures (i.e., teeth, TMJ, and masseter muscle) without causing unwanted side effects in the brain and the rest of the body. In this study, an intranasally administered infrared dye reached the brain within 10 minutes. Distribution of dye is consistent with dye entering the trigeminal nerve after intranasal administration through three regions with high drug concentrations in the nasal cavity: the middle concha, the maxillary sinus, and the choana. In humans the trigeminal nerve passes through the maxillary sinus to innervate the maxillary teeth. Delivering lidocaine intranasally may provide an effective anesthetic technique for a noninvasive maxillary nerve block. Intranasal delivery could be used to target vaccinations and treat disorders with fewer side effects such as tooth pain, TMJ disorder, trigeminal neuralgia, headache, and brain diseases.
Collapse
Affiliation(s)
- Neil J Johnson
- HealthPartners Research Foundation, Alzheimer's Research Center at Regions Hospital, Saint Paul, Minnesota 55101, USA
| | | | | |
Collapse
|
45
|
Djupesland PG, Vlckova I, Hewson G. Impact of baseline nasal polyp size and previous surgery on efficacy of fluticasone delivered with a novel device: a subgroup analysis. Am J Rhinol Allergy 2010; 24:291-5. [PMID: 20615359 DOI: 10.2500/ajra.2010.24.3516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Little information exists on the impact of baseline polyp size and previous nasal surgery on the efficacy of intranasal steroids. This study was designed to investigate whether baseline polyp size and previous nasal surgery influence the efficacy of an intranasal steroid delivered with a novel device. METHODS A post hoc analysis of recently published results with intranasal administration using a novel bidirectional delivery device containing fluticasone propionate (Opt-FP) was performed in 109 patients with mild-to-moderate bilateral polyposis. Patients were allocated to subgroups based on summed polyp score at baseline (2, 3, or 4) and on their history of previous sinus surgery. RESULTS A highly significant and progressive reduction in summed polyp size was observed for Opt-FP versus placebo in all three polyp size subgroups (p < 0.001). A greater relative reduction in polyp size (p < 0.05) and an increase in peak nasal inspiratory flow (p < 0.001) were observed for Opt-FP at 12 weeks in the 28 patients with a baseline summed score of 3 and 4 compared with the 27 with a summed score of 2. Nevertheless, in patients with small polyps at baseline, the polyps were completely resolved on both sides in 7 of 27 patients. Previous sinus surgery had no impact on efficacy. CONCLUSION The highly significant progressive treatment effect of Opt-FP was observed regardless of baseline polyps score. Coupled with the complete removal of polyps in many patients with small polyps, this suggests that improved deposition to target sites achieved with the bidirectional delivery device may translate into true clinical benefits and reduced need for surgery.
Collapse
|
46
|
Djupesland PG, Dočekal P. Intranasal sumatriptan powder delivered by a novel breath-actuated bi-directional device for the acute treatment of migraine: A randomised, placebo-controlled study. Cephalalgia 2010; 30:933-42. [DOI: 10.1177/0333102409359314] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction: Intranasal sumatriptan is an option for the treatment of migraine; however, nasal delivery using conventional spray pumps is suboptimal. Methods: Adult subjects ( n = 117) with migraine were enrolled in a multicentre, randomised, double-blind, parallel group, placebo-controlled study. A single migraine attack was treated in-clinic with sumatriptan 10 mg, sumatriptan 20 mg or placebo administered intranasally by a novel bi-directional powder delivery device when migraine was moderate or severe. Results: A greater proportion of subjects who received sumatriptan were pain-free at 120 minutes compared with those who received placebo (10 mg/20 mg sumatriptan vs. placebo = 54%/57% vs. 25%, P < .05). Significant benefits were also observed for pain relief at 120 minutes (84%/80% vs. 44%, P < .001/.01) and as early as 60 minutes (73%/74% vs. 38%, P < .01) and for 48 hours sustained pain-free ( P < .05). Treatment-related adverse events were rare, with a metallic taste being the most commonly reported (10%/13%). Conclusions: Sumatriptan nasal powder administered using the new device during a migraine attack was effective and well tolerated.
Collapse
Affiliation(s)
| | - P Dočekal
- Department of Neurology, Charles
University in Prague, Czech Republic
| | | |
Collapse
|
47
|
Craft S. The Role of Insulin Dysregulation in Aging and Alzheimer’s Disease. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
A new method for scintigraphic quantification of deposition and clearance in anatomical regions of the human nose. Nucl Med Commun 2009; 30:629-38. [PMID: 19531967 DOI: 10.1097/mnm.0b013e32832c32b3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To develop methods for absolute quantification of the deposition of 99mTc-labeled aerosols and powders in well-defined anatomical regions of the nose, and to enable accurate comparisons of different nasal administration techniques in the same individual. METHODS The volunteer was seated and positioned relative to the scintillation camera field of view by means of a fixation frame. After nasal administration, a dynamic series of images was acquired for 32 min with a lateral direction of view. The images were corrected for photon attenuation by the use of a lateral transmission image acquired before the delivery of aerosols or powders. Marker images, obtained with a line source fixed to a balloon and kept for a short while against the palate as well as with a point source held on anatomical landmarks, were used to co-register the scintigraphic images to sagital sections through a three-dimensional magnetic resonance (MR)-image series. The MR set was used to define the inner nose contour and the nasal regions used for quantification. RESULT Attenuation correction factors ranged from 1.1 to 1.7 in different parts of the nasal cavity. Alignment of the markers on the teeth and palate with the sagital MR images could be reproduced with accuracies of 1.2 and 1.7 mm, respectively. CONCLUSION The new method provides reliable quantification of the deposition in anatomic regions that can be defined in MR images. Accurate co-registration and quantification are essential when comparing distribution and clearance patterns for different administration techniques.
Collapse
|
49
|
Sharma S, Mukkur T, Benson HA, Chen Y. Pharmaceutical Aspects of Intranasal Delivery of Vaccines Using Particulate Systems. J Pharm Sci 2009; 98:812-43. [DOI: 10.1002/jps.21493] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Inthavong K, Tu J, Ahmadi G. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity. ACTA ACUST UNITED AC 2009. [DOI: 10.1260/175748209787387061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles), elongated shapes (asbestos fibres), rough shapes (pollen), and porous light density particles (drug particles) are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.
Collapse
Affiliation(s)
- Kiao Inthavong
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Victoria, Australia
| | - Jiyuan Tu
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Victoria, Australia
| | - Goodarz Ahmadi
- Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York, USA
| |
Collapse
|