1
|
Dunkel J, Viitala M, Karikoski M, Rantakari P, Virtakoivu R, Elima K, Hollmén M, Jalkanen S, Salmi M. Enhanced Antibody Production in Clever-1/Stabilin-1-Deficient Mice. Front Immunol 2018; 9:2257. [PMID: 30349531 PMCID: PMC6187969 DOI: 10.3389/fimmu.2018.02257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 01/13/2023] Open
Abstract
Clever-1, encoded by the Stab1 gene, is a scavenger and leukocyte trafficking receptor expressed by subsets of vascular and lymphatic endothelial cells and immunosuppressive macrophages. Monocyte Clever-1 also modulates T cell activation. However, nothing is known about the possible links between B cell function and Clever-1. Here, we found that Stab1 knockout mice (Stab1−/−) lacking the Clever-1 protein from all cells present with abnormally high antibody levels under resting conditions and show enhanced humoral immune responses after immunization with protein and carbohydrate antigens. Removal of the spleen does not abolish the augmented basal and post-immunization antibody levels in Clever-1–deficient mice. The increased IgG production is also present in mice in which Clever-1 is selectively ablated from macrophages. When compared to wildtype macrophages, Clever-1–deficient macrophages show increased TNF-α synthesis. In co-culture experiments, monocytes/macrophages deficient of Clever-1 support higher IgM production by B cells, which is blocked by TNF-α depletion. Collectively, our data show that the excessive inflammatory activity of monocytes/macrophages in the absence of Clever-1 results in augmented humoral immune responses in vivo.
Collapse
Affiliation(s)
- Johannes Dunkel
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Miro Viitala
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marika Karikoski
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Reetta Virtakoivu
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kati Elima
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
2
|
The interferon-inducible protein p202 promotes osteogenesis in mouse bone marrow stromal cells. Biosci Rep 2018; 38:BSR20171618. [PMID: 29853536 PMCID: PMC6019357 DOI: 10.1042/bsr20171618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
In the present study, we explored the role of the interferon-inducible protein p202 in osteoblast differentiation of mouse bone marrow stromal cells (BMSCs). Both the mRNA and protein levels of p202 increased initially and decreased afterward in the course of BMSC osteogenesis. The intracellular distribution of this protein also changed in the differentiation process. p202 knockdown inhibited, while p202 overexpression enhanced, the osteoblast differentiation of BMSCs. This was identified by evaluation of expression of osteogenic markers, Alizarin Red S staining, and determination of alkaline phosphatase activity. Further study revealed that p202 disturbs the formation of Runx2/Ids complex and frees Runx2 to induce the differentiation process. The findings demonstrated that p202 plays a positive role in BMSC osteogenesis.
Collapse
|
3
|
Choubey D, Panchanathan R. Absent in Melanoma 2 proteins in SLE. Clin Immunol 2017; 176:42-48. [PMID: 28062222 DOI: 10.1016/j.clim.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
Type I interferons (IFN-α/β)-inducible PYRIN and HIN domain-containing protein family includes Absent in Melanoma 2 (murine Aim2 and human AIM2), murine p202, and human PYRIN-only protein 3 (POP3). The generation of Aim2-deficient mice indicated that the Aim2 protein is essential for inflammasome activation, resulting in the secretion of interleukin-1β (IL-1β) and IL-18 and cell death by pyroptosis. Further, Aim2-deficiency also increased constitutive expression of the IFN-β and expression of the p202 protein. Notably, an increased expression of p202 protein in female mice associated with the development of systemic lupus erythematosus (SLE). SLE in patients is characterized by a constitutive increase in serum levels of IFN-α and an increase in the expression IFN-stimulated genes. Recent studies indicate that p202 and POP3 proteins inhibit activation of the Aim2/AIM2 inflammasome and promote IFN-β expression. Therefore, we discuss the role of Aim2/AIM2 proteins in the suppression of type I IFNs production and lupus susceptibility.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States.
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH 45267, United States; Research Service, ML-151, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, United States
| |
Collapse
|
4
|
Abstract
My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins.
Collapse
Affiliation(s)
- Peter Lengyel
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
5
|
Jakobsen MR, Paludan SR. IFI16: At the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev 2014; 25:649-55. [PMID: 25027602 DOI: 10.1016/j.cytogfr.2014.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Abstract
DNA carries the genetic code, and is also a potent stimulator of innate immune responses. IFI16 is a member of the family of PYHIN proteins and is composed of a PYRIN domain involved in homotypic protein-protein interactions and two HIN domains mediating DNA binding. PYHIN proteins have been described to possess functions as innate pattern recognition receptors or transcriptional regulators. Interestingly, it is now emerging that IFI16, which exhibits both nuclear and cytosolic location, possesses both of these functions. In this review we discuss the current literature on IFI16 and propose key questions now facing this field of research. We propose that IFI16 plays a central role in the close interaction between the innate immune system and cellular regulation of the genome.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Li H, Liu F, Guo H, Zhu Z, Jiao Y. Role of interferon-inducible protein 202 (p202) in the regulation of adipogenesis in mouse adipose-derived stem cells. Mol Cell Endocrinol 2014; 382:814-24. [PMID: 24246779 DOI: 10.1016/j.mce.2013.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023]
Abstract
The interferon-inducible protein 202 (p202) has emerged as a key regulator of cell proliferation and differentiation. To explore the role of p202 in adipocyte differentiation, p202 mRNA and protein levels in differentiating mouse adipose-derived stem cells (mASCs) were examined, and were found to continuously increase during mASC adipogenesis. The nuclear and cytoplasmic distribution of p202 in the differentiation process was also determined. In addition, suppression and overexpression of p202 impaired and enhanced the differentiation process, respectively. Further, results of co-immunoprecipitation and co-immunofluorescence showed the interaction and intracellular co-localization of p202 with C/EBPβ, C/EBPα, and PPARγ at intermediate and/or late differentiation stages. Knockdown of p202 interfered with the elevated expression of C/EBPβ, C/EBPα, and PPARγ. In conclusion, the temporal and spatial profiles of p202 and the observed manner in which p202 affected the expression of these transcription factors provided evidence that p202 plays a role during mASC adipogenesis.
Collapse
Affiliation(s)
- Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Feihan Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengjun Guo
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiqian Zhu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Jiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
7
|
Choubey D. Interferon-inducible Ifi200-family genes as modifiers of lupus susceptibility. Immunol Lett 2012; 147:10-7. [PMID: 22841963 DOI: 10.1016/j.imlet.2012.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
Both genetic and environmental factors contribute to the development and progression of systemic lupus erythematosus (SLE), a complex autoimmune disease. The disease exhibits a strong gender bias and develops predominantly in females. Additionally, most SLE patients exhibit increased serum levels of interferon-α (IFN-α) and the "IFN signature". Studies using the mouse models of lupus have identified several lupus susceptibility loci, including the New Zealand Black (NZB)-derived autoimmunity 2 (Nba2) interval on the chromosome 1. The interval, which is syntenic to the human chromosome 1q region, harbors the FcγR family, SLAM/CD2-family, and the IFN-inducible Ifi200-family genes (encoding for the p200-family proteins). Studies involving the B6.Nba2 congenic mice revealed that the development of antinuclear autoantibodies (ANAs) depends on the age, gender, and activation of type I IFN-signaling. Interestingly, recent studies involving the generation of Nba2 subcongenic mouse lines and generation of mice deficient for the Fcgr2b or Aim2 gene within the interval have provided evidence that epistatic interactions among the Nba2 genes contribute to increased lupus susceptibility. Given that the expression of some of the p200-family proteins is differentially regulated by sex hormones and these proteins differentially regulate cytosolic DNA-induced production of type I IFN and proinflammatory cytokines (IL-1β and IL-18), the major known contributors of SLE-associated inflammation, we discuss the recent advancements in our understanding of the role of p200-family proteins in lupus susceptibility modification. An improved understanding of the role of p200-family proteins in the development of autoimmunity is likely to identify new approaches to treat SLE patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267, United States.
| |
Collapse
|
8
|
Choubey D. DNA-responsive inflammasomes and their regulators in autoimmunity. Clin Immunol 2011; 142:223-31. [PMID: 22245264 DOI: 10.1016/j.clim.2011.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 01/31/2023]
Abstract
Upon sensing microbial and self-derived DNA, DNA sensors initiate innate immune responses. These sensors include the interferon (IFN)-inducible Toll-like receptor 9 (TLR9) and PYHIN proteins. Upon sensing DNA, cytosolic (murine Aim2 and human AIM2) and nuclear (IFI16) PYHIN proteins recruit an adaptor protein (ASC) and pro-caspase-1 to form an inflammasome, which activates caspase-1. The activated caspase-1 cleaves pro-IL-1β and pro-IL-18 to generate active forms. However, upon sensing cytosolic DNA, the IFI16 protein recruits STING to induce the expression of type I IFN. Recognition of self DNA by innate immune cells contributes to the production of increased levels of type I IFN. Given that the type I IFNs modulate the expression of inflammasome proteins and that the IFN-inducible proteins inhibit the activity of DNA-responsive inflammasomes, an improved understanding of the molecular mechanisms that regulate the activity of DNA-responsive inflammasomes is likely to identify new therapeutic targets to treat autoimmune diseases.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P. O. Box 670056, Cincinnati, OH 45267, USA.
