1
|
Golshahi L, Finlay WH, Wachtel H. Use of Airway Replicas in Lung Delivery Applications. J Aerosol Med Pulm Drug Deliv 2022; 35:61-72. [PMID: 35262408 DOI: 10.1089/jamp.2021.29057.lg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of extrathoracic airway replicas in optimization of drug delivery to the lungs with nebulizers, dry powder inhalers (DPIs) and pressurized metered-dose inhalers (pMDIs) is discussed. Such airway replicas have been useful in evaluating new pulmonary drug delivery platforms mainly based on the comparison of the total lung dose (TLD) and the aerodynamic particle size distribution (APSD) of the aerosol distal to the physical models. The ability of these in vitro methods to replicate in vivo results has allowed advancements in respiratory drug delivery and in the accuracy and utility of in vitro-in vivo correlations (IVIVCs).
Collapse
Affiliation(s)
- Laleh Golshahi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Herbert Wachtel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| |
Collapse
|
2
|
In vitro - in vivo correlation of intranasal drug deposition. Adv Drug Deliv Rev 2021; 170:340-352. [PMID: 32918968 DOI: 10.1016/j.addr.2020.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
In vitro - in vivo correlation (IVIVC) allows prediction of in vivo drug deposition from a nasally inhaled drug based on in vitro drug measurements. In vitro measurements include physical particle characterization and, more recently, deposition studies using anatomical models. Currently, there is a lack of IVIVC for deposition measurements in anatomical models, especially for deposition patterns in various nasal cavity regions. Therefore, improvement of in vitro and in vivo measurement methods and knowledge about nasal deposition mechanisms should help IVIVC in the future.
Collapse
|
3
|
Ehrmann S, Schmid O, Darquenne C, Rothen-Rutishauser B, Sznitman J, Yang L, Barosova H, Vecellio L, Mitchell J, Heuze-Vourc’h N. Innovative preclinical models for pulmonary drug delivery research. Expert Opin Drug Deliv 2020; 17:463-478. [PMID: 32057260 PMCID: PMC8083945 DOI: 10.1080/17425247.2020.1730807] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Pulmonary drug delivery is a complex field of research combining physics which drive aerosol transport and deposition and biology which underpins efficacy and toxicity of inhaled drugs. A myriad of preclinical methods, ranging from in-silico to in-vitro, ex-vivo and in-vivo, can be implemented.Areas covered: The present review covers in-silico mathematical and computational fluid dynamics modelization of aerosol deposition, cascade impactor technology to estimated drug delivery and deposition, advanced in-vitro cell culture methods and associated aerosol exposure, lung-on-chip technology, ex-vivo modeling, in-vivo inhaled drug delivery, lung imaging, and longitudinal pharmacokinetic analysis.Expert opinion: No single preclinical model can be advocated; all methods are fundamentally complementary and should be implemented based on benefits and drawbacks to answer specific scientific questions. The overall best scientific strategy depends, among others, on the product under investigations, inhalation device design, disease of interest, clinical patient population, previous knowledge. Preclinical testing is not to be separated from clinical evaluation, as small proof-of-concept clinical studies or conversely large-scale clinical big data may inform preclinical testing. The extend of expertise required for such translational research is unlikely to be found in one single laboratory calling for the setup of multinational large-scale research consortiums.
