1
|
Che Y, Xia T, Liu H, Li C, Liu S, Ma P, Xu Q, Zhou R. Preparation of betaine injection and its therapeutic effect in pulmonary arterial hypertension. Basic Clin Pharmacol Toxicol 2024; 134:219-230. [PMID: 38009574 DOI: 10.1111/bcpt.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterised by elevated pulmonary pressure, right ventricular failure (RVF) and ultimately death. Aggressive treatment of RVF is considered an important therapeutic strategy to treat PAH. Previous studies have indicated that betaine may be may a promising therapeutic approach for PAH-induced RVF. Therefore, in this study, betaine solution for injection was prepared and characterised using various techniques. The therapeutic efficacy of three different methods of administration (intragastric, nebulised inhalation and intravenous injection) were comprehensively evaluated in terms of pharmacokinetics, tissue distribution and pharmacodynamics. The pharmacokinetic results demonstrated that betaine injection administered via nebulised inhalation significantly prolonged betaine's half-life and increased its internal circulation time compared to the intragastric and intravenous routes. Biodistribution experiments verified that the betaine formulation accumulated in the lung tissue when administered via inhalation. The results of the pharmacodynamic analysis further confirmed that right ventricular systolic pressure, mean pulmonary artery pressure and right ventricular hypertrophy index increased in the model group and that inhaled betaine suppressed these pathological changes to a level comparable to those observed in the control group. Taken together, these results indicate that betaine administered by inhalation is a promising strategy for the treatment of PAH-induced RVF.
Collapse
Affiliation(s)
- Youlan Che
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tian Xia
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hui Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Cong Li
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Siyun Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Ma
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qingbin Xu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Szymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins - structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem 2022; 37:876-894. [PMID: 35296203 PMCID: PMC8933026 DOI: 10.1080/14756366.2022.2050224] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With increasing number of immunocompromised patients as well as drug resistance in fungi, the risk of fatal fungal infections in humans increases as well. The action of echinocandins is based on the inhibition of β-(1,3)-d-glucan synthesis that builds the fungal cell wall. Caspofungin, micafungin, anidulafungin and rezafungin are semi-synthetic cyclic lipopeptides. Their specific chemical structure possess a potential to obtain novel derivatives with better pharmacological properties resulting in more effective treatment, especially in infections caused by Candida and Aspergillus species. In this review we summarise information about echinocandins with closer look on their chemical structure, mechanism of action, drug resistance and usage in clinical practice. We also introduce actual trends in modification of this antifungals as well as new methods of their administration, and additional use in viral and bacterial infections.
Collapse
Affiliation(s)
- Mateusz Szymański
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Sandra Chmielewska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Bialystok, Poland
| | - Urszula Czyżewska
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Marta Malinowska
- Department of Organic Chemistry, Laboratory of Natural Product Chemistry, University of Bialystok, Bialystok, Poland
| | - Adam Tylicki
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Brunet K, Martellosio JP, Tewes F, Marchand S, Rammaert B. Inhaled Antifungal Agents for Treatment and Prophylaxis of Bronchopulmonary Invasive Mold Infections. Pharmaceutics 2022; 14:pharmaceutics14030641. [PMID: 35336015 PMCID: PMC8949245 DOI: 10.3390/pharmaceutics14030641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary mold infections are life-threatening diseases with high morbi-mortalities. Treatment is based on systemic antifungal agents belonging to the families of polyenes (amphotericin B) and triazoles. Despite this treatment, mortality remains high and the doses of systemic antifungals cannot be increased as they often lead to toxicity. The pulmonary aerosolization of antifungal agents can theoretically increase their concentration at the infectious site, which could improve their efficacy while limiting their systemic exposure and toxicity. However, clinical experience is poor and thus inhaled agent utilization remains unclear in term of indications, drugs, and devices. This comprehensive literature review aims to describe the pharmacokinetic behavior and the efficacy of inhaled antifungal drugs as prophylaxes and curative treatments both in animal models and humans.
Collapse
Affiliation(s)
- Kévin Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Mycologie-Parasitologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| | - Jean-Philippe Martellosio
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Frédéric Tewes
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
| | - Sandrine Marchand
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Blandine Rammaert
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| |
Collapse
|
4
|
Assessment and Development of the Antifungal Agent Caspofungin for Aerosolized Pulmonary Delivery. Pharmaceutics 2021; 13:pharmaceutics13040504. [PMID: 33916988 PMCID: PMC8067632 DOI: 10.3390/pharmaceutics13040504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022] Open
Abstract
Invasive Pulmonary Aspergillosis (IPA) and Pneumocystis jiroveci Pneumonia (PCP) are serious fungal pulmonary diseases for immunocompromised patients. The brand name drug CANCIDAS® (Caspofungin acetate for injection) is FDA approved to treat IPA, but is only 40% effective. Efficacious drug levels at the lung infection site are not achieved by systemic administration. Increasing the dose leads to toxicity. The objective, here, is to reformulate caspofungin for aerosolization to high drug concentration by lung targeted delivery and avoid systemic distribution. Described in this paper is a new, room temperature-stable formulation that meets these goals. The in vitro antifungal activity, solid state and reconstituted stability, and aerosol properties of the new formulation are presented. In addition, pharmacokinetic parameters and tissue distribution data are determined from nose-only inhalation studies in rats. Plasma and tissue samples were analyzed by High Performance Liquid Chromatography-tandem Mass Spectrometry (HPLC-MS-MS). Inhaled drug concentrations for caspofungin Active Pharmaceutical Ingredient (API), and the new formulation, were compared at the same dose. In the lungs, the parameters Cmax and Area Under Curve (AUC) showed a 70%, and 60%, respective increase in drug deposition for the new formulation without significant systemic distribution. Moreover, the calculated pharmacodynamic indices suggest an improvement in efficacy. These findings warrant further animal toxicology studies and human clinical trials, with inhaled caspofungin, for treating IPA.
Collapse
|