| |
Collapse
|
9
|
Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol 2011; 49:567-71. [PMID: 22137500 DOI: 10.1016/j.molimm.2011.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 01/09/2023]
Abstract
The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P. O. Box-670056, Cincinnati, OH 45267, USA
| | | |
Collapse
|
10
|
Panchanathan R, Liu H, Liu H, Fang CM, Erickson LD, Pitha PM, Choubey D. Distinct regulation of murine lupus susceptibility genes by the IRF5/Blimp-1 axis. THE JOURNAL OF IMMUNOLOGY 2011; 188:270-8. [PMID: 22116829 DOI: 10.4049/jimmunol.1102311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genome-wide association studies have identified lupus susceptibility genes such as IRF5 and PRDM1 (encoding for IFN regulatory factor 5 [IRF]5 and Blimp-1) in the human genome. Accordingly, the murine Irf5 and Prdm1 genes have been shown to play a role in lupus susceptibility. However, it remains unclear how IRF5 and Blimp-1 (a transcriptional target of IRF5) contribute to lupus susceptibility. Given that the murine lupus susceptibility locus Nba2 includes the IFN-regulated genes Ifi202 (encoding for the p202 protein), Aim2 (encoding for the Aim2 protein), and Fcgr2b (encoding for the FcγRIIB receptor), we investigated whether the IRF5/Blimp-1 axis could regulate the expression of these genes. We found that an Irf5 deficiency in mice decreased the expression of Blimp-1 and reduced the expression of the Ifi202. However, the deficiency increased the expression of Aim2 and Fcgr2b. Correspondingly, increased expression of IRF5 in cells increased levels of Blimp-1 and p202 protein. Moreover, Blimp-1 expression increased the expression of Ifi202, whereas it reduced the expression of Aim2. Interestingly, an Aim2 deficiency in female mice increased the expression of IRF5. Similarly, the Fcgr2b-deficient mice expressed increased levels of IRF5. Moreover, increased expression of IRF5 and Blimp-1 in lupus-prone C57BL/6.Nba2, New Zealand Black, and C57BL/6.Sle123 female mice (as compared with age-matched C57BL/6 female mice) was associated with increased levels of the p202 protein. Taken together, our observations demonstrate that the IRF5/Blimp-1 axis differentially regulates the expression of Nba2 lupus susceptibility genes, and they suggest an important role for the IRF5/Blimp-1/p202 axis in murine lupus susceptibility.
Collapse
|
11
|
Veeranki S, Duan X, Panchanathan R, Liu H, Choubey D. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One 2011; 6:e27040. [PMID: 22046441 PMCID: PMC3203938 DOI: 10.1371/journal.pone.0027040] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/09/2011] [Indexed: 01/09/2023] Open
Abstract
Background Type-I interferons (IFNs) are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other) inflammasome. Methodology/ Principal Findings We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14+) and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β) or type-II (IFN-γ) IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT) or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes. Conclusions/Significance Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a mediator of the anti-inflammatory actions of the type-I IFNs.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Xin Duan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Hongzhu Liu
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Cell type and gender-dependent differential regulation of the p202 and Aim2 proteins: implications for the regulation of innate immune responses in SLE. Mol Immunol 2011; 49:273-80. [PMID: 21943709 DOI: 10.1016/j.molimm.2011.08.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/27/2011] [Indexed: 01/12/2023]
Abstract
Upon sensing cytosolic double-stranded DNA (dsDNA), the murine Aim2 (encoded by the Aim2 gene) protein forms an inflammasome and promotes the secretion of proinflammatory cytokines, such as IL-1β and IL-18. In contrast, the p202 protein (encoded by the Ifi202 gene) does not form an inflammasome. Previously, we have reported that the interferon (IFN) and female sex hormone-induced increased nuclear levels of p202 protein in immune cells are associated with increased susceptibility to develop a lupus-like disease. However, signaling pathways that regulate the expression of Aim2 protein remain unknown. Here we report that the expression of Aim2 gene is induced in bone marrow-derived macrophages (BMDMs) by IFN-α treatment and the expression is, in part, STAT1-dependent. However, treatment of splenic T or B cells with IFN-α or their stimulation, which induced the expression of Ifi202 gene, did not induce the expression of Aim2 gene. Furthermore, treatment of cells with the male hormone androgen increased levels of Aim2 mRNA and protein. Moreover, treatment of murine macrophage cell lines (RAW264.7 and J774A.1) with IFN-α differentially induced the expression of Aim2 and p202 proteins and regulated their sub-cellular localization. Additionally, activation of Toll-like receptors (TLR3, 4, and 9) in BMDMs and cell lines also differentially regulated the expression of Aim2 and Ifi202 genes. Our observations demonstrate that cell type and gender-dependent factors differentially regulate the expression of the Aim2 and p202 proteins, thus, suggesting opposing roles for these two proteins in innate immune responses in lupus disease.
Collapse
|
13
|
Choubey D, Panchanathan R, Duan X, Liu H, Liu H. Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res 2011; 31:893-906. [PMID: 21902548 DOI: 10.1089/jir.2011.0073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple organs. The disease is characterized by the production of pathogenic autoantibodies to DNA and certain nuclear antigens, chronic inflammation, and immune dysregulation. Genetic studies involving SLE patients and mouse models have indicated that multiple lupus susceptible genes contribute to the disease phenotype. Notably, the development of SLE in patients and in certain mouse models exhibits a strong sex bias. In addition, several lines of evidence indicates that activation of interferon-α (IFN-α) signaling in immune cells and alterations in the expression of certain immunomodulatory cytokines contribute to lupus pathogenesis. Studies have implicated factors, such as the X chromosomal gene dosage effect and the sex hormones, in gender bias in SLE. However, the molecular mechanisms remain unclear. Additionally, it remains unclear whether these factors influence the "IFN-signature," which is associated with SLE. In this regard, a mutually positive regulatory feedback loop between IFNs and estrogen receptor-α (ERα) has been identified in immune cells. Moreover, studies indicate that the expression of certain IFN-inducible p200-family proteins that act as innate immune sensors for cytosolic DNA is differentially regulated by sex hormones. In this review, we discuss how the modulation of the expression of the p200-family proteins in immune cells by sex hormones and IFNs contributes to sex bias in SLE. An improved understanding of the regulation and roles of the p200-family proteins in immune cells is critical to understand lupus pathogenesis as well as response (or the lack of it) to various therapies.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | |
Collapse
|
14
|
IFI16 induction by glucose restriction in human fibroblasts contributes to autophagy through activation of the ATM/AMPK/p53 pathway. PLoS One 2011; 6:e19532. [PMID: 21573174 PMCID: PMC3088686 DOI: 10.1371/journal.pone.0019532] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Accepted: 04/06/2011] [Indexed: 11/28/2022] Open
Abstract
Background Glucose restriction in cells increases the AMP/ATP ratio (energetic stress), which activates the AMPK/p53 pathway. Depending upon the energetic stress levels, cells undergo either autophagy or cell death. Given that the activated p53 induces the expression of IFI16 protein, we investigated the potential role of the IFI16 protein in glucose restriction-induced responses. Methodology/Principal Findings We found that glucose restriction or treatment of human diploid fibroblasts (HDFs) with the activators of the AMPK/p53 pathway induced the expression of IFI16 protein. The induced levels of IFI16 protein were associated with the induction of autophagy and reduced cell survival. Moreover, the increase in the IFI16 protein levels was dependent upon the expression of the functional ATM protein kinase. Importantly, the knockdown of the IFI16 expression in HDFs inhibited the activation of the ATM/AMPK/p53 pathway in response to glucose restriction and also increased the survival of HDFs. Conclusions/Significance Our observations demonstrate a role for the IFI16 protein in the energetic stress-induced regulation of autophagy and cell survival. Additionally, our findings also indicate that the loss of IFI16 expression, as found in certain cancers, may provide a survival advantage to cancer cells in microenvironments with low glucose levels.
Collapse
|
15
|
Duan X, Ponomareva L, Veeranki S, Panchanathan R, Dickerson E, Choubey D. Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol Cancer Res 2011; 9:589-602. [PMID: 21471287 DOI: 10.1158/1541-7786.mcr-10-0565] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The IFN-inducible IFI16 and AIM2 proteins act as innate immune sensors for cytosolic double-stranded DNA (dsDNA). On sensing dsDNA, the IFI16 protein induces the expression of IFN-β whereas the AIM2 protein forms an inflammasome, which promotes the secretion of IL-1β. Given that the knockdown of IFI16 expression in human diploid fibroblasts (HDF) delays the onset of cellular senescence, we investigated the potential roles for the IFI16 and AIM2 proteins in cellular senescence. We found that increased IFI16 protein levels in old (vs. young) HDFs were associated with the induction of IFN-β. In contrast, increased levels of the AIM2 protein in the senescent (vs. old) HDFs were associated with increased production of IL-1β. The knockdown of type I IFN-α receptor subunit, which reduced the basal levels of the IFI16 but not of the AIM2, protein delayed the onset of cellular senescence. Accordingly, increased constitutive levels of IFI16 and AIM2 proteins in ataxia telangiectasia mutated (ATM) HDFs were associated with the activation of the IFN signaling and increased levels of IL-1β. The IFN-β treatment of the young HDFs, which induced the expression of IFI16 and AIM2 proteins, activated a DNA damage response and also increased basal levels of IL-1β. Interestingly, the knockdown of AIM2 expression in HDFs increased the basal levels of IFI16 protein and activated the IFN signaling. In contrast, the knockdown of the IFI16 expression in HDFs decreased the basal and dsDNA-induced activation of the IFN signaling. Collectively, our observations show differential roles for the IFI16 and AIM2 proteins in cellular senescence and associated secretory phenotype.