Collapse
Affiliation(s)
- Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep network, Tours France
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC0623A, La Jolla, CA 92093-0623, United States
| | | | - Josue Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Julius Silver building, Office 246, Haifa 32000, Israel
| | - Lin Yang
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hana Barosova
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - Laurent Vecellio
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Jolyon Mitchell
- Jolyon Mitchell Inhaler Consulting Services Inc., 1154 St. Anthony Road, London, Ontario, Canada, N6H 2R1
| | - Nathalie Heuze-Vourc’h
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
4
|
Nagel MW, Suggett JA, Coppolo DP, Mitchell JP. Development and Evaluation of a Family of Human Face and Upper Airway Models for the Laboratory Testing of Orally Inhaled Products. AAPS PharmSciTech 2017; 18:3182-3197. [PMID: 28536796 DOI: 10.1208/s12249-017-0802-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/03/2017] [Indexed: 11/30/2022] Open
Abstract
Many orally inhaled products are supplied with a facemask instead of a mouthpiece, enabling aerosolized medication to be transferred from the inhaler to the lungs when the user lacks the capability to use a mouthpiece. Until recently, laboratory evaluation of an orally inhaled product-facemask was frequently undertaken by removing the facemask, treating the facemask adapter as being equivalent to a mouthpiece. Measurements of delivered drug mass were therefore subject to bias arising from the absence of dead volume, had the facemask been present. We have described the development of the Aerosol Delivery to an Anatomic Model (ADAM) infant, small child, and adult faces and upper airways, and their subsequent evaluation. Each model possesses physical features of appropriate size, and the soft tissues are also simulated. Rudimentary underlying bony structure is also present, because its purpose is only to provide support, enabling the mechanical response of the facial soft tissues when a facemask is applied to be realized. A realistic upper airway (nasopharynx for the infant model, naso- and oropharynx for the child and oropharynx for the adult models) is also incorporated, so that each model can be used to determine the mass of inhaled medication likely to penetrate as far as the lungs where therapy is intended to be applied. Measurements of the mass of pressurized metered-dose inhaler-delivered salbutamol at a filter distal to the upper airway of each model, simulating age-appropriate tidal breathing, were remarkably consistent, almost all being in the range 0.3 to 1.0 μg/kg across the model age ranges, when expressed as a fraction of body weight.
Collapse
|
5
|
Okuda T, Tang P, Yu J, Finlay WH, Chan HK. Powder aerosol delivery through nasal high-flow system: In vitro feasibility and influence of process conditions. Int J Pharm 2017; 533:187-197. [PMID: 28830783 DOI: 10.1016/j.ijpharm.2017.08.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
We aimed to obtain fundamental information for potential pulmonary delivery of powder aerosols using a clinically-approved nasal high-flow system (AIRVO), with spray-dried mannitol (SD-Man) being a model powder. Compressed air exiting the AIRVO at set 'dispersion' air flow rates dispersed SD-Man loaded in an Osmohaler® into a human nasal airway replica (NAR) coupled downstream to a Next Generation Impactor (NGI) running at specific 'inspiratory' flow rates. Increasing the dispersion flow rate from 30 to 60L/min increased powder deposition in the NAR from 50 to 70% of the emitted dose, while decreased the NGI deposition from 50 to 30% of the emitted dose. The inspiratory flow rate did not affect powder deposition in the NAR and NGI. In contrast, as the inspiratory flow rate was increased from 15 to 40L/min, powder recovery, emitted fraction, and fine particle fraction below 5μm (as aerosol performance indices) were increased from 90, 30 and 5% to 97, 45 and 8% of the loaded dose, respectively. The dispersion flow rate did not change the performance indices. Importantly, heating and humidification of dispersion airflow, loaded doses, and nasal cannula sizes did not greatly affect the aerosol characteristics.
Collapse
Affiliation(s)
- Tomoyuki Okuda
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, 2006 NSW, Australia; Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Jiaqi Yu
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, T6G2G8, Canada
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, 2006 NSW, Australia.
| |
Collapse
|
6
|
Mitchell JP, Suggett J, Nagel M. Clinically Relevant In Vitro Testing of Orally Inhaled Products-Bridging the Gap Between the Lab and the Patient. AAPS PharmSciTech 2016; 17:787-804. [PMID: 27173990 DOI: 10.1208/s12249-016-0543-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022] Open
Abstract
Current pharmacopeial methods for in vitro orally inhaled product (OIP) performance testing were developed primarily to support requirements for drug product registration and quality control. In addition, separate clinical studies are undertaken in order to quantify safety and efficacy in the hands of the patient. However, both laboratory and clinical studies are time-consuming and expensive and generally do not investigate either the effects of misuse or the severity of the respiratory disease being treated. The following modifications to laboratory evaluation methodologies can be incorporated without difficulty to provide a better linkage from in vitro testing to clinical reality: (1) examine all types of OIP with patient-representative breathing profiles which represent normal inhaler operation in accordance with the instructions for use (IFU); (2) evaluate OIP misuse, prioritizing the importance of such testing on the basis of (a) probability of occurrence and (b) consequential impact in terms of drug delivery in accordance with the label claim; and (3) use age-appropriate patient-simulated face and upper airway models for the evaluation of OIPs with a facemask. Although it is not necessarily foreseen that these suggestions would form part of future routine quality control testing of inhalers, they should provide a closer approximation to the clinical setting and therefore be useful in the preparation for in vivo studies and in improving guidance for correct use.