Collapse
Affiliation(s)
- Xin Duan
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The innate immune system relies on the recognition of pathogens by pattern recognition receptors as a first line of defense and to initiate the adaptive immune response. Substantial progress has been made in defining the role of Nod (nucleotide-binding oligimerization domain)-like receptors and AIM2 (absent in melanoma 2) as pattern recognition receptors that activate inflammasomes in macrophages. Inflammasomes are protein platforms essential for the activation of inflammatory caspases and subsequent maturation of their pro-inflammatory cytokine substrates and induction of pyroptosis. This paper summarizes recent developments regarding the function of Nod-like receptors in immunity and disease.
Collapse
Affiliation(s)
- Sonal Khare
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
17
|
Zimmerman M, Yang D, Hu X, Liu F, Singh N, Browning D, Ganapathy V, Chandler P, Choubey D, Abrams SI, Liu K. IFN-γ upregulates survivin and Ifi202 expression to induce survival and proliferation of tumor-specific T cells. PLoS One 2010; 5:e14076. [PMID: 21124930 PMCID: PMC2989915 DOI: 10.1371/journal.pone.0014076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/30/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND A common procedure in human cytotoxic T lymphocyte (CTL) adoptive transfer immunotherapy is to expand tumor-specific CTLs ex vivo using CD3 mAb prior to transfer. One of the major obstacles of CTL adoptive immunotherapy is a lack of CTL persistence in the tumor-bearing host after transfer. The aim of this study is to elucidate the molecular mechanisms underlying the effects of stimulation conditions on proliferation and survival of tumor-specific CTLs. METHODOLOGY/PRINCIPAL FINDINGS Tumor-specific CTLs were stimulated with either CD3 mAb or cognate Ag and analyzed for their proliferation and survival ex vivo and persistence in tumor-bearing mice. Although both Ag and CD3 mAb effectively induced the cytotoxic effecter molecules of the CTLs, we observed that Ag stimulation is essential for sustained CTL proliferation and survival. Further analysis revealed that Ag stimulation leads to greater proliferation rates and less apoptosis than CD3 mAb stimulation. Re-stimulation of the CD3 mAb-stimulated CTLs with Ag resulted in restored CTL proliferative potential, suggesting that CD3 mAb-induced loss of proliferative potential is reversible. Using DNA microarray technology, we identified that survivin and ifi202, two genes with known functions in T cell apoptosis and proliferation, are differentially induced between Ag- and CD3 mAb-stimulated CTLs. Analysis of the IFN-γ signaling pathway activation revealed that Ag stimulation resulted in rapid phosphorylation of STAT1 (pSTAT1), whereas CD3 mAb stimulation failed to activate STAT1. Chromatin immunoprecipitation revealed that pSTAT1 is associated with the promoters of both survivin and ifi202 in T cells and electrophoresis mobility shift assay indicated that pSTAT1 directly binds to the gamma activation sequence element in the survivin and ifi202 promoters. Finally, silencing ifi202 expression significantly decreased T cell proliferation. CONCLUSIONS/SIGNIFICANCE Our findings delineate a new role of the IFN-γ signaling pathway in regulating T cell proliferation and apoptosis through upregulating survivin and ifi202 expression.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- CD3 Complex/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Female
- Gene Expression Profiling
- Immunotherapy, Adoptive
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Phosphorylation/drug effects
- Protein Binding/drug effects
- RNA Interference
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Receptors, Interferon/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- Survivin
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/transplantation
- Up-Regulation/drug effects
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Mary Zimmerman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Xiaolin Hu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Feiyan Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Darren Browning
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Phillip Chandler
- Immunotherapy Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| |
Collapse
|
18
|
Choubey D, Duan X, Dickerson E, Ponomareva L, Panchanathan R, Shen H, Srivastava R. Interferon-inducible p200-family proteins as novel sensors of cytoplasmic DNA: role in inflammation and autoimmunity. J Interferon Cytokine Res 2010; 30:371-80. [PMID: 20187776 DOI: 10.1089/jir.2009.0096] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deregulated innate immune responses that result in increased levels of type I interferons (IFNs) and stimulation of IFN-inducible genes are thought to contribute to chronic inflammation and autoimmunity. One family of IFN-inducible genes is the Ifi200 family, which includes the murine (eg, Ifi202a, Ifi202b, Ifi203, Ifi204, Mndal, and Aim2) and human (eg, IFI16, MNDA, IFIX, and AIM2) genes. Genes in the family encode structurally related proteins (the p200-family proteins), which share at least one partially conserved repeat of 200-amino acid (200-AA) residues. Consistent with the presence of 2 consecutive oligonucleotide/oligosaccharide-binding folds in the repeat, the p200-family proteins can bind to DNA. Additionally, these proteins (except the p202 proteins) also contain a pyrin (PYD) domain in the N-terminus. Increased expression of p202 proteins in certain strains of female mice is associated with lupus-like disease. Interestingly, only the Aim2 protein is conserved between the mouse and humans. Several recent studies have provided evidence that the Aim2 and p202 proteins can recognize DNA in cytoplasm and the Aim2 protein upon sensing DNA can form a caspase-1-activating inflammasome. In this review, we discuss how the ability of p200-family proteins to sense cytoplasmic DNA may contribute to the development of chronic inflammation and associated diseases.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Panchanathan R, Duan X, Shen H, Rathinam VAK, Erickson LD, Fitzgerald KA, Choubey D. Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. THE JOURNAL OF IMMUNOLOGY 2010; 185:7385-93. [PMID: 21057088 DOI: 10.4049/jimmunol.1002468] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Murine Aim2 and p202 proteins (encoded by the Aim2 and Ifi202 genes) are members of the IFN-inducible p200 protein family. Both proteins can sense dsDNA in the cytoplasm. However, upon sensing dsDNA, only the Aim2 protein through its pyrin domain can form an inflammasome to activate caspase-1 and induce cell death. Given that the p202 protein has been predicted to inhibit the activation of caspase-1 by the Aim2 protein and that increased levels of the p202 protein in female mice of certain strains are associated with lupus susceptibility, we compared the expression of Aim2 and Ifi202 genes between Aim2-deficient and age-matched wild-type mice. We found that the Aim2 deficiency in immune cells stimulated the expression of Ifi202 gene. The increased levels of the p202 protein in cells were associated with increases in the expression of IFN-β, STAT1, and IFN-inducible genes. Moreover, after knockdown of Aim2 expression in the murine macrophage cell line J774.A1, IFN-β treatment of cells robustly increased STAT1 protein levels (compared with those of control cells), increased the activating phosphorylation of STAT1 on Tyr-701, and stimulated the activity of an IFN-responsive reporter. Notably, the expression of Aim2 in non-lupus-prone (C57BL/6 and B6.Nba2-C) and lupus-prone (B6.Nba2-ABC) splenic cells and in a murine macrophage cell line that overexpressed p202 protein was found to be inversely correlated with Ifi202. Collectively, our observations demonstrate an inverse correlation between Aim2 and p202 expressions. We predict that defects in Aim2 expression within immune cells contribute to increased susceptibility to lupus.
Collapse
|
20
|
Veeranki S, Choubey D. Systemic lupus erythematosus and increased risk to develop B cell malignancies: role of the p200-family proteins. Immunol Lett 2010; 133:1-5. [PMID: 20599558 DOI: 10.1016/j.imlet.2010.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/20/2010] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, develops at a female-to-male ratio of 10:1. Increased serum levels of type I interferons (IFN-alpha/beta) and induction of "IFN-signature" genes are associated with an active SLE disease in patients. Moreover, SLE patients exhibit three- to four-fold increase in the risk of developing malignancies involving B cells, including non-Hodgkin lymphoma (NHL) and Hodgkin's lymphoma (HL). Interestingly, homozygous mice expressing a deletion mutant (the proline-rich domain deleted) of the p53 develop various types of spontaneous tumors, particularly of B cell origin upon aging. The deletion is associated with defects in transcriptional activation of genes by p53 and inhibition of DNA damage-induced apoptosis. Notably, increased levels of the p202 protein, which is encoded by the p53-repressible interferon-inducible Ifi202 gene, in B cells of female mice are associated with defects in B cell apoptosis, inhibition of the p53-mediated transcription of pro-apoptotic genes, and increased lupus susceptibility. In this review we discuss how increased levels of the p202 protein (and its human functional homologue IFI16 protein) in B cells increase lupus susceptibility and are likely to increase the risk of developing certain B cell malignancies. A complete understanding of the molecular mechanisms that regulate B cell homeostasis is necessary to identify SLE patients with an increased risk to develop B cell malignancies.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, PO Box 670056, Cincinnati, OH 45267, United States
| | | |
Collapse
|
21
|
Panchanathan R, Shen H, Bupp MG, Gould KA, Choubey D. Female and male sex hormones differentially regulate expression of Ifi202, an interferon-inducible lupus susceptibility gene within the Nba2 interval. THE JOURNAL OF IMMUNOLOGY 2009; 183:7031-8. [PMID: 19890043 DOI: 10.4049/jimmunol.0802665] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Increased expression of IFN-inducible Ifi202 gene in certain strains of female mice is associated with susceptibility to systemic lupus erythematosus (SLE). Although, the development of SLE is known to have a strong sex bias, the molecular mechanisms remain unknown. Here we report that in vivo treatment of orchiectomized (NZB x NZW)F(1) male mice with the female sex hormone 17beta-estradiol significantly increased steady-state levels of Ifi202 mRNA in splenic cells, whereas treatment with the male hormone dihydrotestosterone decreased the levels. Moreover, increased expression of Ifi202 in B6.Nba2 B cells and reduced expression in T cells were associated with increased levels of estrogen receptor-alpha (ERalpha) and androgen receptor, respectively. Furthermore, the steady-state levels of Ifi202 mRNA were higher in splenic cells from C57BL/6, B6.Nba2, NZB, and (NZB x NZW)F(1) female mice as compared with males. 17beta-estradiol treatment of B cells and WT276 cells increased Ifi202 mRNA levels, whereas treatment with dihydrotestosterone decreased the levels. Interestingly, overexpression of ERalpha in WT276 cells increased the expression of Ifi202 and stimulated the activity of the 202-luc-reporter through the c-Jun/AP-1 DNA-binding site. Accordingly, ERalpha preferentially associated with the regulatory region of the Ifi202 gene in female B6.Nba2 B cells than in males. Furthermore, Ifi202 mRNA levels were detectable in splenic cells of wild-type (Esr1(+/+)), but not null (Esr1(-/-)), (NZB x NZW)F(1) female mice. Collectively, our observations demonstrate that the female and male sex hormones differentially regulate the expression of Ifi202, thus providing support for the role of Ifi202 in sex bias in SLE.