Collapse
|
7
|
Amirav I, Halamish A, Gorenberg M, Omar H, Newhouse MT. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies. PLoS One 2015; 10:e0128538. [PMID: 26090661 PMCID: PMC4474798 DOI: 10.1371/journal.pone.0128538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. AIM To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. METHODS Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. RESULTS The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard "face." CONCLUSIONS The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.
Collapse
Affiliation(s)
- Israel Amirav
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Ziv Medical Center, Safed, Israel
- * E-mail:
| | | | | | - Hamza Omar
- Nuclear Medicine Department, Ziv Medical Center, Safed, Israel
| | - Michael T. Newhouse
- Firestone Institute for Respiratory Health, St. Joseph’s Hospital, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Tang P, Leung SSY, Hor E, Ruzycki CA, Carrigy NB, Finlay WH, Brannan JD, Devadason S, Anderson SD, Sly PD, Samnick K, Chan HK. An Apparatus to Deliver Mannitol Powder for Bronchial Provocation in Children Under Six Years Old. J Aerosol Med Pulm Drug Deliv 2015; 28:452-61. [PMID: 25844950 DOI: 10.1089/jamp.2015.1208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Currently bronchial provocation testing (BPT) using mannitol powder cannot be performed in children under 6 years. A primary reason is it is challenging for children at this age to generate a consistent inspiratory effort to inhale mannitol efficiently from a dry powder inhaler. A prototype system, which does not require any inhalation training from the pediatric subject, is reported here. It uses an external source of compressed air to disperse mannitol powder into a commercial holding chamber. Then the subject uses tidal breathing to inhale the aerosol. METHOD The setup consists of a commercially available powder disperser and Volumatic™ holding chamber. Taguchi experimental design was used to identify the effect of dispersion parameters (flow rate of compressed air, time compressed air is applied, mass of powder, and the time between dispersion and inhalation) on the fine particle dose (FPD). The prototype was tested in vitro using a USP throat connected to a next generation impactor. The aerosols from the holding chamber were drawn at 10 L/min. A scaling factor for estimating the provoking dose to induce a 15% reduction in forced expiratory volume in 1 second (FEV1) (PD15) was calculated using anatomical dimensions of the human respiratory tract at various ages combined with known dosing values from the adult BPT. RESULTS Consistent and doubling FPDs were successfully generated based on the Taguchi experimental design. The FPD was reliable over a range of 0.8 (±0.09) mg to 14 (±0.94) mg. The calculated PD15 for children aged 1-6 years ranged from 7.1-30 mg. The FPDs generated from the proposed set up are lower than the calculated PD15 and therefore are not expected to cause sudden bronchoconstriction. CONCLUSION A prototype aerosol delivery system has been developed that is consistently able to deliver doubling doses suitable for bronchial provocation testing in young children.
Collapse
Affiliation(s)
- Patricia Tang
- 1 Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales, Australia
| | - Sharon S Y Leung
- 1 Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales, Australia
| | - Eleanor Hor
- 1 Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales, Australia
| | - Conor A Ruzycki
- 2 Department of Mechanical Engineering, University of Alberta , Edmonton, Canada
| | - Nicholas B Carrigy
- 2 Department of Mechanical Engineering, University of Alberta , Edmonton, Canada
| | - Warren H Finlay
- 2 Department of Mechanical Engineering, University of Alberta , Edmonton, Canada
| | - John D Brannan
- 3 Department of Respiratory and Sleep Medicine, John Hunter Hospital , Newcastle, New South Wales, Australia
| | - Sunalene Devadason
- 4 School of Paediatrics and Child Health, The University of Western Australia , Crawley, WA, Australia
| | - Sandra D Anderson
- 5 Department of Respiratory and Sleep Medicine Royal Prince Alfred Hospital , Camperdown, New South Wales, Australia
| | - Peter D Sly
- 6 Children's Health and Environment Program, Queensland Children's Medical Research Institute, University of Queensland , Royal Children's Hospital, Herston, QLD, Australia
| | - Kevin Samnick
- 1 Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales, Australia
| | - Hak-Kim Chan
- 1 Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|