Collapse
|
22
|
Luan Y, Lengyel P, Liu CJ. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev 2008; 19:357-69. [PMID: 19027346 DOI: 10.1016/j.cytogfr.2008.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interferon-inducible p200 family comprises a group of homologous mouse and human proteins. Most of these have an N-terminal DAPIN domain and one or two partially conserved, 200 amino acid long C-terminal domains (designated as 200X domain). These proteins play important roles in the regulation of cell proliferation, tissue differentiation, apoptosis and senescence. p200 family proteins are involved also in autoimmunity and the control of tumor growth. These proteins function by binding to various target proteins (e.g. transcription factors, signaling proteins, oncoproteins and tumor suppressor proteins) and modulating target activity. This review concentrates on p204, a murine member of the family and its roles in regulating cell proliferation, cell and tissue differentiation (e.g. of skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes and macrophages) and signaling by Ras proteins. The expression of p204 in various tissues as promoted by tissue-specific transcription factors, its distribution among subcellular compartments, and the controls of these features are also discussed.
Collapse
Affiliation(s)
- Yi Luan
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, 10003, United States
| | | | | |
Collapse
|
23
|
Choubey D, Panchanathan R. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol Lett 2008; 119:32-41. [PMID: 18598717 DOI: 10.1016/j.imlet.2008.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/26/2008] [Accepted: 06/01/2008] [Indexed: 01/20/2023]
Abstract
Systemic lupus erythematosus (SLE) is the prototype of complex autoimmune diseases. Studies have suggested that genetic, hormonal, and environmental factors contribute to the development of the disease. Interestingly, several recent studies involving SLE patients and mouse models of the disease have suggested a role for interferon (IFN)-stimulated genes (ISGs) in the development of SLE. One family of ISGs is the Ifi200-family, which includes mouse (Ifi202a, Ifi202b, Ifi203, Ifi204, and Ifi205) and human (IFI16, MNDA, AIM2, and IFIX) genes. The mouse genes cluster between serum amyloid P-component (Apcs) and alpha-spectrin (Spna-1) genes on chromosome 1 and the human genes cluster in syntenic region 1q23. The Ifi200-family genes encode structurally and functionally related proteins (the p200-family proteins). Increased expression of certain p200-family proteins in cells is associated with inhibition of cell proliferation, modulation of apoptosis, and cell differentiation. Our studies involving generation of B6.Nba2 congenic mice, coupled with gene expression analyses, identified the Ifi202 as a candidate lupus-susceptibility gene. Importantly, recent studies using different mouse models of SLE have suggested that increased expression of Ifi202 gene (encoding p202 protein) in immune cells contributes to lupus susceptibility. Consistent with a functional role for the p202 protein in lupus susceptibility, increased levels of IFI16 protein in human SLE patients are associated with the diseases. This review summarizes recent findings concerning the regulation and role of p200-family proteins in the development of SLE.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267, United States.
| | | |
Collapse
|
24
|
Ludlow LE, Hii LL, Thorpe J, Newbold A, Tainton KM, Trapani JA, Clarke CJP, Johnstone RW. Cloning and characterisation of Ifi206: a new murine HIN-200 family member. J Cell Biochem 2008; 103:1270-82. [PMID: 17786933 DOI: 10.1002/jcb.21512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HIN-200 proteins are interferon-inducible proteins capable of regulating cell growth, senescence, differentiation and death. Using a combination of in silico analysis of NCBI EST databases and screening of murine C57BL/6 cDNA libraries we isolated novel murine HIN-200 cDNAs designated Ifi206S and Ifi206L encoding two putative mRNA splice variants. The p206S and p206L protein isoforms have a modular domain structure consisting of an N-terminal PAAD/DAPIN/Pyrin domain, a region rich in serine, threonine and proline residues and a C-terminal 200 B domain characteristic of other HIN-200 proteins. Ifi206 mRNA was detected only in the spleen and lung of BALB/c and C57BL/6 mice and expression was up-regulated by both types I and II IFN subtypes. p206 protein was predominantly expressed in the cytoplasm and addition of LMB, a CRM1 dependent nuclear export inhibitor, caused p206 to accumulate in the nucleus. Unlike other human and mouse HIN-200 proteins that contain only a single 200 amino acid domain, overexpression of p206 impaired the clonogenic growth of tumour cell lines. Thus, p206 represents the newest HIN-200 family member discovered. It has distinct and restricted pattern of expression however maintains many of the hallmarks of HIN-200 proteins including the presence of a characteristic 200 X domain, induction by interferon and an ability to suppress tumour cell growth.
Collapse
Affiliation(s)
- Louise E Ludlow
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Panchanathan R, Xin H, Choubey D. Disruption of mutually negative regulatory feedback loop between interferon-inducible p202 protein and the E2F family of transcription factors in lupus-prone mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:5927-34. [PMID: 18424712 DOI: 10.4049/jimmunol.180.9.5927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies have identified IFN-inducible Ifi202 gene as a lupus susceptibility gene (encoding p202 protein) in mouse models of lupus disease. However, signaling pathways that regulate the Ifi202 expression in cells remain to be elucidated. We found that steady-state levels of Ifi202 mRNA and protein were high in mouse embryonic fibroblasts (MEFs) from E2F1 knockout (E2F1(-/-)) and E2F1 and E2F2 double knockout (E2F1(-/-)E2F2(-/-)) mice than isogenic wild-type MEFs. Moreover, overexpression of E2F1 in mouse fibroblasts decreased expression of p202. Furthermore, expression of E2F1, but not E2F4, transcription factor in mouse fibroblasts repressed the activity of 202-luc-reporter in promoter-reporter assays. Interestingly, the E2F1-mediated transcriptional repression of the 202-luc-reporter was independent of p53 and pRb expression. However, the repression was dependent on the ability of E2F1 to bind DNA. We have identified a potential E2F DNA-binding site in the 5'-regulatory region of the Ifi202 gene, and mutations in this E2F DNA-binding site reduced the E2F1-mediated transcriptional repression of 202-luc-reporter. Because p202 inhibits the E2F1-mediated transcriptional activation of genes, we compared the expression of E2F1 and its target genes in splenic cells from lupus-prone B6.Nba2 congenic mice, which express increased levels of p202, with age-matched C57BL/6 mice. We found that increased expression of Ifi202 in the congenic mice was associated with inhibition of E2F1-mediated transcription and decreased expression of E2F1 and its target genes that encode proapoptotic proteins. Our observations support the idea that increased Ifi202 expression in certain strains of mice contributes to lupus susceptibility in part by inhibiting E2F1-mediated functions.
Collapse
Affiliation(s)
- Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
26
|
Chen J, Panchanathan R, Choubey D. Stimulation of T cells up-regulates expression of Ifi202, an interferon-inducible lupus susceptibility gene, through activation of JNK/c-Jun pathway. Immunol Lett 2008; 118:13-20. [PMID: 18374989 DOI: 10.1016/j.imlet.2008.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 02/04/2023]
Abstract
Studies have revealed that increased expression of interferon (IFN)-inducible Ifi202 gene (encoding p202 protein) in splenic B and T cells from B6.Nba2 congenic (congenic for Nb2 locus derived from NZB mice) female mice is associated with lupus susceptibility. However, signaling pathways that regulate Ifi202 expression in immune cells remain to be elucidated. Here we report that stimulation of T cells up-regulates the Ifi202 expression. We found that steady-state levels of Ifi202 mRNA and protein were detectable in splenic T cells from NZB mice and stimulation of T cells with anti-CD3 and anti-CD28 up-regulated expression of the Ifi202 gene. Similarly, stimulation of cells of a mouse T cell hybridoma cell line (2B4.11) also activated transcription of the Ifi202 gene. Significantly, up-regulation of Ifi202 expression in stimulated T cells was inhibited by treatment of cells with SP600125, a specific inhibitor of c-Jun N-terminal kinase (JNK). Conversely, treatment of cells with anisomycin, a potent activator of the JNK and c-Jun, up-regulated Ifi202 expression. Consistent with the activation of JNK/c-Jun pathway by T cell stimulation, forced expression of c-Jun in 2B4 T cells and in mouse embryonic fibroblasts (MEFs) also up-regulated the Ifi202 expression. Furthermore, we found that stimulation of T cells increased association of the activated c-Jun to the 5'-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays (ChIPs). Together, our observations demonstrate that stimulation of T cells up-regulates the Ifi202 expression in part through the JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Jianming Chen
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
27
|
Ludlow LE, Purton LE, Klarmann K, Gough DJ, Hii LL, Trapani JA, Keller JR, Clarke CJ, Johnstone RW. The Role of p202 in Regulating Hematopoietic Cell Proliferation and Differentiation. J Interferon Cytokine Res 2008; 28:5-11. [DOI: 10.1089/jir.2007.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Louise E. Ludlow
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: Department of Medicine and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, and Department of Medicine, Evanston Northwestern Healthcare, Evanston, IL, 60208
| | - Louise E. Purton
- Stem Cell Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Current address: Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114
| | - Kim Klarmann
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Daniel J. Gough
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: New York University School of Medicine, New York, NY 10016
| | - Linda L. Hii
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Joseph A. Trapani
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Jonathan R. Keller
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Christopher J.P. Clarke
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Ricky W. Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
28
|
Xin H, D'Souza S, Jørgensen TN, Vaughan AT, Lengyel P, Kotzin BL, Choubey D. Increased expression of Ifi202, an IFN-activatable gene, in B6.Nba2 lupus susceptible mice inhibits p53-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2006; 176:5863-70. [PMID: 16670293 DOI: 10.4049/jimmunol.176.10.5863] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased expression of p202 protein (encoded by the Ifi202 gene) in splenocytes derived from B6.Nba2 mice (congenic for the Nba2 interval derived from the New Zealand Black mice) was correlated with defects in apoptosis of splenic B cells and increased susceptibility to develop systemic lupus erythematosus. We have now investigated the molecular mechanisms by which increased expression of p202 in B6.Nba2 cells contributes to defects in apoptosis. In this study, we report that increased expression of p202 in the B6.Nba2 splenocytes, as compared with cells derived from the parental C57BL/6 (B6) mice, was correlated with increased levels of p53 protein and inhibition of p53-mediated transcription of target genes that encode proapoptotic proteins. Conversely, knockdown of p202 expression in B6.Nba2 cells resulted in stimulation of p53-mediated transcription. We found that p202 bound to p53 in the N-terminal region (aa 44-83) comprising the proline-rich region that is important for p53-mediated apoptosis. Consistent with the binding of p202 to p53, increased expression of p202 in B6.Nba2 mouse embryonic fibroblasts inhibited UV-induced apoptosis. Taken together, our observations support the idea that increased expression of p202 in B6.Nba2 mice increases the susceptibility to develop lupus, in part, by inhibiting p53-mediated apoptosis.
Collapse
Affiliation(s)
- Hong Xin
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: Implications for the androgen receptor functions and regulation. FEBS Lett 2006; 580:2294-300. [PMID: 16580667 DOI: 10.1016/j.febslet.2006.03.041] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/23/2006] [Accepted: 03/14/2006] [Indexed: 12/31/2022]
Abstract
The majority of human prostate cancer cell lines, including the two "classical" cell lines DU-145 and PC-3, are reported to be androgen receptor (AR)-negative. However, other studies have provided evidence that the DU-145 and PC-3 cell lines express AR mRNA. These contradictory observations prompted us to investigate whether DU-145 and PC-3 cell lines express the androgen receptor. Using antipeptide antibodies directed against three distinct regions of the human AR protein and an improved method to detect AR protein in immunoblotting, we report that DU-145 and PC-3 cell lines express AR protein. We found that the relative levels of the AR mRNA and protein that were detected in DU-145 and PC-3 cell lines were lower than the LNCaP, an AR-positive cell line. Moreover, the antibody directed against the non-variant region (amino acids 299-315), but not the variant N- or C-terminal region (amino acids 1-20 and 900-919, respectively) of the human AR protein, detected the expression of AR in all prostate cancer cell lines. Notably, treatment of these cell lines with dihydrotestosterone (DHT) resulted in measurable increases in the AR protein levels and considerable nuclear accumulation. Although, treatment of DU-145 and PC-3 cells with DHT did not result in stimulation of the activity of an AR-responsive reporter, knockdown of AR expression in PC-3 cells resulted in decreases in p21(CIP1) protein levels, and a measurable decrease in the activity of the p21-luc-reporter. Our observations demonstrate the expression of AR protein in DU-145 and PC-3 prostate cancer cell lines.
Collapse
Affiliation(s)
- Fatouma Alimirah
- Department of Radiation Oncology, Loyola University Chicago & Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | | | | | | | | |
Collapse
|
30
|
Hueber W, Zeng D, Strober S, Utz PJ. Interferon-?-inducible proteins are novel autoantigens in murine lupus. ACTA ACUST UNITED AC 2004; 50:3239-49. [PMID: 15476221 DOI: 10.1002/art.20508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the spectrum of B cell autoimmunity in the recently described anti-CD1-autoreactive T cell receptor (TCR)-transgenic murine lupus-like (CD1 lupus-like) model. METHODS Lethally irradiated BALB/c/nu/nu mice were injected intravenously with donor BALB/c bone marrow and spleen cells expressing TCRalpha and TCRbeta transgenes that recognize CD1d. Sera from adoptive host animals that developed lupus (i.e., CD1 lupus mice) were collected at serial time points and analyzed by Western blotting and immunoprecipitation, using protein extracts prepared from NIH3T3 mouse fibroblasts and EL-4 lymphocytes, respectively. Sera obtained from older animals in several models of spontaneous lupus (NZB/NZW, MRL++, and MRL/lpr mice), unmanipulated BALB/c/nu/nu mice, and normal BALB/c mice were used as controls. RESULTS Analyses demonstrated that the prominent targets of autoantibodies in the CD1 lupus-like model are interferon-alpha (IFNalpha)-inducible antigens. Biochemical and serologic characterizations identified one antigen as belonging to the interferon-inducible 202 (Ifi202) subfamily of proteins within the Ifi200 family, and a second antigen as a member of the 70-kd heat-shock protein family. Autoantibodies directed against these antigens were rapidly produced at an early stage of disease. Anti-p50 autoantibodies were present in sera from 7 (78%) of 9 CD1 lupus mice that developed severe kidney disease. CONCLUSION IFNalpha-inducible proteins represent a novel class of autoantigens in murine lupus, and the findings suggest additional roles for IFNalpha in this disease. Since Ifi202 autoantigens are encoded by the murine non-major histocompatibility complex lupus-susceptibility gene locus Ifi202, these data provide a link between recent advances in lupus genetics and the formation of autoantibodies.
Collapse
Affiliation(s)
- Wolfgang Hueber
- Stanford University School of Medicine, Stanford, California, 94305, USA
| | | | | | | |
Collapse
|
31
|
Dermott JM, Gooya JM, Asefa B, Weiler SR, Smith M, Keller JR. Inhibition of Growth by p205: A Nuclear Protein and Putative Tumor Suppressor Expressed during Myeloid Cell Differentiation. Stem Cells 2004; 22:832-48. [PMID: 15342947 DOI: 10.1634/stemcells.22-5-832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
p205 belongs to a family of interferon-inducible proteins called the IFI-200 family, which have been implicated in the regulation of cell growth and differentiation. While p205 is induced in hematopoietic stem cells during myeloid cell differentiation, its function is not known. Therefore, the aim of this study was to determine the role of p205 in regulating proliferation in hematopoietic progenitor cells and in nonhematopoietic cell lines. We found that p205 localizes to the nucleus in hematopoietic and nonhematopoietic cell lines. Transient expression of p205 in murine IL-3-dependent BaF3 and 32D-C123 progenitor cell lines inhibited IL-3-induced growth and proliferation. The closely related IFI-200 family members, p204 and p202, similarly inhibited IL-3-dependent progenitor cell proliferation. p205 also inhibited the proliferation and growth of normal hematopoietic progenitor cells. In nonhematopoietic cell lines, p205 and p204 expression inhibited NIH3T3 cell colony formation in vitro, and microinjection of p205 expression vectors into NIH3T3 fibroblasts inhibited serum-induced proliferation. We have determined the functional domains of p205 necessary for activity, which were identified as the N-terminal domain in apoptosis and interferon response (DAPIN)/PYRIN domain, and the C-terminal retinoblastoma protein (Rb)-binding motif. In addition, we have demonstrated that a putative ataxia telangiectasia, mutated (ATM) kinase phosphorylation site specifically regulates the activity of p205. Taken together, these data suggest that p205 is a potent cell growth regulator whose activity is mediated by its protein-binding domains. We propose that during myelomonocytic cell differentiation, induction of p205 expression contributes to cell growth arrest, thus allowing progenitor cells to differentiate.
Collapse
Affiliation(s)
- Jonathan M Dermott
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pramanik R, Jørgensen TN, Xin H, Kotzin BL, Choubey D. Interleukin-6 Induces Expression of Ifi202, an Interferon-inducible Candidate Gene for Lupus Susceptibility. J Biol Chem 2004; 279:16121-7. [PMID: 14764608 DOI: 10.1074/jbc.m313140200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease. In human SLE patients, as well as in mouse models of SLE, the development of disease is associated with increased levels of pro-inflammatory cytokines, such as interleukin-6 (IL-6). However, IL-6 target genes contributing to the development of disease remain to be identified. Our previous studies of one mouse model of SLE identified an interferon-inducible gene, Ifi202, as a major contributor to the disease. We now report that IL-6 induces expression of the Ifi202 gene. We found that IL-6 treatment of mouse splenocytes increased levels of Ifi202 mRNA and p202 protein. Furthermore, IL-6 treatment of NIH 3T3 cells or expression of a constitutively active form of STAT3, a known mediator of IL-6 signaling, stimulated the activity of a 202-luc-reporter through a potential STAT3 DNA-binding site (the 202-SBS) present in the 5'-regulatory region of the Ifi202 gene. Moreover, treatment of cells with IL-6 stimulated binding of the transcription factor STAT3 to an oligonucleotide containing the 202-SBS in gel-mobility shift assays and to the 5'-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays. Importantly, site-directed mutagenesis of 202-SBS or expression of a dominant negative form of STAT3 significantly reduced constitutive as well as IL-6-stimulated activity of the 202-luc-reporter. Together, our observations support the idea that IL-6 stimulates transcription of the Ifi202 gene through STAT3 activation and predict that increased levels of IL-6 in lupus contribute to up-regulation of p202.
Collapse
Affiliation(s)
- Rocky Pramanik
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
33
|
Choubey D, Pramanik R, Xin H. Subcellular localization and mechanisms of nucleocytoplasmic distribution of p202, an interferon-inducible candidate for lupus susceptibility. FEBS Lett 2003; 553:245-9. [PMID: 14572632 DOI: 10.1016/s0014-5793(03)01006-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased expression of p202 (52 kDa), an interferon (IFN)-inducible murine protein, in splenic cells (B- and T-cells) derived from female mice of the lupus-prone strains is correlated with increased susceptibility to develop systemic lupus erythematosus. However, the molecular mechanisms remain unclear. Our previous studies have indicated that, in IFN-treated fibroblasts, p202 is detected both in the cytoplasm and in the nucleus. Moreover, in the cytoplasm, a fraction of p202 associates with a membranous organelle. Here we report that, in the cytoplasm, a fraction of p202 associated with mitochondria. Additionally, we found that the constitutive p202 is primarily detected in the cytoplasm. Remarkably, the IFN treatment of cells potentiated nuclear accumulation of p202. Our observations are consistent with the possibility that IFN signaling regulates p202 levels as well as its nucleocytoplasmic distribution. These observations will serve as a basis to elucidate the molecular mechanisms by which p202 contributes to lupus susceptibility.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, 60153 Maywood, IL, USA.
| | | | | |
Collapse
|
34
|
Xin H, Pramanik R, Choubey D. Retinoblastoma (Rb) protein upregulates expression of the Ifi202 gene encoding an interferon-inducible negative regulator of cell growth. Oncogene 2003; 22:4775-85. [PMID: 12894219 DOI: 10.1038/sj.onc.1206780] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies have indicated that ectopic expression of p202, an interferon (IFN)-inducible retinoblastoma (Rb)-binding protein, in cultured cells retards cell proliferation and modulates cell survival. Consistent with a role of p202 in cell cycle regulation, levels of p202 increase in cells arrested in the G0/G1 phase of cell cycle after withdrawal of serum growth factors. However, a role for p202 in cell growth arrest remains to be defined. Moreover, it remains unclear how levels of p202 are upregulated during the cell growth arrest. Here, we report that Rb upregulates expression of Ifi202 gene. We found that basal as well as IFN-induced levels of p202 were significantly higher in wild-type (Rb(+/+)) mouse embryonic fibroblasts (MEFs) than isogenic Rb(-/-) MEFs. Consistent with the regulation of Ifi202 gene by Rb, expression of functional Rb, but not a pocket mutant of it, stimulated the activity of a reporter whose expression was driven by the 5'-regulatory region of Ifi202 gene. Importantly, the stimulation by Rb was dependent, in part, on a JunD/AP-1 DNA-binding site present in the 5'-regulatory region of the Ifi202 gene. Moreover, basal levels of p202 were significantly higher in wild-type (JunD(+/+)) than isogenic JunD(-/-) MEFs. Additionally, we found that increased expression of p202 potentiated the Rb-mediated inhibition of cell growth and mutations in the Rb-binding motif (LxCxE) of p202 significantly reduced cell survival. Together, our observations support the idea that the transcriptional activation of Ifi202 gene by Rb/JunD may be important for the regulation of cell growth and survival.
Collapse
Affiliation(s)
- Hong Xin
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Building No. 1, Mail code: 114B, Maywood, IL 60153, USA
| | | | | |
Collapse
|
35
|
Wen Y, Giri D, Yan DH, Spohn B, Zinner RG, Xia W, Thompson TC, Matusik RJ, Hung MC. Prostate-specific antitumor activity by probasin promoter-directed p202 expression. Mol Carcinog 2003; 37:130-7. [PMID: 12884364 DOI: 10.1002/mc.10129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
p202, an interferon (IFN) inducible protein, arrests cell cycle at G1 phase leading to cell growth retardation. We previously showed that ectopic expression of p202 in human prostate cancer cells renders growth inhibition and suppression of transformation phenotype in vitro. In this report, we showed that prostate cancer cells with stable expression of p202 were less tumorigenic than the parental cells. The antitumor activity of p202 was further demonstrated by an ex vivo treatment of prostate cancer cells with p202 expression vector that showed significant tumor suppression in mouse xenograft model. Importantly, to achieve a prostate-specific antitumor effect by p202, we employed a prostate-specific probasin (ARR2PB) gene promoter to direct p202 expression (ARR2PB-p202) in an androgen receptor (AR)-positive manner. The ARR2PB-p202/liposome complex was systemically administered into mice bearing orthotopic AR-positive prostate tumors. We showed that parenteral administration of an ARR2PB-p202/liposome preparation led to prostate-specific p202 expression and tumor suppression in orthotopic prostate cancer xenograft model. Furthermore, with DNA array technique, we showed that the expression of p202 was accompanied by downregulation of G2/M phase cell-cycle regulators, cyclin B, and p55cdc. Together, our results suggest that p202 suppresses prostate tumor growth, and that a prostate-specific antitumor effect can be achieved by systemic administration of liposome-mediated delivery of ARR2PB-p202.
Collapse
Affiliation(s)
- Yong Wen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xin H, Geng Y, Pramanik R, Choubey D. Induction of p202, a modulator of apoptosis, during oncogenic transformation of NIH 3T3 cells by activated H-Ras (Q61L) contributes to cell survival. J Cell Biochem 2003; 88:191-204. [PMID: 12461788 DOI: 10.1002/jcb.10372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have revealed that p202 (52 kDa), an interferon (IFN) and differentiation-inducible protein, negatively regulates cell proliferation and modulates cell survival. However, the role of p202 in transformed cells remains to be investigated. Here we report that constitutive expression of oncogenic H-Ras (Q61L) in NIH 3T3 cells, which resulted in cell transformation, was associated with increases in the steady-state levels of 202 RNA and protein. Interestingly, the increase in p202 levels in transformed cells correlated with increases in the activity of the transcription factor c-Jun/AP-1, which bound to the two potential AP-1 DNA binding sites (the AP-1CS1 and AP-1CS2) in the 5'-regulatory region of the 202 gene in gel mobility shift assays. Furthermore, the site-directed mutagenesis, coupled with promoter-reporter analyses, revealed that these two AP-1 DNA binding sites contribute to the regulation of the 202 gene in Ras transformed cells. Because treatment of transformed cells with a specific inhibitor of MEK (PD 98059) resulted in significant decreases in the levels of p202, these observations raise the possibility that in transformed cells Ras/Raf/MEK pathway regulates the transcriptional activation of the 202 gene. Significantly, decreases in the levels of p202 in Ras transformed NIH 3T3 cells under reduced serum conditions increased the susceptibility to apoptosis. Collectively, our observations support the idea that the transcriptional increases in the levels of p202 by oncogenic H-Ras in NIH 3T3 cells are needed for cell survival.
Collapse
Affiliation(s)
- Hong Xin
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Building No. 1, Mail code: 114B, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
37
|
Doggett KL, Briggs JA, Linton MF, Fazio S, Head DR, Xie J, Hashimoto Y, Laborda J, Briggs RC. Retroviral mediated expression of the human myeloid nuclear antigen in a null cell line upregulates Dlk1 expression. J Cell Biochem 2002; 86:56-66. [PMID: 12112016 DOI: 10.1002/jcb.10190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human myeloid nuclear differentiation antigen (MNDA) is a hematopoietic cell specific nuclear protein. MNDA and other related gene products interact with and alter the activity of a large number of proteins involved in regulating specific gene transcription. MNDA and related genes exhibit expression characteristics, which suggest functions unique to specific lineages of cells, in addition to mediating the effects of interferons. Cells of the human K562 myeloid line do not express MNDA and are relatively immature compared to lines that express MNDA (HL-60, U937, and THP1). The hypothesis that MNDA influences the expression of specific genes was tested by creating MNDA expressing K562 cells using stable retroviral mediated gene transfer followed by evaluation of transcription profiles. Two macroarrays containing a total of 2,350 cDNAs of known genes showed a specific up-regulation of Dlk1 expression in MNDA expressing K562 cell clones. Real time quantitative RT-PCR analysis confirmed an average of over 3- and 7-fold upregulation of Dlk1 in two clones of MNDA expressing K562 cells. The effects on Dlk1 were also confirmed by Northern blotting. Dlk1 is essential for normal hematopoiesis and abnormal expression is a proposed marker of myelodysplastic syndrome. Additional screening of transcription profiles after induced erythroid and megakaryoblastic differentiation showed no additional gene transcripts altered by the presence of MNDA. These results indicate that MNDA alters expression of a gene essential for normal hematopoiesis.
Collapse
Affiliation(s)
- Kevin L Doggett
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-5310, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xin H, D'Souza S, Fang L, Lengyel P, Choubey D. p202, an interferon-inducible negative regulator of cell growth, is a target of the adenovirus E1A protein. Oncogene 2001; 20:6828-39. [PMID: 11687962 DOI: 10.1038/sj.onc.1204844] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Revised: 07/11/2001] [Accepted: 07/16/2001] [Indexed: 11/08/2022]
Abstract
Studies have revealed that human adenovirus-encoded E1A protein promotes cell proliferation through the targeted interaction with cellular proteins that act as key negative regulators of cell growth. The targets of E1A protein include the retinoblastoma tumor suppressor protein (pRb). Because p202, an interferon (IFN)-inducible murine protein (52-kDa), negatively regulates cell growth in part through the pRb/E2F pathway, we tested whether the p202 is a target of the adenovirus-encoded E1A protein for functional inactivation. Here we report that the expression of E1A protein overcame p202-mediated inhibition of cell growth and this correlated with an alleviation of p202-mediated inhibition of the transcriptional activity of E2F. Furthermore, E1A protein relieved p202-mediated inhibition of the specific DNA-binding activity of E2F complexes, including those containing the pocket proteins. Additionally, the E1A protein bound to p202 both in vitro and in vivo and a deletion of four amino acids in the conserved region 2 (CR2) of E1A protein significantly reduced the binding of E1A to p202. Interestingly, ectopic expression of p202 under reduced serum conditions significantly reduced E1A-mediated apoptosis. Taken together, our observations provide support to the idea that the p202 and adenovirus E1A protein functionally counteract each other and E1A protein targets p202 to promote cell proliferation.
Collapse
Affiliation(s)
- H Xin
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Building No. 1, Maywood, Illinois, IL 60153, USA
| | | | | | | | | |
Collapse
|
39
|
Rozzo SJ, Allard JD, Choubey D, Vyse TJ, Izui S, Peltz G, Kotzin BL. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 2001; 15:435-43. [PMID: 11567633 DOI: 10.1016/s1074-7613(01)00196-0] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Nba2 locus is a major genetic contribution to disease susceptibility in the (NZB x NZW)F(1) mouse model of systemic lupus. We generated C57BL/6 mice congenic for this NZB locus, and these mice produced antinuclear autoantibodies characteristic of lupus. F(1) offspring of congenic and NZW mice developed high autoantibody levels and severe lupus nephritis similar to (NZB x NZW)F(1) mice. Expression profiling with oligonucleotide microarrays revealed only two differentially expressed genes, interferon-inducible genes Ifi202 and Ifi203, in congenic versus control mice, and both were within the Nba2 interval. Quantitative PCR localized increased Ifi202 expression to splenic B cells and non-T/non-B cells. These results, together with analyses of promoter region polymorphisms, strain distribution of expression, and effects on cell proliferation and apoptosis, implicate Ifi202 as a candidate gene for lupus.
Collapse
Affiliation(s)
- S J Rozzo
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
D'Souza S, Xin H, Walter S, Choubey D. The gene encoding p202, an interferon-inducible negative regulator of the p53 tumor suppressor, is a target of p53-mediated transcriptional repression. J Biol Chem 2001; 276:298-305. [PMID: 11013253 DOI: 10.1074/jbc.m007155200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor protein regulates the transcription of regulatory genes involved in cell cycle arrest and apoptosis. We reported previously that overexpression of p202, an interferon-inducible negative regulator of cell growth, negatively regulates the transcriptional activity of p53. Now we identify the gene encoding p202 as one whose mRNA and protein expression decrease in cells following the expression of wild-type, but not mutant, p53. Furthermore, the levels of p202 also decrease after exposure of cells to ultra violet light, which correlate with increase in the levels of p53. We report that the sequence-specific DNA binding of p53 to the 5'-regulatory region of the 202 gene contributes to the transcriptional repression of the 202 gene. Interestingly, overexpression of p202 in cells induced to undergo p53-dependent apoptosis significantly delays this process, indicating that the negative regulation of the 202 gene by wild-type p53 is important to potentiate apoptosis.
Collapse
Affiliation(s)
- S D'Souza
- Program in Molecular Biology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
41
|
Liu CJ, Wang H, Zhao Z, Yu S, Lu YB, Meyer J, Chatterjee G, Deschamps S, Roe BA, Lengyel P. MyoD-dependent induction during myoblast differentiation of p204, a protein also inducible by interferon. Mol Cell Biol 2000; 20:7024-36. [PMID: 10958697 PMCID: PMC88777 DOI: 10.1128/mcb.20.18.7024-7036.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
p204, an interferon-inducible p200 family protein, inhibits rRNA synthesis in fibroblasts by blocking the binding of the upstream binding factor transcription factor to DNA. Here we report that among 10 adult mouse tissues tested, the level of p204 was highest in heart and skeletal muscles. In cultured C2C12 skeletal muscle myoblasts, p204 was nucleoplasmic and its level was low. During myoblast fusion this level strongly increased, p204 became phosphorylated, and the bulk of p204 appeared in the cytoplasm of the myotubes. Leptomycin B, an inhibitor of nuclear export that blocked myoblast fusion, inhibited the nuclear export signal-dependent translocation of p204 to the cytoplasm. The increase in the p204 level during myoblast fusion was a consequence of MyoD transcription factor binding to several MyoD-specific sequences in the gene encoding p204, followed by transcription. Overexpression of p204 (in C2C12 myoblasts carrying an inducible p204 expression plasmid) accelerated the fusion of myoblasts to myotubes in differentiation medium and induced the fusion even in growth medium. The level of p204 in mouse heart muscle strongly increased during differentiation; it was barely detectable in 10. 5-day-old embryos, reached the peak level in 16.5-day-old embryos, and remained high thereafter. p204 is the second p200 family protein (after p202a) found to be involved in muscle differentiation. (p202a was formerly designated p202. The new designation is due to the identification of a highly similar protein-p202b [H. Wang, G. Chatterjee, J. J. Meyer, C. J. Liu, N. A. Manjunath, P. Bray-Ward, and P. Lengyel, Genomics 60:281-294, 1999].) These results reveal that p204 and p202a function in both muscle differentiation and interferon action.
Collapse
Affiliation(s)
- C j Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The Interferon- and Differentiation-inducible p202a Protein Inhibits the Transcriptional Activity of c-Myc by Blocking Its Association with Max. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61521-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Choubey D, Walter S, Geng Y, Xin H. Cytoplasmic localization of the interferon-inducible protein that is encoded by the AIM2 (absent in melanoma) gene from the 200-gene family. FEBS Lett 2000; 474:38-42. [PMID: 10828447 DOI: 10.1016/s0014-5793(00)01571-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While interferons (IFNs) (alpha, beta and gamma), a family of cytokines, have the ability to exert the growth-inhibitory effect on target cells, the molecular mechanism(s) by which IFNs inhibit cell growth remains to be identified. Because IFN-inducible 'effector' proteins mediate the biological activities of IFNs, characterization of IFN-inducible proteins is critical to identify their functional role in IFN action. One family (the 200-family) of IFN-inducible proteins is encoded by structurally related murine (Ifi202a, Ifi202b, Ifi203, Ifi204 and D3) and human (IFI16, MNDA and AIM2) genes. The proteins encoded by genes in the family share a unique repeat of 200-amino acids and are primarily nuclear. The AIM2 gene is a newly identified gene that is not expressed in a human melanoma cell line. Here we report that AIM2 is estimated to be a 39 kDa protein and, unlike other proteins in the family, is localized primarily in the cytoplasm. Interestingly, overexpression of AIM2 in transfected cells retards proliferation and, under reduced serum conditions, increases the susceptibility to cell death. Moreover, AIM2 can heterodimerize with p202 in vitro. Together, these observations provide support to the idea that AIM2 may be an important mediator of IFN action.
Collapse
Affiliation(s)
- D Choubey
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Building No. 1, 60153, Maywood, IL, USA.
| | | | | | | |
Collapse
|
44
|
Wang H, Chatterjee G, Meyer JJ, Liu CJ, Manjunath NA, Bray-Ward P, Lengyel P. Characteristics of three homologous 202 genes (Ifi202a, Ifi202b, and Ifi202c) from the murine interferon-activatable gene 200 cluster. Genomics 1999; 60:281-94. [PMID: 10493828 DOI: 10.1006/geno.1999.5923] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ifi202 gene is part of the interferon-activatable murine gene 200 cluster on chromosome 1. Ifi202 encodes the p202 protein whose overexpression is growth inhibitory and which can bind and inhibit the activity of numerous transcription factors including c-Jun, c-Fos, NF-kappaB, E2F-1, E2F-4, MyoD, and myogenin. We report here the exon-intron structure of Ifi202 and the discovery of Ifi202b and Ifi202c, close homologs of Ifi202 (whose designation we now change to Ifi202a). Ifi202a, b, and c were colocalized to chromosome 1 bands H4-H5 by fluorescence in situ hybridization. Ifi202b encodes p202b, which is interferon-inducible and differs from p202a in only 7 of 445 amino acids. 202b mRNA is constitutively expressed in tissues in which 202a mRNA is expressed. Ifi202c is apparently an unexpressed pseudogene. In murine embryonic fibroblasts (MEFs) from 129 mice, the level of 202b mRNA is approximately half that of 202a mRNA. We knocked out the Ifi202a gene from 129 mice. The expression of 202b mRNA, but not 202a mRNA, persisted in the knockout mice and their MEFs at the same level as in wildtype mice. However, in MEFs from the knockout mice, the constitutive and interferon-induced levels of p202b were approximately as high as the constitutive and the interferon-induced levels of p202a plus p202b, respectively, in MEFs from wildtype mice. These findings suggest dosage compensation at the posttranscriptional level. This might account for the apparent lack of phenotype of the knockout mice.
Collapse
Affiliation(s)
- H Wang
- Department of Molecular Biophysics and Biochemistry, Department of Genetics, Yale University, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Johnstone RW, Trapani JA. Transcription and growth regulatory functions of the HIN-200 family of proteins. Mol Cell Biol 1999; 19:5833-8. [PMID: 10454530 PMCID: PMC84432 DOI: 10.1128/mcb.19.9.5833] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- R W Johnstone
- The John Connell Cellular Cytotoxicity Laboratory, The Austin Research Institute, Austin and Repatriation Medical Centre, Heidelberg 3084, Victoria, Australia.
| | | |
Collapse
|
46
|
Gribaudo G, Riera L, De Andrea M, Landolfo S. The antiproliferative activity of the murine interferon-inducible Ifi 200 proteins depends on the presence of two 200 amino acid domains. FEBS Lett 1999; 456:31-6. [PMID: 10452524 DOI: 10.1016/s0014-5793(99)00916-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Interferon-inducible proteins, p200, have a modular organization consisting of one (p203) or two (p202 and p204) 200 amino acid motifs, designated as type a or b domains. The relationship between this domain organization and the antiproliferative activity was investigated by generating a hybrid protein with the 204 a domain upstream from the 203 b domain. This 204a/203b protein inhibits the proliferation of transfected cells, delays G0/G1 progression into S phase following serum restimulation, and inhibits the E2F-mediated transcriptional activity. These results demonstrate for the first time that both a and b domains are needed for inhibition of proliferation by the Ifi 200 proteins.
Collapse
Affiliation(s)
- G Gribaudo
- Department of Public Health and Microbiology, University of Turin, Italy
| | | | | | | |
Collapse
|
47
|
Liu CJ, Wang H, Lengyel P. The interferon-inducible nucleolar p204 protein binds the ribosomal RNA-specific UBF1 transcription factor and inhibits ribosomal RNA transcription. EMBO J 1999; 18:2845-54. [PMID: 10329630 PMCID: PMC1171365 DOI: 10.1093/emboj/18.10.2845] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
p204, a member of the interferon-inducible p200 family of murine proteins, is primarily nucleolar. We generated cell lines in which p204 was inducible by muristerone. This induction resulted in retardation of cell proliferation and inhibition of rRNA transcription in vivo. Interferon treatment, resulting in p204 induction and retardation of proliferation, also caused inhibition of rRNA transcription in vivo. p204 also inhibited rRNA transcription in vitro. This inhibition was overcome by addition of UBF1, the rRNA-specific transcription factor. A direct interaction between p204 and UBF1 was revealed in vitro in pull-down assays, and in vivo by co-immunoprecipitation from cell extracts. UBF1 bound strongly to at least two regions of p204: the N-terminal segment linked to the conserved 200 amino acid a segment, and the conserved 200 amino acid b segment. Cleavage of the a or b segments into two segments (encoded by single exons) resulted in a strong decrease or loss of binding. The inhibition of rRNA transcription by p204 may be due to the inhibition by p204 of the specific DNA binding of UBF1. This was revealed in electrophoretic mobility shift, magnetic bead and footprinting assays. Thus, p204 serves as a mediator of the inhibition of rRNA transcription by interferon.
Collapse
Affiliation(s)
- C J Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208024, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | | | | |
Collapse
|
48
|
Gribaudo G, Riera L, Hertel L, Landolfo S. In vitro and in vivo expression analysis of the interferon-inducible 203 gene. J Interferon Cytokine Res 1999; 19:129-36. [PMID: 10090398 DOI: 10.1089/107999099314270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interferon (IFN)-inducible protein family 200 is encoded by structurally related genes located on mouse chromosome 1. The encoded proteins so far characterized and designated p202, p204, and pD3 contain at least one copy of a conserved 200 amino acid domain in addition to other regions that are different or missing among the various family members. We have recently characterized a cDNA clone (203 cDNA) encoding a 408 amino acid protein bearing structural similarities to p202 and p204. Here, we report its pattern of expression in vitro and in vivo. In vitro, the mRNA and protein encoded by the 203 gene were increased by IFN-alpha in several cell lines of different histologic origin. By contrast, no significant induction was observed in vivo in mice from C57BL/6 and BALB/c strains even after treatment with the IFN-inducer poly rI:rC. In addition, the constitutive expression of 203 gene was restricted to some myeloid and lymphoid tissues, namely, thymus, bone marrow, and spleen. Comparison of the expression pattern of the 203 and 202 genes in three mouse strains revealed that they exhibit a differential inducibility by IFN and a reciprocal expression pattern. The 203 mRNA was constitutively expressed in C57BL/6 and BALB/c mice and undetectable in the spleen of DBA/2 mice. The 202 mRNA was strongly induced by poly rI:rC in the spleen of DBA/2 and BALB/c mice but absent in C57BL/6 mice. Southern analysis revealed a restriction fragment length polymorphism in the 203 locus. Taken as a whole, these results demonstrate a remarkable difference in the in vivo IFN responsiveness of two members belonging to the same gene family with a similar degree of IFN inducibility in vitro. Moreover, the reciprocal expression pattern in C57BL/6 and DBA/2 mice could mean that p203 and p202 play the same role in a mouse strain in which only one of them is expressed.
Collapse
Affiliation(s)
- G Gribaudo
- Department of Public Health and Microbiology, University of Turin, Italy
| | | | | | | |
Collapse
|
49
|
Yan DH, Wen Y, Spohn B, Choubey D, Gutterman JU, Hung MC. Reduced growth rate and transformation phenotype of the prostate cancer cells by an interferon-inducible protein, p202. Oncogene 1999; 18:807-11. [PMID: 9989832 DOI: 10.1038/sj.onc.1202369] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferons (IFNs) can exert cytostatic and immunomodulatory effects on carcinoma cells. In particular, growth inhibition of human prostate carcinoma by IFNs has been demonstrated both in vitro and in vivo. p202 is a 52 kd nuclear phosphoprotein known to be induced by IFNs. In this report, we showed that the expression of p202 was associated with an anti-proliferative effect on human prostate cancer cells. More importantly, cells that expressed p202 showed reduced ability to grow in soft-agar, indicating a loss of transformation phenotype. Our data suggest that p202 is a growth inhibitor gene in prostate cancer cells and its expression may also suppress transformation phenotype of prostate cancer cells.
Collapse
Affiliation(s)
- D H Yan
- Department of Tumor Biology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Abstract
In an effort to characterize molecular events contributing to lineage commitment and terminal differentiation of stem/progenitor cells, we have used differential display reverse transcription polymerase chain reaction (DDRT-PCR) and cell lines blocked at two distinct stages of differentiation. The cell lines used were EML, which is representative of normal multipotential primitive progenitors (Sca-1+, CD34+, c-Kit+, Thy-1+) able to differentiate into erythroid, myeloid, and B-lymphoid cells in vitro, and MPRO, which is a more committed progenitor cell line, with characteristics of promyelocytes able to differentiate into granulocytes. One clone isolated by this approach was expressed in MPRO but not in EML cells and contained sequence identical to the 3′ untranslated region of D3, a gene cloned from activated peritoneal macrophages of unknown function. We have observed a novel pattern of D3 gene expression and found that D3 is induced in EML cells under conditions that promote myeloid cell differentiation (interleukin-3 [IL-3], stem cell factor [SCF], and all-trans-retinoic acid [atRA]) starting at 2 days, corresponding to the appearance of promyelocytes. D3 RNA expression reached a maximum after 5 days, corresponding to the appearance of neutrophilic granulocytes and macrophages, and decreased by day 6 with increased numbers of differentiated neutrophils and macrophages in vitro. Induction of D3 RNA in EML was dependent on IL-3 and was not induced in response to SCF or atRA alone or SCF in combination with 15 other hematopoietic growth factors (HGF) tested. Similarly, D3 was not expressed in the normal bone marrow cell (BMC) counterpart of EML cells, Linlo c-Kit+Sca-1+ progenitor cells. D3 RNA expression was induced in these cells when cultured for 7 days in IL-3 plus SCF. A comparison of the expression of D3 RNA in cell lines and normal BMC populations demonstrated that D3 is induced during macrophage and granulocyte differentiation and suggests a potential physiological role for D3 in normal myeloid differentiation.
Collapse
|